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Microbial cell factories have been widely used in the production of various chemicals.
Although synthetic biology is useful in improving the cell factories, adaptation is still
widely applied to enhance its complex properties. Adaptation is an important strategy
for enhancing stress tolerance in microbial cell factories. Adaptation involves gradual
modifications of microorganisms in a stressful environment to enhance their tolerance.
During adaptation, microorganisms use different mechanisms to enhance non-preferred
substrate utilization and stress tolerance, thereby improving their ability to adapt for
growth and survival. In this paper, the progress on the effects of adaptation on microbial
substrate utilization capacity and environmental stress tolerance are reviewed, and the
mechanisms involved in enhancing microbial adaptive capacity are discussed.
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INTRODUCTION

With the help of synthetic biology, microorganisms will produce around 30% of chemicals,
biofuels and materials from renewable resources by 2030 (Lee et al., 2019; Yuan and Alper, 2019;
Zeng, 2019; Zhang et al., 2021). However, microorganisms face complex and diverse substrates
and harmful conditions during the production process, severely limiting the widespread use
of microbial production in renewable energy (Huang et al., 2021). Although synthetic biology
significantly improves strain development via the design-build-test-learn cycle, the efficiency of
modifying and improving complex characteristics, such as tolerance to stress and speed of growth,
is difficult to achieve due to the complex metabolic and regulatory networks involved. Therefore,
adaptation is still widely used as a common approach to improve the performance of microbes
(Sandberg et al., 2019).

Adaptation is widely used to enhance performance of engineered strains due to its effectiveness
and universality (Figure 1A). Microbial adaptation can improve the utilization of non-preferred
substrates, while long-term adaptation of xylose-metabolizing yeast in a xylose culture enhanced
the rate of xylose metabolism (Zha et al., 2014; Qi et al., 2015). The short-term adaptation
of Saccharomyces cerevisiae in a galactose environment realized rapid utilization of galactose
in subsequent generations (Stockwell et al., 2015). In addition, adaptation can rapidly improve
tolerance to stress. adaption of Saccharomyces eubayanus in the culture with ethanol boosted the
strain growth under ethanol condition (Mardones et al., 2021). Adaptation exhibits a great ability
to improve microbial performance in a short time.

The mechanisms of microbial adaptation have attracted much attention recently. When
microorganisms undergo long- and short-term adaptation, different mechanisms enhance the
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strain performance. Genomic mutations during adaptation could
lead to fitness to the stressful environment by increasing the yield
of the product or growth rate of the strain (Smith and Johnson,
2000; Sheppard et al., 2018). Sun et al. reported a novel stress-
induced, error-prone Okazaki fragment that explains possible
reasons for generating mutations, counteracting replication
defects, and promoting cell evolution and survival (Sun et al.,
2021). During short-term adaptation the fitness may be related
to long-lasting protein residues, epigenetic modifications and
cross-protection against different stresses (Kundu and Peterson,
2010; Goudarzi et al., 2016). This paper will provide an overview
of recent advances in the applications and mechanisms of
microbial adaptation.

ADAPTATION TO IMPROVE MICROBIAL
PERFORMANCE

Synthetic biology aims to redesign metabolic pathways and
broaden the spectrum of products (e.g., protocatechuic acid,
paclitaxel, opioids) (Guan et al., 2020; Tong et al., 2021; Zhang
et al., 2021). However, the new substrates and products usually
affect the performance of these artificial cell factories. Adaptation
can enable microbial cell factories and enhance the conversion
performance on different substrates (e.g., xylose, arabinose) (Li
et al., 2019; Nijland and Driessen, 2020; Sun et al., 2020) and
tolerance of stresses (Lian et al., 2018; Das et al., 2020; Guirimand
et al., 2021).

Adaptation to Enhance the Utilization of
Non-preferred Substrates
With the development of synthetic biology, microbial cell
factories can be designed to convert some non-preferred
carbon sources from lignocelluloses, such as xylose and other
pentoses derived from hydrolysis of lignocellulosic biomass
(Li et al., 2020). Adaptation of microbial cell factories with
the heterologous metabolic pathways for non-preferred carbon
sources is usually able to improve the utilization efficiency
of non-preferred carbon sources. S. cerevisiae is one of the
most popular microbes for lignocellulosic ethanol production,
but S. cerevisiae does not possess xylose metabolic pathways.
Heterologous expression of the xylose reductase and xylitol
dehydrogenase pathway enabled S. cerevisiae to utilize xylose
(Zha et al., 2014). Xylose consumption increased slightly through
regulation of several known key genes such as RPE1, TKL1,
and RKI1 in the pentose phosphate pathway (Zha et al.,
2014; Qi et al., 2015). Adaptation of this xylose metabolizing
S. cerevisiae strain in medium with 2% xylose as the sole
carbon source for 12 consecutive passages resulted in rapid
xylose utilization by the adapted strain and led to a 110%
increase in isobutanol production (Promdonkoy et al., 2020).
Adapted in xylose media for seven consecutive passages, xylose
utilization of strain SyBE005 was significantly improved and
ethanol production increased 2.6-fold (Zha et al., 2014). With
adaptation for 60 days, xylose-utilizing yeast with modifications
of xylose transporter gene and genes in phosphate pentose
pathway improved strain growth more than threefolds in xylose

media (Li et al., 2021). The efficiency of cellobiose utilization can
also be improved through adaptations. After adaptation of 12
consecutive passages in a medium containing 80 g/L cellobiose,
S. cerevisiae with the heterologous cellobiose metabolic pathway
significantly increased the rate of cellobiose consumption and
ethanol production (Oh Eun et al., 2016).

In addition to the enhanced utilization of non-preferred
substrates by microorganisms after several days of passaging,
microorganisms accelerated the utilization of non-preferred
substrates after transient stimulation in a non-preferred substrate
environment (Figure 1B). If S. cerevisiae is adapted for a short
period of 12 h in a medium with galactose as the sole carbon
source, the cells can take up the galactose and use it after
enzymatic modification. Furthermore, the adapted cells can still
rapidly utilize galactose after seven divisions (Stockwell et al.,
2015). The viability of S. cerevisiae was improved through short-
term adaptation in media lacking inositol, and its offspring still
grew well in media lacking inositol (Light et al., 2013). Similarly,
yeast undergoes rapid adaptation to non-preferred substrate
during short-term adaptation between glucose and maltose,
glucose and glycerol, and Escherichia coli between glucose and
galactose (Novak et al., 2004; Ozbudak et al., 2004; Cerulus
et al., 2018). Hence, short-term adaptation may also provide
microorganisms with the ability to rapidly fit substrate changes,
which can be passed on to the offspring.

Overall, adaptation compensates for the lack of knowledge
of microbial on the utilization of non-preferred substrates.
Microorganisms may activate and inhibit specific functions in
the process of adapting to non-preferred substrates. Therefore,
adaptation can rapidly improve microorganisms’ ability to utilize
non-preferred substrates.

Adaptation to Improve Stress Tolerance
During the fermentation process of yeast using lignocellulose
to produce ethanol, microorganisms were affected by the stress
of inhibitors such as furfural, phenol and acetic acid (FAP).
Therefore, high-temperature environments and the potential
presence of various toxic substances in the living environment
can affect the survival of microorganisms as well as synthesis
of chemicals and biofuels. As tolerance is a complex trait, it
is not well-controlled by a single gene or few genes (Wang
et al., 2015, 2020; Gulck et al., 2020; Qin et al., 2020). Thus,
adaptation can enhance the tolerance of microorganisms to
stressful environments on multiple scales, and is a common
means for microorganisms to strengthen stress responses and
overcome survival limitations.

The adaptation of S. cerevisiae for bioethanol production
is promising. The S. cerevisiae was adapted at an initial
concentration of 40% FAP mixed inhibitor (phenol 0.5 g/L,
furfural 1.3 g/L, and acetic acid 5.3 g/L) before the inhibitor
concentration was gradually increased to 100% over the course
of the adaptation process for 65 days. The adapted strains
were fermented at a concentration of 50% FAP mixed inhibitor.
The ethanol yield of the adapted strains was 80% higher than
the parental strains, and was able to eliminate furfural from
the medium in a short period of time (Li et al., 2019). After
adaptation with acetic acid and low pH conditions for 1 year,
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FIGURE 1 | Microbial stress adaptation. (A) Schematic diagram of long-term adaptation of microorganisms to their environment. (B) Schematic diagram of
short-term adaptation of microorganisms to their environment.

the growth rate of the adapted yeast increased to about 1.5
folds in 3 g/L of acetic acid condition compared with the parent
strain (Salas-Navarrete et al., 2022). The adaptation of Yarrowia
lipolytica strain led to tolerance of 1.5 g/L ferulic acid, whereas
0.5 g/L ferulic acid could cause about 90% lethality of the parental
strain (Wang et al., 2021b). Furthermore, adaptation has been
applied to microbes to overcome other stresses. The engineered
yeast was adapted with oxidative stress to improve the tolerance
and the production of β-caryophyllene (Godara and Kao, 2021).
Adaptation of E. coli with the formic acid decreased the doubling
time from 70 to 8 h (Kim et al., 2020). After 120 generations of
adaptation of Eubacterium limosum under CO culture condition,
the growth rate increased by 1.44-fold (Kang et al., 2020).
These studies highlight that the toxic environment can inhibit
microbial growth, while long-term adaptation of microorganisms
can significantly improve their ability to ferment or metabolize
toxic substances.

Short-term adaptation can also strengthen microorganisms’
ability to adapt to environmental stresses. Short-term adaptation
of yeast was carried out for 8 min using a medium containing 1
M sorbitol. The yeast showed different behaviors in response to
repeated stress 4 h apart, where a faster stress response rate was
observed during the second time compared to the first time (Ben
Meriem et al., 2019). Due to the lack of theoretical information
on the genetic manipulation of wild-type microorganisms, it
is difficult for wild-type microorganisms to resist the harsh
environment through genetic engineering. Therefore, adaptation
is a simple method that can effectively enhance the adaptability
of microorganisms to the environment. With the constant
development of low-cost, high-throughput DNA sequencing and
bioinformatics, adapted strains can analyze the causes of strain
changes using bioinformatics technology (Shendure et al., 2017;
Šoštarić et al., 2021). Based on traditional genetic engineering
techniques, adaptation can boost microorganisms’ performance
to modify their adaptability to various environmental stresses,
resulting in more efficient production strains.

MECHANISMS OF ADAPTATION

Some of the performance improvements of strains caused by
adaptation are long-term and stable, and some are short-term
(Bagamery et al., 2020; Lee et al., 2020). The long-term stability
is usually caused by gene mutation (Peter et al., 2018; Sheppard
et al., 2018; Steensels et al., 2019), while the mechanism of
short-term adaptation is more complex, and still under study.
According to existing research, adaptation enhances short-
term performance through several mechanisms. Good traits
produced by short-term adaptation of microorganisms can be
stably inherited for several generations and the microorganism
gradually loses this phenotype as the number of generations
increases. Based on the characteristics of short-term retention of
traits, it is inferred that short-term adaptation may cause changes
in tolerance through mechanisms such as residue of degradable
proteins and epigenetic modifications.

Adaptation Mechanisms Based on Long
Retention Proteins
In the microorganisms, there may be long retention proteins that
can enhance environmental tolerance (Figure 2A). Transcription
factors may be an important long retention protein as they
can regulate cells to maintain their physiological functions in a
stress environment (Guan et al., 2012). Moreover, the interaction
of transcription factors and DNA may also regulate complex
metabolic networks. The retention time of transcription factors
may determine the maintenance time of the new phenotypes.
Therefore, the trait changes of short-term adapted strains may
be closely related to the retention time of transcription factors.
For instance, when S. cerevisiae was acclimated to galactose in the
short term, the expression levels of galactose-metabolizing genes
varied with glucose and galactose concentrations (Lohr et al.,
1995). The GAL gene is slowly expressed when the yeast is first
adapted in galactose for a short period of time. When galactose
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FIGURE 2 | Mechanisms of microbial stress adaptation. (A) When microorganisms are subjected to environmental stress, the long-retaining proteins are produced
to protect the cells for a long time. (B) Effects of environmental stress on microbial epigenetic modifications. When microorganisms are stimulated by external
environmental stress, epigenetic modifications are altered, affecting transcription and translation processes. (C) Microorganisms are adapted to a stressful
environment, resulting in cross protection against stress. Growth advantages can also be shown when switching to other stressful environments.

induction was repeated within a short time, yeast expressed GAL
proteins at a faster rate and this response persisted for several
generations in the absence of galactose. An in-depth analysis
further revealed that previous adaptation mainly affected the
expression of the transcription factors GAL3 and GAL1 (Kundu
and Peterson, 2010). In addition, the nuclei of S. cerevisiae
without galactose acclimation were put into the cytoplasm of
the acclimated cells, which also resulted in enhanced galactose
metabolism. This indicates that the cytoplasm may contain some

substances that can regulate the metabolism of galactose after the
cells are induced by galactose (Zacharioudakis et al., 2007).

During the short-term adaptation of microorganisms,
transcription factors may also bind to specific promoters or
enhancers, thereby inducing gene transcription to enhance
stress tolerance (Weake and Workman, 2010). S. cerevisiae
senses changes in energy and nutrition, thus regulating the
expression of related genes through signal transduction
pathways that may be influenced by transcription factors
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(González and Hall, 2017; González et al., 2020). S. cerevisiae was
adapted in an environment lacking inositol, and the emergence
of new traits was found to be related to the expression of the
INO1 gene (Wang et al., 2015). The expression of INO1 gene
is regulated by a variety of factors, including transcription
factors SFL1, H2A.Z (Light et al., 2010; Brickner et al., 2015).
When transcription factors and regulatory elements bind, it is
likely to alter the structure of the chromosome and increase
the accessibility of promoter regions on the chromosome
(Weake and Workman, 2010). Therefore, transcription factors
activated by environmental stress may bind to chromatin
at specific binding sites. When cells are adapted for a short
period of time, transcription factors bind to these loci, causing
chromatin changes that are maintained for some time (Light
et al., 2010). Hence, some long-retaining proteins remaining
in microorganisms may play important regulatory roles during
short-term adaptation.

Mechanisms of Adaptation Based on
Epigenetic Modifications
Epigenetic modifications can transiently regulate gene expression
when microorganisms are stimulated by stressful environments
(Figure 2B). However, only one epigenetically modified strand
of DNA is contained in the daughter cell, and the offspring
will no longer contain the modified DNA strand when the
passage number increases (Radman-Livaja et al., 2011). Similarly,
after short-term adaptation of microorganisms in a stressful
environment, their tolerance traits gradually disappeared with
an increasing passage number. Thus, there may be a close link
between epigenetic modifications and short-term adaptation of
microorganisms, and epigenetic modifications may play a key
regulatory role in the adaptation process.

Microorganisms can respond to transient changes in their
environment using heat shock responses, oxidative stress
responses and DNA damage responses (Weinhouse, 2021).
Epigenetic modification studies of these responses demonstrated
that epigenetic modifications may lead to changes in phenotype
(Henikoff and Greally, 2016; Harvey et al., 2018). Epigenetic
modifications may affect DNA–histone interactions, nucleosome
interactions and alter chromatin structure by modifying specific
sites (Shogren-Knaak et al., 2006). However, nucleosomes are
made up of histones H2A, H2B, H3, and H4, which are entwined
with DNA strands to form higher order structures (Hauer and
Gasser, 2017). For example, the acetylation of histones H3K14
and H3K9 facilitates the repair of UV-damaged DNA (Yu
et al., 2005; Duan and Smerdon, 2014). Epigenetic modification
provides a more transcriptionally efficient chromatin structure by
converting chromatin into transcriptionally active euchromatin
or inactive heterochromatin (Kouzarides, 2007). Therefore, the
degree of sparseness of higher-order structures affects DNA
transfer, limiting the ability of DNA to bind with transcription
factors (Li et al., 2007; Marsano et al., 2019).

Microorganisms have various epigenetic modifications,
such as lysine acetylation, serine phosphorylation, and lysine
ubiquitination. Among them, lysine acetylation is involved
in various cellular metabolisms and the transcription and

translation of thousands of proteins (Goudarzi et al., 2016).
Histones are epigenetically modified after previous short-term
exposure of microorganisms to environmental stress, and the
relevant genes are transcribed more rapidly when subjected to
secondary stress (Brickner et al., 2007; Feil and Fraga, 2012;
Rienzo et al., 2015). In transcriptional regulation, histone
modifications can maintain the integrity of the genome and
contribute to the stable inheritance of genetic information
in daughter cells. In eukaryotes, epigenetic modifications
have a direct effect on mitotic mutation rates, and two
histone modifications (H3K9me3 and H3K27me3) associated
with heterochromatin were shown to be associated with
gene mutations. By correlating mutations with epigenetic
modifications, it was found that H3K27me3 affects mutations by
inducing replication stress. However, H3K27me3 modifications
only affect local mutation rates, and not structural variations in
nucleic acid sequences on a large scale (Habig et al., 2021).

When microorganisms are first exposed to a stressful
environment, it may enter a state of self-protection and exhibit
slow or stagnant growth. Thus, microorganisms may regulate
growth through epigenetic modifications. Among the known
acetylated lysine residues, histone H4 carries four lysines in
its N-terminal tail, namely lysines 5, 8, 12, and 16 (K5, K8,
K12, and K16). Acetylation of the H4K16 site was found
to regulate important processes such as gene silencing and
transcription (Oppikofer et al., 2011). Methylation of specific
histone-like residues can turn on or repress transcription in
microorganisms (Lämke et al., 2016; Fabrizio et al., 2019).
Subsequently, the microbe slowly undergoes acetylation or
methylation modifications to affect gene expression until normal
growth is restored.

Epigenetic modifications can adjust DNA structure, and
alter the polyadenylation (pA) site where precursor mRNA is
cleaved and polyadenylated, enabling cells to rapidly respond to
environmental stress (Kaczmarek Michaels et al., 2020). Multiple
pA sites are commonly found in eukaryotes, and these pA
sites are present within cis-regulatory elements, introns and
coding sequences. Different pA sites determine separate sites
of polyadenylation, during which proteins with different levels
of expression, structure, function and subcellular localization
are produced, allowing the cell to respond better to different
environmental stimuli (Tian and Manley, 2017). In other words,
short-term adaptation may have altered the metabolic state of
the microbe by regulating gene expression and maintaining
this state within subsequent generations, a change similar to
epigenetic regulation. Thus, when microorganisms undergo
short-term adaptation, epigenetic modifications may reshape
the structure of the genome, globally regulating the metabolic
capacity of microorganisms and helping them to produce
transient memories to cope with a change in environments.

Cross-Protection Against Stress and
Mechanisms
Microorganisms have complex and efficient regulatory
networks that respond to changes in the culture environment.
Microorganisms that have been adapted in a stressful
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environment are able to increase their stress tolerance.
Interestingly, growth advantages can also be shown when
switching to other stressful (Figure 2C). Moreover, the
tolerance of microorganisms to multiple stresses is a ubiquitous
phenomenon. In a high concentration of 500 mg/L corn steep
liquor, Lactobacillus rhamnosus was adapted for 1 month
to obtain an excellent strain. In addition to maintaining
high antioxidant activity, antibacterial activity and antibiotic
resistance similar to the original strain, it also showed relatively
faster growth, greater resistance to acids, bile salts, lysozyme and
0.4% phenol (Wu et al., 2020). In the cobalt-containing stress
environment, S. cerevisiae was adapted continuously or in stages.
Compared with the wild-type strain, the adapted strain not only
improved tolerance to cobalt, but also metals such as nickel,
zinc and manganese, as well as high temperatures and hydrogen
peroxide (Çakar et al., 2009). In prokaryotes, Tetragenococcus
halophilus underwent short-term acclimation at 45◦C for 1.5 h.
Not only did the adaptability to high temperature improve,
but its ability to resist osmotic stress also increased. When
T. halophilus was transferred to a 10% ethanol environment and
cultivated for 2.5 h, its survival rate increased by sevenfold (Yang
et al., 2021). Similarly, short-term adaptation of the eukaryotic
microorganism Rhodotorula mucilaginosa at 40◦C for 30 min not
only increased high temperature tolerance, but also enhanced
tolerance to H2O2, NaCl and high heat stress, and the survival
rate of their cells increased about 1.2-fold (Cheng et al., 2016).
It was also found that Candida glabrata, an opportunistic fungal
pathogen, was also adapted at high temperatures to enhance
tolerance to other environmental stresses (Roetzer et al., 2011;
Huang et al., 2019).

The mechanism in which microorganisms developed
tolerance to other stresses after adaptation to one stress is
unclear, and the enhancement of these tolerance traits may be
affected by the interaction of genes and environments. The cause
of microbial cross-tolerance may also be the common stimulation
targets or the same ability to excrete harmful substances under
different stress environments. T. halophilus strains subjected to
high temperature stress not only improved their temperature
tolerance but also ethanol tolerance (Yang et al., 2021). Ethanol
is a toxicity factor that disrupts cell metabolism and damages
the cell plasma membrane (Wijesundara and Rupasinghe, 2019).
However, microorganisms can use membrane transport and
take up extracellular organic compounds to improve stress
tolerance under different stress conditions (Tang et al., 2014;
Huang et al., 2016). Analysis revealed that the membrane protein
insertion enzyme YidC of T. halophilus strains was significantly
up-regulated after high temperature acclimation, which may
be beneficial to the absorption of extracellular nutrients (Yang
et al., 2021). Therefore, high temperature may enhance the
performance of T. halophilus cytoplasmic membrane, thereby
increasing resistance to ethanol.

After T. halophilus was acclimated to high temperature, the
phosphate carrier protein HPr in the phosphotransferase system
was significantly up-regulated. Previous studies showed that
T. halophilus also induced the expression of HPr during acid
acclimation, and then the strain was able to rapidly tolerate
stress when encountering acid stress (He et al., 2016). Thus, the

up-regulation of HPr expression may help microorganisms resist
various stresses (He et al., 2016; Gao et al., 2019). Under ethanol
stress, HPr up-regulation may also enhance the resistance of
T. halophilus to acetic acid. In addition, the synthesis of ribosomal
protein was accelerated when Zygosaccharomyces rouxii was
acclimated to high temperatures, which not only enhanced its
adaptability to high temperature, but also its ability to resist
osmotic stress (Wang et al., 2021a). When yeast is acclimated
to high temperature, it will induce the expression of a series
of heat shock proteins Hsps (Kitichantaropas et al., 2016). The
expression of Hsps proteins may be specific to various stresses,
such as temperature, pH, ethanol stress, osmotic pressure,
desiccation stress, antifungal and oxidative stress. Therefore, it is
possible to simultaneously resist multiple environmental stresses
through the regulation of yeast Hsps proteins.

After high-temperature adaptation of C. glabrata, the strains
screened showed convergence in evolutionary phenotypes and
the mutation in CgSTE11 was found to play a major role in
high-temperature tolerance and in the observed cross-stress to
other environmental stressors (Huang et al., 2019). The CgSTE11
mutation was also significantly more resistant to heat and acetic
acid (Huang et al., 2019). It can be seen that mutations in genes
affect the stress tolerance of microorganisms. The combination
of different variants may also result in different phenotypes
compared to single mutants. There are potentially millions
of genes and gene combinations in eukaryotes. Gene-to-gene
regulation alters the phenotype of microorganisms, while more
appropriate getting gene coupling can be selected for stressful
environmental conditions. Hence, the interaction between
genes changes through genetic variation when the survival
of microorganisms is under environmental stress, resulting in
the mutual coordination between genes and the environment.
The effects of gene-by-environment on yeast were studied by
alternative carbon sources, osmotic stress and genotoxic stress
in 14 different environments and 4,000 yeast single mutants
(Costanzo et al., 2021). The relationships that regulate the
global network of genetic interactions in yeast under different
environmental stresses were revealed, and some genes with close
functional links were also identified, which have implications for
enhancing tolerance to different environmental stresses.

The same stress resistance mechanism may also exist between
different microorganisms. The PhoP/PhoQ two-component
system is a regulatory system shared among a variety of
microorganisms (Wang et al., 2019; Wei et al., 2019; Yeom
and Groisman, 2021). This system controls the resistance of
several Gram-negative bacteria to toxic substances, Mg2+, acidic
environments, and cationic antimicrobial peptides (Groisman
Eduardo et al., 2021). The PhoP/PhoQ two-component system
consists of the DNA-binding protein PhoP and the sensor PhoQ
(Yeo et al., 2012). PhoQ protein can change the phosphorylation
state of PhoP, respond to signal changes outside the cytoplasm,
and change the resistance to the external environment (Sanowar
and Le Moual, 2005). In short, microorganisms may enhance
tolerance in different stressful environments through the same
regulatory approach. Therefore, an in-depth study of cross-
tolerance mechanisms is important to improve microorganisms’
ability to resist environmental stresses.
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CONCLUSION AND FUTURE
PERSPECTIVES

We found that long- or short-term adaptation of microorganisms
can improve the utilization of non-preferred substrates and
adaptability of stress environments. Therefore, adaptation is
universal to microorganisms. A number of mechanisms may
cause increased stress tolerance in microorganisms, including
the presence of degradable proteins in microorganisms that
improve environmental adaptation, epigenetic modifications
on histones of microorganisms, and cross-tolerance, allowing
microorganisms to simultaneously respond to different
stressful environments. Thus, the adaptation mechanisms
of microorganisms are diverse. The analysis of mechanisms
is still unclear in existing studies, and further research is
needed. With the development of high-throughput screening
methods and bioinformatics technology, various epigenetic
modifications are studied by proteomics. In addition,
transcriptomics was used to study the cooperative regulation
between genes while the effects of LncRNAs and MicoRNAs

on epigenetic modifications were investigated. The use of
these tools for in-depth research into the mechanisms
of adaptation expands the uncharted territory of biology,
and facilitates the rational design of microorganisms in
industrial production.
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