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A Corrigendum on

Shared Multidrug Resistance Patterns in Chicken-Associated Escherichia coli Identified by

Association Rule Mining

by Cazer, C. L., Al-Mamun, M. A., Kaniyamattam, K., Love, W. J., Booth, J. G., Lanzas, C., et al.
(2019). Front. Microbiol. 10:687. doi: 10.3389/fmicb.2019.00687

In the original article, there was an error in the description and presentation of the false discovery
rate. As written, the false discovery rate methodology describes a P-value calculation under a null
hypothesis (H0) of no association between the individual antimicrobial resistances. However, we
did assess the false discovery rate using the procedure described by Megiddo and Srikant (1). This
procedure ranks the rules in each null dataset by a given quality measure and averages the quality
measure value across the 100 null datasets at each rank. The two methodologies were conflated in
the manuscript. It was correctly stated in the Results and Discussion section that the combination
of confidence > 0.75, lift > 2, and phi > 0.5 will result in < 1% false discovery rate, as measured by
the Megiddo and Srikant method (1998). We have since confirmed this false discovery rate of< 1%
by counting the number of rules from each of the 100 random null datasets that meet these three
quality measure cut-offs. We estimated the expected number of false discoveries as the average of
these counts across the 100 random null datasets and expressed this as a percent of the NARMS
dataset rules that meet the three quality measure cut-offs. We encourage authors seeking to use a
similar false discovery rate procedure to referenceMegiddo and Srikant (1). Code used to create the
analysis is available from the authors upon request. The correction has been made to theMethods

section, False Discovery Rate sub-section and the Results section, Paragraph 5, respectively:
Some rules discovered with association rule mining may be false discoveries that occur by

chance and do not represent true associations. Megiddo and Srikant (1998) demonstrated a
resampling procedure to determine the statistical significance of association rules and minimize
false discoveries (type I errors). We applied this procedure to determine the expected number
of false discoveries in the pruned best-rulesets. Briefly, 100 null datasets were created for each
year-source dataset by treating each antimicrobial resistance as an independent binomial random
variable with parameters n (number of transactions in the year-source dataset) and p (prevalence
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of resistance in the year-source dataset). Association rules were
mined, the rules were ranked in each null dataset by a given
quality measure (confidence, lift, and the absolute value of phi),
and the quality measure values at each rank were averaged across
the 100 null datasets. The expected number of false discoveries
for a given quality measure cut-off is the rank of the quality
measure cut-off in the ranked averages. This can be expressed as
a false discovery rate or percentage by dividing by the number
of rules in the NARMS datasets that meet the quality measure
cut-off (and multiplied by 100 if expressed as a percent). We
also calculated the rules’ P-values associated with each quality
measure in a similar manner. Association rules were mined
from the null datasets, the percentiles of confidence, lift and
the absolute value of phi were calculated for each null dataset
and averaged across the 100 null datasets. Association rules
discovered in the NARMS datasets that meet a given quality
measure cut-off have a P-value equal to or less than the percent
of rules from the random null datasets that meet the same quality
measure cut-off.

The false discovery rate among the best-rulesets and the
expected rule P-values were calculated by creating 100 datasets
from each year and source, maintaining the prevalence of each
resistance but allowing each resistance to be an independent
random variable. The rank and distribution of rule quality
measures in the null datasets were used to determine the expected
false discovery rate and expected rule P-values, respectively,
at each quality measure value that could be used for pruning
rulesets. Rule confidence (i.e., conditional probability) is not a
useful quality measure for determining whether rules are true
associations or false discoveries because 12 to 20% of rules under
the null hypothesis of no association have a confidence >0.95
(Figure 6A). We used confidence >0.75 to prune each ruleset to
the best-ruleset; 16 to 26% of rules under the null hypothesis meet
this cut-off.We also removed rules with lift≤2; 27 to 44% of rules
under the null hypothesis meet this cut-off. Lift >10 is required
to achieve a P-value of ≤0.05 (Figure 6C). The absolute value
of phi can be as small as 0.2 and still result in a P-value ≤0.05
(Figure 6B). Our best-rules had phi >0.5, which was associated
with an expected P-value of <0.01. Accounting for the number
of rules in the NARMS datasets that meet each of these quality-
measure cut-offs, the maximum expected false discovery rate
associated with confidence >0.75 is 11%, with lift >2 is 13%, and
with phi >0.5 is 0.4%. Therefore, the combination of confidence
>0.75, lift >2, and phi >0.5 that was used to create the best
rule-sets is expected to result in <1% false discoveries, under the
assumption of independent drug resistances.

Similarly, in the original article, the y-axis label and legend
of Figure 6 are incorrect. Figure 6 presents the results from the
procedure describing P-value calculations and not the Megiddo
and Srikant (1998) false discovery rate procedure. The corrected
Figure 6 and legend appears below.

We also noticed that the stated number of isolates tested in the
Abstract and Methods (n = 21,243) incorrectly included isolates
tested between 2000 and 2003 plus 2013. The total isolates tested
between 2004 and 2012 is 14,418 as correctly reported in Table 2.
The correction has been made to the Abstract and the Methods
section, Data Sources sub-section, respectively:

FIGURE 6 | Distribution of association rule quality measures under the null

hypothesis (H0) of no associations. The percent of rules under the null

hypothesis (H0) that exceed a given quality measure cut-off was calculated for

each year-source dataset and at 20 different cut-off values for confidence (A),

phi (B), and lift (C). Boxes are the interquartile ranges among the year-source

datasets; solid line is the median, whiskers extend up to 1.5 times the

interquartile range and any outliers are marked with points.

Using multiple antimicrobials in food animals may incubate
genetically-linked multidrug-resistance (MDR) in enteric
bacteria, which can contaminate meat at slaughter. The U.S.
National Antimicrobial Resistance Monitoring System tested
14,418 chicken-associated Escherichia coli between 2004 and 2012
for resistance to 15 antimicrobials, resulting in >32,000 possible
MDR patterns. We analyzed MDR patterns in this dataset with
association rule mining, also called market-basket analysis.
The association rules were pruned with four quality measures
resulting in a <1% false-discovery rate. MDR rules were more
stable across consecutive years than between slaughter and retail.
Rules were decomposed into networks with antimicrobials as
nodes and rules as edges. A strong subnetwork of beta-lactam
resistance existed in each year and the beta-lactam resistances
also had strong associations with sulfisoxazole, gentamicin,
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streptomycin and tetracycline resistances. The association
rules concur with previously identified E. coli resistance
patterns but provide significant flexibility for studying MDR in
large datasets.

Antimicrobial susceptibility testing data from Escherichia coli
isolated from chicken carcasses since 2000 and from retail
chicken meat since 2002 as part of NARMS surveillance is
publicly available (Food and Drug Administration, 2016). Data
from 2004 to 2012 (14,418 isolates) were used for this study
because of changes in NARMS sampling strategies (Karp et al.,
2017) and for consistency with previous studies of AMR
associations in NARMS isolates (Love et al., 2016). Each isolate
was tested against 12 to 25 antimicrobial drugs using the

Sensititre system (National Antimicrobial Resistance Monitoring
System, 2016a). The MIC results of the 15 most commonly
tested antimicrobials plus azithromycin were used for this study
(Table 1). Each isolate was classified as resistant or susceptible
based on published MIC breakpoints (Love et al., 2016; National
Antimicrobial Resistance Monitoring System, 2017). Resistance
data were separated by year and source (slaughter and retail)
into 18 datasets for association rule mining. The prevalence of
resistance against the 16 included antimicrobials in each year-
source dataset is given in Table 2.

The authors apologize for these errors and state that this does
not change the scientific conclusions of the article in any way.
The original article has been updated.
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