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Abstract

The relationship between mosquito vectors and lymphatic filariasis (LF) parasites can result in a range of transmission
outcomes. Anophelines are generally characterized as poor vectors due to an inability to support development at low
densities. However, it is important to understand the potential for transmission in natural vectors to maximize the success of
elimination efforts. Primary vectors in Papua New Guinea (n = 1209) were dissected following exposure to microfilaremic
blood (range 8–233 mf/20 ml). We examined density dependent and species-specific parasite prevalence, intensity and yield,
barriers to parasite development as well as impacts on mosquito survival. We observed strikingly different parasite
prevalence and yield among closely related species. Prevalence of infective stage larvae (L3s) ranged from 4.2% to 23.7% in
An. punctulatus, 24.5% to 68.6% in An. farauti s.s. and 61.9% to 100% in An. hinesorum at low and high density exposures,
respectively. Injection experiments revealed the greatest barrier to parasite development involved passage from the midgut
into the hemocoel. The ratio of L3 to ingested mf at low densities was higher in An. hinesorum (yield = 1.0) and An. farauti s.s.
(yield = 0.5) than has been reported in other anopheline vectors. There was a negative relationship between mosquito
survival and bloodmeal mf density. In An. farauti s.s., increased parasite yield and survival at low densities suggest greater
competence at low microfilaremias. In Papua New Guinea the likelihood of transmission will be strongly influenced by
vector composition and changes in the mf reservoir as a result of elimination efforts. Global elimination efforts will be
strengthened by the knowledge of transmission potential in the context of current control measures.
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Introduction

Human lymphatic filariasis (LF) is a mosquito-borne disease that

is a leading cause of morbidity worldwide. 1.4 billion people in 81

countries are at risk of infection with the nematode parasites

Wuchereria bancrofti, Brugia malayi or B. timori. Clinical manifesta-

tions, including acute fevers, chronic lymphedema, elephantiasis

and hydrocele, result in the loss of 5.9 million disability-adjusted

life-years [1]. Even individuals with mild manifestations are

stigmatized in their societies and suffer psychological impacts

[2]. W. bancrofti parasites, which account for 90% of the global

disease burden, dwell in the lymphatic system, where the adult

female worms release microfilariae (mf) into the blood. Mf are

taken up in the blood meal of a mosquito, and go through several

developmental stages within permissive vector species. Infective-

stage larvae (L3s) actively escape from the mosquito mouthparts

during a bloodfeeding event and enter a new vertebrate host

through skin.

Infection prevalence and morbidity is on the decline worldwide

due to mass drug administration (MDA) of anthelminthic drugs

coordinated by the Global Program to Eliminate Lymphatic

Filariasis (GPELF). These single dose regimens target mf in the

bloodstream, and therefore prevent transmission to mosquitoes.

However, in order to reach the goal of elimination by the year

2020, numerous challenges must be overcome. Elimination of LF

requires annual MDA with high coverage and compliance for at

least 5 years in order to interrupt transmission through the lifespan

of adult worms [3,4,5], a difficult undertaking in light of logistical

and financial constraints. Perhaps most importantly, thresholds for

transmission cessation are currently unknown and are site-specific.

Therefore, program managers currently lack the necessary tools to

make informed decisions about when to stop, scale-up or reinstate

MDA.

Current transmission cessation thresholds are based on domi-

nant vector genera [6], due to differences in vector-parasite

relationships [7]. Culicine vectors are generally regarded as
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efficient vectors of LF, with proportionally greater output of L3s as

the number of mf ingested decreases (limitation). In contrast,

anophelines have been characterized as inefficient vectors, with

proportionally lesser output of L3s as fewer mf are ingested

(facilitation) [8]. For this reason, it has been hypothesized that

stopping transmission by reducing the mf reservoir with MDA can

be more easily attained in areas where LF is anopheline-

transmitted [9]. However this paradigm may not extend to all

anophelines. In Papua New Guinea, where the prevalence of LF is

among the highest in the world [10], members of the Anopheles

punctulatus group are the primary vectors but MDA has been

unsuccessful in stopping transmission [11,12,13]. This contradic-

tion suggests that critical appraisal of local mosquito vectors is

needed to enable better estimations of intervention endpoints and

enhance predictive transmission modeling algorithms [14].

As interventions are employed to control LF, whether by MDA

or vector-based interventions, it becomes increasingly important to

demonstrate the influence of a decreasing mf reservoir on the

vector-parasite relationship. The aim of this study was to

determine the vector competence of individual species within the

An. punctulatus group to W. bancrofti in the context of specific mf

densities. This research was performed within a critical timeframe,

in an endemic country with ongoing and future plans for MDA-

based control of LF [15] as well as a large-scale distribution of

insecticide-treated bed nets [16]. Both interventions hold promise

to interrupt transmission of LF in PNG, either by reducing human

microfilaremia, reducing vector biting rates, or interfering with

host-seeking at times of maximum mf density in the host

peripheral blood [13]. However, predicting the long-term impact

of these campaigns remains difficult without an understanding of

the vector-parasite relationships in this highly endemic country.

Materials and Methods

Institutional review boards at the Papua New Guinea Institute

of Medical Research (PNGIMR) and the University of Wisconsin-

Madison (UW-Madison), as well as the Papua New Guinea

Medical Research Advisory Committee (MRAC), reviewed and

approved the inclusion of human subjects in this research

(PNGIMR IRB No. 1008; UW-Madison IRB M-2010-1158;

MRAC No. 10.46). All study participants were recruited non-

continuously between September 2010 and October 2012 and

provided prior written informed consent. Antihelminthic drugs

(DEC and albendazole) were provided to study communities by

the PNG Department of Health.

Mosquito collections and maintenance
Anopheles larvae were collected from temporary pools in the

Madang, Sumkar and Usino Bundi Districts of Madang Province

and the Dreikikir-Ambunti district of East Sepik Province, PNG.

Colonized An. farauti s.s., originating from East New Britain

Province, PNG in 1967, was used for the majority of exposures for

this species because comparative studies showed no difference in

infection prevalence or mean intensity between colony and wild

An. farauti s.s. (Table 1)

Mosquitoes were maintained in an insectary with a 12:12 light

cycle that included a 30-minute crepuscular period for dawn and

dusk. Natural temperatures in this environment ranged from 27–

28uC, in the afternoon, to 23.5uC at night. The relative humidity

was increased by placing damp towels on top of each cage or

carton (,85% RH inside colony cages). Larvae were reared in

plastic pans with water collected from a local creek, and fed finely

ground TetraminTM in solution. Adult mosquitoes were provided

20% sucrose solution ad libitum via cotton pledgets. Species

identification was performed after inclusion in an experiment and

prior to dissection for the recovery of parasites. If the adults were

reared from wild-caught larvae, then morphological characteristics

were observed with a stereomicroscope and used to classify

individuals into the three major An. punctulatus morpho groups (An.

punctulatus, An. farauti s.l. and An. koliensis) prior to dissection. These

characteristics include proboscis coloration and presence or

absence of the wing sector spot [17]. In addition, the legs of each

individual mosquito were collected, coded, and stored for species

confirmation by PCR-RFLP of the ITS2 region [18]. A portion of

individuals from the An. farauti s.s. colony was also verified.

W. bancrofti exposures
Adults ($18 years of age) were recruited as study volunteers

from suspected LF endemic villages in Madang and East Sepik

Provinces. Individuals providing informed consent to participate in

the study were initially screened for the presence or absence of W.

bancrofti circulating antigen using BinaxNow� Filariasis rapid card

tests (Alere Inc., Waltham, MA). Subsequently, antigen positive

volunteers were asked to provide a venous blood sample, which

was collected after 22:00 and transported to the laboratory. A

compound microscope with phase contrast optics was used to

quantify the number of mf per 20 ml blood in a 2% formalin wet

mount. Microfilaremia was confirmed in triplicate and the

remaining blood was used for feeding mosquitoes via water-

jacketed membrane feeders fitted with parafilm or pig intestine

membranes [19]. Sucrose-starved, female An. punctulatus (2–7 days

old) and An. farauti s.s. (3–6 days old) were allowed to feed on

microfilaremic blood from 11–26 hours post collection according

to mosquito feeding preferences. Mf motility was observed by wet

mount at the time of feeding. Fully engorged mosquitoes were

sorted from non-fed and partially fed females and maintained in

the insectary for up to 18 DPE.

Mosquito dissections to recover and observe parasites
The timing of mosquito dissections was based on average W.

bancrofti development times (Figure 1). Mosquitoes were cold

Author Summary

Lymphatic filariasis (LF) elimination requires interrupting
transmission of microfilaria (mf) from humans to mosqui-
toes for 5–7 years, the average life span of adult worms.
Current mf prevalence thresholds, below which transmis-
sion cannot be sustained, are unknown. Anopheline-
transmitted LF is thought to be easily eliminated following
community-wide distribution of anthelminthic drugs,
based on this genera’s poor vectorial ability. We observed
up to a 30-fold difference in parasite yield in experimen-
tally infected mosquitoes of the Anopheles punctulatus
group, the primary vectors in Papua New Guinea. In two
species, An. farauti and An. hinesorum, prevalence and
intensity of infection were higher than what has previously
been described for anopheline mosquitoes. Differences in
vector competence were largely attributable to a failure of
microfilaria to survive escape of the midgut. Other barriers
to parasite development include damage upon ingestion
and, to a lesser degree, melanization. These results
challenge the assumption that anophelines are poor
vectors and provide further insight as to why mass drug
administration alone has been unsuccessful in stopping LF
transmission in PNG. Large differences in vector compe-
tence among closely related species indicate that trans-
mission thresholds will be site and vector specific, and
control efforts should be tailored accordingly.

Vector Competence to Lymphatic Filariasis
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anesthetized and divided into body regions in separate drops of

Aedes saline [20] for dissection and parasite recovery. Mosquito

tissues were teased apart with 0.15-mm insect pin probes, cover-

slipped and examined using phase-contrast optics. Additionally,

between 3 and 24 hours post engorgement, a portion of

mosquitoes’ midguts were removed and lysed in distilled water.

Slides were dried overnight before methanol fixation and Giemsa

staining. They were microscopically examined to quantify the

number of mf ingested and the degree of damage, caused by the

cibarial armature,following ingestion. Later in parasite develop-

ment (12–18 DPE), the body regions were dissected in a drop of

saline and worms were observed with a stereomicroscope with

dark-field backlighting. Mosquitoes were individually tracked to

record morphological identification, molecular species confirma-

tion, parasite prevalence and intensity, mf damage and melani-

zation of worms.

Isolation and intrathoracic inoculation of microfilariae
To better determine the influence blood feeding and the midgut

environment might have on parasite survival, intrathoracic

inoculations were used to place mf directly in the hemocoel.

Microfilariae were isolated from blood samples using syringe tip

filtration devices, fitted with 5 mM membranes (Millipore Isopore

TMTP) and chilled Aedes saline solution. Mf were rinsed off each

filter with 1–2 ml of saline solution in conical vials, and spun at

1,000 rpm for 10 min at 4uC to concentrate the parasites and

remove most of the fluid. A single drop of saline containing

concentrated parasites was transferred to a microscope slide and

mf were loaded into finely pulled glass capillary needles for

injection into mosquitoes. A dissection microscope was used to

observe the loading of approximately 10–20 mf per needle for

mosquito injections. Mosquitoes were cold anesthetized for

3 minutes at 220uC immediately prior to the injection procedure.

Anesthetized mosquitoes were injected with mf in a minimum

volume (0.5–1.0 ml) of Aedes saline, into a membranous cuticle area

on the lateral side of the mesothorax [21]. Mosquitoes that

survived for .12 hours post inoculation were dissected and

developmental stage of recovered parasites was observed.

Data analysis
Microfilaria densities used in this study represent natural

infection levels and were categorized as low (,50 mf/20 uL),

medium (50–100 mf/20 uL) and high (.100 mf/20 uL) for the

study communities. Mosquito infection is summarized by the

prevalence of infection with 95% CI (adjusted Wald/Sterne’s

interval) and mean intensity (total number of recovered parasites

divided by total number of infected mosquitoes) with 95% CI

(Bootstrap BCa). To compare the prevalence of parasite infection,

Fisher’s Exact tests were performed for comparisons of 3–6

populations and unconditional exact tests to compare the

prevalence of infection between two populations. Bootstrap t-tests

were performed to compare mean intensities. All between species

comparisons were done on An. punctulatus and An. farauti s.s.

Because sample sizes were too low in An. hinesorum for statistical

analyses, only intensity and prevalence are presented for

illustrative purposes.

Table 1. Development of Wuchereria bancrofti in colony and wild-caught Anopheles farauti s.s. from PNG.

Microfilaremia (mf/20 ml blood) Source of An. farauti
Total
dissecteda

Infection Prevalence
(95% CI)

Total worms
recovereda

Mean instensity
(95% CI)

35 Colony 161 30.4 (23.5, 38.2)b 112 2.0 (1.6, 2.4)c

Reared from wild larvae 32 25.0 (12.2, 42.3)b 16 2.0 (1.4, 3.3)c

a.1 day post-exposure.
bInfection prevalence compared by Unconditional Test, exact p-value = 1.0.
cMean Intensity of developing parasites compared by Bootstrap t-test, p-value = 0.9415.
doi:10.1371/journal.pntd.0002433.t001

Figure 1. The development of Wuchereria bancrofti from microfilaria to infective-stage larvae in Anopheles farauti s.s. The number of
parasites observed at each timepoint is listed above the bar.
doi:10.1371/journal.pntd.0002433.g001

Vector Competence to Lymphatic Filariasis
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Quantitative Parasitology 3.0, a freeware program, was used for

statistical analysis (http://www.zoologia.hu/qp/qp.html) and

GraphPad Prism (version 5.0d) for generating graphs and figures.

Results

From one to 18 days post ingestion of W. bancrofti-infected blood

via membrane feeders, An. farauti s.s. (n = 652), An. punctulatus

(n = 505) and An. hinesorum (n = 52) were dissected to recover and

observe parasites. The details of each exposure are available in

Table S1.

Numbers of parasites ingested
To investigate potential differences in the number of parasites

ingested by each species following bloodfeeding on a range of

microfilaremias, a portion of mosquitoes were dissected immedi-

ately (,18 hours) following the feeds and mf were counted. Total

mf recovery revealed a linear relationship between the number of

mf ingested and the density of mf in the bloodmeal at the ranges

studied (Figure 2). There was no significant difference in the mean

number of mf ingested between An. punctulatus and An. farauti s.s.

(ANCOVA p = 0.6).

Prevalence and intensity
The prevalence and mean intensity of W. bancrofti in experi-

mentally infected PNG anophelines is presented in Table 2.

Infection prevalence and intensities were calculated for both the

number of developing worms (any stage) recovered after 1 DPE

and infective-stage larvae only. In both An. punctulatus and An.

farauti s.s., the infectious bloodmeal parasitemia had a significant

effect on the prevalence of developing and infective- stage larvae

(Fisher’s exact p,0.001 for each). There was also a significant

difference in the prevalence of developing worms between the two

species within mf densities (low p,0.001, med p,0.003, high

p,0.013). The mean intensity of developing worms was signifi-

cantly higher in An. farauti s.s. as compared with An. punctulatus

(p = 0.0015).

Parasite yield
There was a significant decrease in the mean number of

developing worms (.1DPE) compared to the mean number of

intact mf in the midgut and body (,1DPE) recovered from An.

punctulatus at all densities and An. farauti s.s. at high density only

(P,0.0001, Figure 3). There was no significant difference between

the mean number of worms recovered from 1.5 through 13 DPE

and the mean number of L3s recovered from 13.5 through 18

DPE. The limited data from An. hinesorum suggests attrition

through each developmental stage is minimal. The ratio of L3s to

the number of mf ingested is presented in Table 2. This ratio is

highest in An. hinesorum, ranging from 1.0 to 0.94, and lowest in An.

punctulatus, ranging from 0.03 to 0.07 at low and high densities,

respectively.

Potential barriers to W. bancrofti development were investigated.

A greater proportion of mf were damaged following ingestion of a

low density as compared with a high density microfilaremic

bloodmeal in both An. punctulatus and An. farauti s.s. (p,0.001 and

p = 0.03 respectively). At low microfilaremias, a greater proportion

of damaged mf were observed in An. punctulatus than in An. farauti

s.s. and An. hinesorum, but at high microfilaremic bloodmeals the

number of damaged mf was comparable between An. punctulatus

and An. farauti s.s. (Figure 3).

To test the hypothesis that the high degree of attrition observed

in An. punctulatus is attributable to early developmental barriers

(ingestion and/or the mosquito midgut environment), mf were

introduced directly into the hemocoel, effectively by-passing the

midgut. When mf were intrathoracically inoculated, there was no

difference in the number of live mf recovered immediately post-

injection and developing worms (Figure 4).

Melanization was observed in one An. farauti s.s. exposed to a

low density infection. In this individual one L2 was partially

covered in melanin. Melanization was observed in one An.

punctulatus and one An. farauti s.s. that had received mf via

injection. In both cases a single mf was fully melanized. Melanized

sheaths were observed in the hemocoel of both species indicating

W. bancrofti exsheathment can occur after traversing the midgut.

Mosquito survivorship
Infection with W. bancrofti had a negative impact on survivorship

in An. farauti s.s (Figure 5) and mortality was correlated with the

density of infection. No difference was observed in survival

between mosquitoes exposed to uninfected blood compared to low

density microfilaremia. Survival 14 days post exposure was 60% in

mosquitoes exposed to low density microfilaremia and only 20% in

mosquitoes exposed to medium and high densities.

Discussion

In this study, we assessed the vector competence of members of

the Anopheles punctulatus group to W. bancrofti. Overall, the

prevalence and intensity of parasite infection in mosquitoes, and

the proportion of damage to mf upon ingestion, were observed to

all be density-dependent. However, not all examined species

supported parasite development to the same degree. Some

measures of infection, including (1) overall prevalence and

intensity, (2) prevalence and intensity of infective-stage larvae,

and (3) parasite yield (i.e., proportion of mean L3s produced from

number of parasites ingested), were strikingly different at

comparable mf densities between closely related species. An.

hinesorum is incriminated as a vector of W. bancrofti here for the first

time and our results show that this species is highly competent.

Although less abundant than An. punctulatus and An. farauti s.s. in

our study sites, this species is ubiquitous in both the inland and

coastal regions of PNG, and abundant south of the central range

[22].

Figure 2. Relationship between host mf density and the
number of mf ingested. Regression equations are not significantly
different from each other (An. punctulatus Y = 0.045*X+0.22, An. farauti
Y = 0.057*X-0.51; Slope: p = 0.5; Intercept: p = 0.89).
doi:10.1371/journal.pntd.0002433.g002

Vector Competence to Lymphatic Filariasis
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Current assumptions regarding the inability of anophelines to

transmit filariasis at low density microfilaremias may not extend to

all vectors, as evidenced by comparing our results to previous

studies that employed similar methodology. The An. farauti s.s.

parasite yield is five times higher than what has been reported in

African anopheline LF vectors at low density parasite exposures,

including An. gambiae, An. arabiensis, An. funestus, An. melas and An.

merus [8]. In addition, the mean number of L3s produced at

medium and high mf density feeds is higher than any other

anopheline vector, as reviewed in Snow et al. [7].

Compared to An. farauti s.s., a greater proportion of An.

punctulatus fail to support filarial worm development. The greatest

reduction in prevalence occurs at 1 DPE, which corresponds to the

time that microfilaria traverse the midgut epithelium. This

attrition was not observed when mf were introduced directly into

the hemocoel. These results suggest that the reduced vector

competence of An. punctulatus is attributable to the midgut barrier.

Although the cibarial armature causes some damage to mf, the

degree of damage at high densities is comparable to the amount of

damage in An. farauti and cannot explain the difference in

prevalence between the two species at medium and high densities.

Very few mosquitoes harbored melanized W. bancrofti in this

study, a result that differs from a previous study that observed

nearly 50% of infected An. punctulatus had elicited some degree of

melanization response [23]. Differences in the observed melani-

zation phenotypes may be related to differences in midgut

microbiota [24], acquired from the larval environment or

differences in reactive oxygen species (ROS). ROS are associated

with melanotic encapsulation [25,26] and could be elevated due to

environmental stress [27], or inhibited by the anticoagulant and

anti-oxidant heparin [28].

The question of whether mosquito survivorship is adversely

effected by W. bancrofti infection is paramount in estimating vector

competence, yet relatively few studies [29] have addressed this

issue. We have shown convincingly that W. bancrofti infection and

parasite intensity influence mosquito survivorship. We found

increased mortality in An. farauti s.s. that ingested blood with a

medium or high density of mf relative to low mf density blood and

uninfected controls. In An. punctulatus, previous studies have found

that there was no difference in mortality between low and high

density feeds [29]. Tissue damage, which may or may not lead to

mosquito death, is often observed when development of second-

stage larvae (L2s) is completed in the thorax and the actively

motile L3s relocate to the body and head of the mosquito [30,31].

Although greater impacts on survival would be expected in the

more competent vector this is not always the case with naturally

occurring parasite-mosquito interactions. Co-evolution of parasite-

host interactions has likely selected a minimal consequence of

infection on host survivorship. This is evidenced by observations of

certain mosquito vectors eliciting a minimal immune-related or

damage repair response following intracellular filarial worm

development, e.g., Mansonia uniformis and Armigeres subalbatus

infected with Brugia malayi and B. phangi respectively [30,32].

In vectors such as An. farauti s.s. that are highly susceptible,

increased mortality at high density infections will reduce the

potential for transmission in the field because these mosquitoes

may not survive the extrinsic incubation period (EIP). Alterna-

tively, as microfilaremia decreases in the population, the

transmission potential may increase. In An. farauti s.s, the

significantly higher survivorship through the EIP at low density

coupled with increased parasite yield could result in higher

vectorial capacity. This observation challenges the assumption that

anophelines are incapable of transmitting LF at a low microfil-

aremia.

This study demonstrates a linear relationship between verte-

brate host mf densities and mean number of mf ingested, which

corresponds roughly to the number of mf we would expect in 1 mL

of blood. However, previous studies [33] have observed a

concentrating effect at low host mf densities (,10 mff/mL), which

was below the threshold for inclusion in the present study. The

effect of mf concentration at low densities warrants further

investigation, especially as MDA campaigns continue to decrease

the reservoir of mf in endemic communities.

Efforts to eliminate lymphatic filariasis through mass drug

administration are underway in Papua New Guinea. In addition,

the nationwide distribution of long-lasting insecticidal nets is a part

of the National Department of Health Malaria Control Program.

Both campaigns hold promise for the elimination of W. bancrofti

transmission by reducing the prevalence of mf in the human

population, reducing vector biting rates, or interfering with

Table 2. Prevalence and intensity of W. bancrofti infection in mosquitoes exposed to microfilaremic blood.

All developing parasites
(mf-L3; from 1.5–18 DPE)

Infective-stage larvae
(L3s from 13.5 DPE)

Microfilaremiaa

[total feeds]
Prevalence % (95% CI)
[total dissected]

Mean intensity (95%
CI)[total worms]

Prevalence (95% CI)
[total dissected]

Mean Intensity
(95% CI) [total L3s]

Parasite Yieldb

(Mean L3/Mean
mf ingested)

An. punctulatus Low [3] 8.5 (5.3,13.27)[200] 1.2 (1.0,1.4)[21] 4.2 (0.37,14.8)[48] 1.0 (n.a.)[2] 0.03 (0.04/1.55)

Med [2] 17.7 (13.0,23.6)[198] 1.8 (1.4,2.3)[63] 0 (n.a.)[14] n.a. 0 (0/4.62)

High [2] 31.0 (21.4,42.5) [71] 4.0 (2.7,5.6)[88] 23.7 (12.8,39.4)[38] 2.8 (1.6, 5.2)[25] 0.07 (0.67/9.18)

An. farauti s.s. Low [4] 28.9 (24.3,34.0)[342] 2.0 (1.7,2.2)[197] 24.5 (19.5,30.5)[232] 2.0 (1.7, 2.4)[116] 0.50 (0.5/1.0)

Med [2] 48.7 (38.8,9.6)[78] 4.3 (3.3,6.2)[164] 37.0 (21.5,55.8)[27] 3.1 (2.0, 4.4)[31] 0.23 (1.15/4.93)

High [2] 79.2 (72.8,84.5)[183] 4.7 (4.1,5.3)[683] 68.6 (51.9,81.6)[35] 3.3 (2.5, 4.4)[80] 0.24 (2.29/9.50)

An. hinesorum Low [2] 64.3 (44.0,77.4)[29] 2.4 (1.9,3.0)[44] 61.9 (40.8,79.3)[21] 2.2 (1.7,2.5)[29] 1 (1.38/0.91)

Med [1] 100 (51.1,100)[5] 6.4 (1.0,11.8)[32] 0 (n.a.)[1] n.a. n.a.

High [1] 85.7 (46.7,99.5)[7] 5.2 (2.2,9.3)[31] 100 (29.0,100)[2] 7.5 (n.a.)[15] 0.94 (7.50/8.00)

aMicrofilaremia: Low (8–48 mf/20 ml blood), Medium (70–97 mf/20 ml blood), High(130–233 mf/20 ml blood).
bAs defined by Pichon et al. 1974 for comparisons with historical data.
doi:10.1371/journal.pntd.0002433.t002
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mosquito biting at times of peak microfilaremia. The success of

such programs hinges on the ability to reach worm breakpoint

levels (the human mf prevalence below which transmission cannot

be sustained). Our research suggests that estimated thresholds will

be different between the two primary vectors and elimination may

be more achievable in the inland and lowland regions where An.

punctulatus is most abundant. Other studies have also found

sympatric species of the An. gambiae complex and M and S

molecular forms [34,35] to have different competency to transmit

W. bancrofti. Further research on the vector competence of primary

LF vectors around the world, in the context of a diminishing mf

reservoir, is needed in order to maximize the success of the Global

Programme to Eliminate Lymphatic Filariasis. Furthermore,

models for LF transmission cessation should be catered to

geographic region and control efforts must respond accordingly.

Figure 3. Attrition of developing W. bancrofti in multiple
anopheline species from A) low B) medium and C) high
microfilarial density blood. The mean number of worms ingested
(95% CI), including the proportion that were damaged upon ingestion
by the cibarial armature, and the relative yield of developing worms
(any stage, between 1 and 13 DPE) or the yield of L3s (between 13.5–18
DPE). Non-parametric t test compares mean number of intact mf with
the mean number of developing worms, and the mean number of
developing worms with the mean number of L3s (other stages present
beyond 13.5DPE are not included in the mean). Bonferonni adjusted
alpha for multiple comparisons = 0.004 *p,0.0001.
doi:10.1371/journal.pntd.0002433.g003

Figure 4. Attrition of developing W. bancrofti, incoluated into
the hemocoel of A) An. farauti and B) An. punctulatus. There was
no significant difference between the mean number of parasites
recovered immediately post-injection (,1 day) and the mean number
of developing worms (recovered from 1.5–13 days post-injection).
doi:10.1371/journal.pntd.0002433.g004

Figure 5. Survival curves for An. farauti s.s. following exposure
to different densities of microfilaremic blood.
doi:10.1371/journal.pntd.0002433.g005
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