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a b s t r a c t 

The recent global outbreak and spread of coronavirus disease (COVID-19) makes it an imperative to de- 

velop accurate and efficient diagnostic tools for the disease as medical resources are getting increasingly 

constrained. Artificial intelligence (AI)-aided tools have exhibited desirable potential; for example, chest 

computed tomography (CT) has been demonstrated to play a major role in the diagnosis and evaluation 

of COVID-19. However, developing a CT-based AI diagnostic system for the disease detection has faced 

considerable challenges, which is mainly due to the lack of adequate manually-delineated samples for 

training, as well as the requirement of sufficient sensitivity to subtle lesions in the early infection stages. 

In this study, we developed a dual-branch combination network (DCN) for COVID-19 diagnosis that can 

simultaneously achieve individual-level classification and lesion segmentation. To focus the classification 

branch more intensively on the lesion areas, a novel lesion attention module was developed to integrate 

the intermediate segmentation results. Furthermore, to manage the potential influence of different imag- 

ing parameters from individual facilities, a slice probability mapping method was proposed to learn the 

transformation from slice-level to individual-level classification. We conducted experiments on a large 

dataset of 1202 subjects from ten institutes in China. The results demonstrated that 1) the proposed DCN 

attained a classification accuracy of 96.74% on the internal dataset and 92.87% on the external valida- 

tion dataset, thereby outperforming other models; 2) DCN obtained comparable performance with fewer 

samples and exhibited higher sensitivity, especially in subtle lesion detection; and 3) DCN provided good 

interpretability on the loci of infection compared to other deep models due to its classification guided by 

high-level semantic information. An online CT-based diagnostic platform for COVID-19 derived from our 

proposed framework is now available. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

There has been a global outbreak and rapid spread of coron- 

virus disease (COVID-19) since the beginning of 2020. On March 

, 2020, the disease was declared a pandemic by the World Health 

rganization (WHO) ( Roosa et al., 2020 ; Yan et al., 2020 ). Accord-

ng to real-time data published by WHO, more than 19 million 

eople had been infected by the disease as at August 8, 2020, and 

ver 716,0 0 0 victims had succumbed to it. Undoubtedly, the epi- 

emic has become a severe challenge to the global human popu- 
∗ Corresponding authors. 
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ation. Therefore, accurate and efficient diagnosis of the disease is 

n imperative. 

The reverse transcription-polymerase chain reaction (RT-PCR) 

est is regarded as the gold standard for COVID-19 diagnosis, but 

t is time-consuming and suffers from high false-negative rates 

 Ai et al., 2020 ; Chan et al., 2020 ; Fang et al., 2020 ). As a sup-

lement, the chest computed tomography (CT) scan is more sen- 

itive and efficient for COVID-19 diagnosis in practice and has 

een widely applied for early screening of the disease ( Ai et al., 

020 ). Previous studies have shown that lesion size and severity 

an also be evaluated from chest CT images to facilitate the assess- 

ent of disease progression and subsequent treatment ( Shi et al., 

020b ). Thus, CT has been recognized as a COVID-19 diagnostic cri- 

erion in the Chinese “COVID-19 treatment plan (trial version 7)”

 Chung et al., 2020 ; Huang et al., 2020a ). However, manual evalua-

https://doi.org/10.1016/j.media.2020.101836
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101836&domain=pdf
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ion of CT images typically takes several hours, which is not ac- 

eptable for COVID-19 clinical diagnosis given the efficiency de- 

ands of numerous suspected and confirmed cases. Therefore, it 

s critical to develop an AI-aided CT diagnostic system for rapid di- 

gnosis and accurate evaluation of COVID-19 cases. 

The past decade has witnessed the emergence of deep learn- 

ng, which has proven relatively superior in computer vision and 

attern recognition ( LeCun et al., 2015 ). Classification models, such 

s AlexNet ( Krizhevsky et al., 2012 ) and VGGNet ( Simonyan and 

isserman, 2014 ), used a series of cascaded convolutional modules 

o extract features for image classification. ResNet ( He et al., 2016 ) 

ntroduced shortcuts to convolutional neural network (CNN) and 

itigated the vanishing gradient problem. DenseNet ( Huang et al., 

017 ) utilized skip connections between every two layers and 

eplaced summation with concatenation operation for easier in- 

ormation flow. In the field of image segmentation, Long et al. 

sed a fully convolutional network to segment images and pio- 

eered the application of deep learning in image segmentation 

asks ( Long et al., 2015 ). Several deep segmentation networks, such 

s DeepLab ( Chen et al., 2018 ), PSPNet ( Zhao et al., 2017b ), and

-net ( Ronneberger et al., 2015 ), were subsequently proposed and 

urther improved image segmentation performance. Among them, 

-net has been widely applied in medical image segmentation be- 

ause of its simple and easy-to-train structure; hence, we adopted 

t in this study. 

Deep learning methods are also widely used in medical image 

nalysis ( Chen et al., 2019 ; Huang et al., 2020b ; Lei et al., 2020 ;

i et al., 2020b ; Litjens et al., 2017 ; Shen et al., 2017 ). Recently,

eep learning has been utilized in COVID-19 diagnosis and evalua- 

ion, and the results have been encouraging ( Shi et al., 2020a ). Sev-

ral studies utilized end-to-end classification models for COVID-19 

iagnosis. For example, Li et al. proposed a three-dimensional (3D) 

OVID-19 detection neural network (COVNet) to distinguish COVID- 

9 from community-acquired pneumonia and achieved an area un- 

er curve (AUC) score of 0.96 ( Li et al., 2020a ). Likewise, a 3D

eCoVNet was proposed for COVID-19 classification and achieved 

0.7% sensitivity and 91.1% specificity ( Zheng et al., 2020 ). How- 

ver, the interpretability of the results was limited, thereby hinder- 

ng its clinical application. In some other studies, lesion segmen- 

ation was accomplished first, and classification was performed 

ased on the segmentation results. For instance, ( Jin et al., 2020 ) 

roposed a three-stage model with U-net and 3D CNN for the di- 

gnosis and evaluation of COVID-19. The model achieved a dice 

imilarity coefficient (DSC) of 0.754, sensitivity of 97.2%, and speci- 

city of 92.2% ( Jin et al., 2020 ). Chen et al. used a Nested U-net

o delineate the lesions and divided the results into quadrants for 

ndividual-level prediction ( Chen et al., 2020 ). The accuracies at 

he slice level and individual level were 98.85% and 95.24%, re- 

pectively. Zhang et al. developed an AI system to differentiate 

OVID-19 from common pneumonia as well as normal controls 

nd achieved a weighted accuracy of 92.49% ( Zhang et al., 2020 ). 

he problem of this kind of method is that the classification results 

re highly dependent on the segmentation performance. Thus, use- 

ul information may be excluded from the CT images due to inac- 

urate segmentation, thereby worsening the classification perfor- 

ance. 

To date, most of the studies have conducted the classification 

nd segmentation processes separately. In fact, the two tasks can 

e combined to achieve better performance. Lesions in CT images 

re decisive in COVID-19 screening, but the lesion size is usually 

inor in the early stage of the disease and may be neglected by 

he classification network. However, the intermediate results from 

he segmentation network may help to focus the classification net- 

ork more intensively on the lesion foci for accurate diagnosis 

hrough an attention mechanism ( Fu et al., 2019 ; Hu et al., 2019 ;

ktay et al., 2018 ; Wang et al., 2017 ; Wang et al., 2018 ). Moreover,
2 
he attention maps can unveil regions that are crucial for classifi- 

ation, thus improving the interpretability of deep learning models 

nd assisting in further assessment by clinicians. Hence, improved 

erformance can be achieved by combining the classification and 

egmentation tasks. 

In this study, we proposed a combined segmentation–

lassification framework that simultaneously accomplishes COVID- 

9 diagnosis and the segmentation of lesions based on chest CT 

mages. A U-net-based lung segmentation was first performed to 

elineate the lung contours. Then, a proposed dual-branch combi- 

ation network (DCN) was used to perform slice-level segmenta- 

ion and classification. We proposed a lesion attention (LA) mod- 

le in DCN to utilize the intermediate results of both segmentation 

nd classification branches to improve the classification perfor- 

ance. Finally, a slice probability mapping strategy and a fully con- 

ected network (FCN) were adopted to obtain individual-level re- 

ults from slice-level results, adapting our method to CT scans with 

ifferent slice numbers. We compared the performance of DCN to 

ther models and proved its efficacy in image classification. In ad- 

ition, we found that the proposed method was more sensitive to 

he classification of images with minor lesions. This is extremely 

elpful for the early COVID-19 diagnosis as lesions in the early 

tage are usually subtle and difficult to detect ( Macmahon et al., 

017 ). 

More precisely, the contributions of this study are summarized 

s follows. 

1. COVID-19 segmentation and classification are simultaneously 

achieved using the proposed DCN, and a novel weighted Dice 

loss is proposed to ensure the trainability of the network. 

2. The sensitivity to COVID-19 is significantly improved, especially 

for subtle lesions. 

3. The intermediate attention maps produced by the proposed LA 

module provides interpretability for the classification. 

. Methods 

.1. Overall framework 

The overall framework of the proposed method ( Fig. 1 (A)) can 

e divided into three parts. Part 1 is a lung segmentation network 

ased on U-net to extract accurate lung regions. Part 2 is the pro- 

osed DCN ( Fig. 1 (B)), which can accomplish simultaneous slice- 

evel classification and segmentation of CT images with the pro- 

osed LA module ( Fig. 1 (C)). In part 3, the slice results are inte-

rated with a slice probability mapping method to obtain the clas- 

ification results at individual level with a three-layer fully con- 

ected network. 

.2. Lung segmentation 

The images require preprocessing to eliminate interference and 

btain the region of interest, that is, the lung. Thresholding meth- 

ds based on Hounsfield unit (HU) values are widely used for chest 

T image preprocessing ( Iii and Sensakovic, 2004 ). However, these 

hresholding methods are not accurate enough in practice, espe- 

ially for CT images of patients with COVID-19. A possible expla- 

ation is that the HU values of the lesions in patients are rela- 

ively high, and it is difficult to distinguish them from other or- 

ans using thresholding methods; thus, the subsequent analysis is 

ffected. Therefore, we trained a lung segmentation model based 

n U-net ( Ronneberger et al., 2015 ) to achieve better lung segmen- 

ation results. The lung segmentation model has the same archi- 

ecture as the segmentation branch of DCN, which is described in 

ection 2.3.1 . 
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Fig. 1. A: The overall framework of our method, which consists of three parts: 1) lung segmentation using U-net; 2) slice-level combined segmentation and classification 

using the proposed dual-branch combination network (DCN); and 3) individual-level classification with a three-layer fully connected network. A slice probability mapping 

strategy is utilized to obtain individual-level results, considering inter-subject differences in slice number. B: Details of the DCN. The segmentation branch is based on U-net, 

and ResNet-50 with four residual blocks is utilized as the backbone of the classification branch. A lesion attention (LA) module is introduced before each residual block 

to combine classification features with segmentation features of corresponding scale using an attention mechanism. C: Internal structure of the LA module. f 1 , f 2 represent 

rectified linear unit (ReLU) and sigmoid activation, respectively, and f 3 is a series of convolution, batch normalization, and ReLU operations. 
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.3. Dual-branch combination network 

.3.1. Model structure 

We proposed DCN to accomplish simultaneous classification 

nd segmentation of CT images. The network consists of a clas- 

ification branch and segmentation branch, corresponding to the 

lassification and segmentation tasks, respectively. The backbone of 

he classification branch is ResNet-50 ( Wang et al., 2017 ), including 

our residual blocks. The backbone of the segmentation branch is 

-net and comprises an encoder and a decoder. The five blocks of 

he encoder consist of 64, 128, 256, 512, and 1024 channels respec- 

ively. Four 2 × 2 max-pooling layers and four 2 × 2 up-sample 

ayers are used for down-sampling and up-sampling. Each convolu- 

ion block consists of a 3 × 3 convolution (Conv) layer, a batch nor- 
3 
alization (BN) layer ( Ioffe and Szegedy, 2015 ), a rectified linear 

nit (ReLU) ( Nair and Hinton, 2010 ), and a second 3 × 3 Conv layer.

he outputs of the encoding blocks are concatenated with the cor- 

esponding decoding blocks using skip connections ( Huang et al., 

017 ). The intermediate results of the two branches are combined 

ith the proposed LA modules. Backpropagation between the two 

ranches is cut off to ensure the trainability of the model. DCN 

eceives the segmented lung images obtained from Section 2.2 as 

nputs, and outputs the slice-level classification and segmentation 

esults. 

.3.2. Lesion attention module 

To better integrate the information of the two branches and im- 

rove the classification performance, we proposed the LA module. 
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he inputs of the LA module contain two parts: x c from the clas- 

ification branch and x s from the segmentation branch. The atten- 

ion mechanism is utilized to focus the classification branch more 

n lesions. The formulations of the LA module are as follows: 

 input = 

[
W 

T 
c x c + b c , W 

T 
s x s + b s 

]
, (1) 

= f 2 
(
W 

T 
int f 1 

(
x input 

)
+ b int 

)
, (2) 

here [ W 

T 
c x c ± b c , W 

T 
s x s ± b s ] is the channel-level concatenation; 

 

T 
c ∈ R 

F c ×F int , W 

T 
s ∈ R 

F s ×F int , and W 

T 
int 

∈ R 

2 F int × 1 are weights of 

 × 1 Conv layers; b c , b s , and b int are the corresponding biases; F c 
nd F s refer to input channel sizes of the classification and seg- 

entation branches, respectively; and F int represents the output 

hannel size of the corresponding Conv layers. Functions f 1 (x ) = 

ax ( x, 0 ) and f 2 (x ) = 1 / ( 1 + exp ( −x ) ) correspond to ReLU and

igmoid activation function, respectively. The attention map is then 

ormalized to [0, 1]. The final output of the LA module can be 

ritten as: 

 out = f 3 ( [ α × x c , x s ] ) , (3) 

here f 3 comprises a series of units including two 1 × 1 Conv lay- 

rs ( R 

( F c + F s ) ×F c , R 

F c ×F c ), BN, and a ReLU. 

.4. Slice probability mapping 

DCN handles the classification of each slice. We then need to 

ncorporate the slice results to achieve individual-level classifica- 

ion and determine whether the subject is infected by COVID-19. 

owever, the slice numbers vary in different subjects owing to the 

iverse slice thicknesses, fields of view, or volumes of lungs. Some 

tudies utilized max-pooling or average-pooling on fully connected 

ayers to eliminate the effects of this problem ( Li et al., 2020a ).

owever, this may lead to loss of information as the approach only 

aves the max or average signals of all slices. To maximize the in- 

ormation from each slice, we proposed a slice probability mapping 

trategy based on resampling. Specifically, we sorted the results 

f slices (that is, the probability of being infected) in descending 

rder and fitted the curve with a bilinear interpolation approach 

 Li and Orchard, 2001 ). We then acquired 100 values from the 

urve in identical intervals and obtained consecutive probabilities 

n descending order. A simple three-layer FCN was then applied to 

he classification of individuals with the derived 100 values as in- 

ut. The numbers of nodes in the two hidden layers are 256 and 

28, respectively. 

.5. Loss function 

The proposed DCN is a slice-level end-to-end network com- 

osed of a classification branch and a segmentation branch. Its loss 

unction also comprises two parts: classification and segmentation 

osses. Similar to ResNet, we used cross-entropy loss ( Zhao et al., 

017a ) for the slice-level classification: 

 cls = −y log ̂  y + ( 1 − y ) log 
(
1 − ˆ y 

)
, (4) 

here y denotes the true label of the sample, and ˆ y refers to the 

redicted label. 

The original U-net used binary cross-entropy (BCE) loss 

 Ronneberger et al., 2015 ; Zhao et al., 2017a ), which performed 

oorly on our dataset. CT images of patients with COVID-19 are 

xtremely imbalanced data for segmentation because the region of 

esions is usually much smaller compared with the normal region 

nd background; and BCE loss is not suitable for this circumstance 

 Milletari et al., 2016 ; Sudre et al., 2017 ). 

To deal with this problem, we used Dice loss ( Milletari et al., 

016 ), which is an objective function that directly optimizes 
4 
he network on the evaluation metric (Dice similarity coefficient 

DSC)). The slice-level Dice loss can be written as: 

 Dice = 1 − 2 | X ∩ Y | 
| X | + | Y | = 1 −

∑ N 
i p i g i + s ∑ N 

i p i + 

∑ N 
i g i + s 

, (5) 

here X is the ground truth; Y is the predicted result; and p i ,

 i represent the value of the i th pixel of the predicted result and 

round truth, respectively. The smooth parameter s was used to 

revent division by 0 and was set to 1 in this paper. 

Samples from normal subjects are necessary to train the clas- 

ification branch. However, for the segmentation task, images of 

ormal subjects are all negative samples. This can exacerbate the 

mbalance of samples, which will affect the training of the segmen- 

ation branch. To solve the problem, we proposed a novel weighted 

ice loss for the segmentation branch: 

 seg = w · L Dice , (6) 

 = 

{
1 i f label = 1 

0 i f label = 0 

, (7) 

here w is the loss weight determined by the label of samples. 

he weights of slices with/without annotated lesions are set to 1/0, 

hich means only slices with annotated lesions participate in the 

ackpropagation of the segmentation branch. The total loss func- 

ion can be written as: 

 = L seg + λL cls = w 

(
1 −

∑ N 
i p i g i + s ∑ N 

i p i + 

∑ N 
i g i + s 

)
− λy log ̂  y 

+ λ( 1 − y ) log 
(
1 − ˆ y 

)
, (8) 

here λ is the trade-off parameter for the two losses, and we set 

= 1 in this study experimentally. 

We used Dice and BCE losses for the lung segmentation net- 

ork and FCN, respectively. 

. Experiments and results 

.1. Materials 

.1.1. Subjects 

A total of 1918 CT scans from 1202 subjects (704 patients ver- 

us 498 controls, 210,395 slices) collected in ten hospitals were en- 

olled in the study. The data were divided into an internal train- 

ng set (48 patients versus 75 controls, 6130 slices) from the First 

ospital of Yueyang and an external validation set (656 patients 

ersus 423 controls, 204,265 slices) from nine other hospitals. De- 

ailed information of the data source can be found in Table 1 . The

nternal training set was used for training and testing with a five- 

old cross-validation strategy. The external validation set was used 

o evaluate the generalization performance of the model. All pa- 

ients were laboratory-confirmed COVID-19 cases by RT-PCR test. 

he Institutional Review Board of Third Xiangya Hospital approved 

ur study and waived the informed consent of patients based on 

he retrospective nature of the study. The personal information of 

he patients was removed in this study. 

.1.2. Image acquisition and preprocessing 

All subjects in the internal training set underwent a thick- 

ection CT scan (Anke ANATOM 16 HD, First Hospital of Yueyang, 

hina). The CT protocol was as follows: tube voltage, 120 kV; au- 

omatic tube current, 120 mA–240 mA; iterative reconstruction; 

4 mm detector; slice thickness, 5 mm–6 mm; pitch, 1; matrix, 

12 × 512; field of view, 360 × 360; and breath-hold at full in- 

piration. The scan parameters of the external testing set can be 

ound in Table S1. 
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Table 1 

Data composition and sources. 

COVID-19 Normal 

patients scans slices patients scans slices 

Internal 48 48 2371 75 75 3759 

External 656 1372 166937 423 423 37328 

Independent cohorts 

Yueyang 48 48 2371 75 75 3759 

Changsha 1 39 110 8976 423 423 37328 

Changsha 2 201 578 46898 - - - 

Wuhan 190 190 12199 - - - 

Changde 76 133 50668 - - - 

Xiangtan 39 106 24270 - - - 

Shaoyang 62 144 8085 - - - 

Hengyang 11 35 11704 - - - 

Loudi 32 70 3966 - - - 

Yiyang 6 6 171 - - - 
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Table 2 

Segmentation performance of lung and le- 

sion on the internal dataset with five-fold 

cross-validation. 

DSC Precision Recall 

Lung 99.11% 99.33% 98.89% 

Lesion 83.51% 83.46% 83.55% 
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Dicom files were converted into images using the Pydicom 

oolkit ( Mason, 2011 ). The pixel values of the images represent HU 

alues within the window of -900 HU–100 HU. They were further 

ormalized into 8-bit grayscale (0–255). 

.1.3. Data annotation 

Although the thresholding methods are inaccurate for severely 

nfected lungs, they can still be utilized to reduce the pressure of 

anual annotation by manual supervision and correction. We first 

sed a threshold-based lung CT preprocessing approach to extract 

he lung areas ( Iii and Sensakovic, 2004 ). A series of morpholog- 

cal processes, such as dilation and erosion, were then performed 

o obtain better results. We checked each slice and selected slices 

ith a good shape as the ground truth for lung segmentation. 

lices with unsatisfactory results were manually re-delineated. 

Furthermore, we asked six experienced radiologists to annotate 

he CT images of patients with COVID-19 in the internal dataset at 

ixel level. In the segmentation task, each pixel was annotated as 

 lesion of COVID-19 or background (labeled as 1 or 0). A total of 

371 slices from patients were annotated manually, and each slice 

as annotated by one radiologist. We asked three radiologists to 

nnotate the same CT images from part of patients as a compar- 

son between the segmentation performance of DCN and radiolo- 

ists. For each slice of patients in the classification task, we consid- 

red it as a positive sample if lesions were marked by radiologists 

nd set the slice label to 1. Otherwise, we considered the slice as a 

egative sample and set the label to 0. Slices from healthy controls 

ere labeled as 0. Given the large amount of data in the external 

ataset and the lack of annotation experts, we did not annotate the 

xternal dataset at slice level. 

.2. Parameters and metrics 

.2.1. Training details 

All training and testing processes were performed using Pytorch 

 Steiner et al., 2019 ) on a server with NVIDIA Tesla P100 GPUs. The

ung segmentation, DCN, and FCN models were trained separately. 

he lung segmentation model was trained in 50 epochs with a 

atch size of 16. Likewise, DCN, VGGNet, ResNets, and DenseNet 

ere trained in 100 epochs with a batch size of 8. The FCN model 

as trained in 20 epochs with a batch size of 16. All the mod- 

ls were optimized using Adam optimizer ( Kingma and Ba, 2015 ) 

ith an initial learning rate of 0.001 and a learning decay rate of 

.95 per epoch. Five-fold cross-validation was utilized in the inter- 

al training stage. For the external validation stage, the model was 

re-trained using all samples of the internal dataset and tested on 

he external dataset. 
5 
To deal with the problem of imbalanced data sizes in the train- 

ng stage, an under-sampling approach ( Buda et al., 2018 ) was 

dopted for negative samples. Precisely, all positive samples and 

n equivalent number of randomly selected negative samples were 

sed for training in an epoch, and negative samples were re- 

ampled in the next epoch. 

.2.2. Evaluation metrics 

In this study, we adopted a commonly used metric, DSC, to 

valuate segmentation performance; precision and recall were also 

alculated at a threshold of 0.5: 

SC = 

2 | X ∩ Y | 
| X | + | Y | = 

2 N T P 

2 N T P + N F P + N F N 

, (9) 

 recision = 

N T P 

N T P + + N F P 

, (10) 

ecall = 

N T P 

N T P + N F N 

, (11) 

here N represents the number of pixels; subscripted T / F means 

he pixel is correctly/incorrectly predicted; and subscripted P / N 

efers to whether the pixel is a positive/negative sample. 

Accuracy (Acc), sensitivity (Sen), and specificity (Spc) were uti- 

ized to evaluate the classification performance. Accuracy is used 

o describe the performance on the whole dataset, whereas sensi- 

ivity and specificity represent the classification results for patients 

nd normal controls, respectively: 

cc = 

T P + F P 

T P + T N + F P + F N 

, (12) 

en = 

T P 

T P + F P 
, (13) 

pc = 

T N 

T N + F N 

, (14) 

here TP, FP, TN , and FN refer to the numbers of true-positive, 

alse-positive, true-negative, and false-negative samples, respec- 

ively. The average accuracy (AA) was also introduced to eliminate 

he interference of data imbalance: 

A = ( Sen + Spc ) / 2 (15) 

The receiver operating characteristic (ROC) curve and AUC were 

sed to evaluate the network segmentation and classification per- 

ormances. 

.3. Segmentation results 

The DSC of lung segmentation was 99.11% ( Table 2 ). A compar- 

son between manual annotation and U-net-based lung segmenta- 

ion is shown in Fig. 2 (A). It can be observed that the segmentation

f U-net is highly consistent with the ground truth, which provides 

 strong guarantee for subsequent analysis. 

For the segmentation of lesions, we achieved a DSC of 83.51%. 

he segmentation results are shown in Fig. 2 (A). To better evaluate 

he performance of the proposed segmentation method, a compar- 

son between the proposed DCN and segmentation of three radiol- 

gists was performed, and the results are shown in Fig. 2 (B) and 
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Fig. 2. A: Manual and AI-based segmentation of lung and lesions in CT images from four patients. B: The left figure shows the segmentation results of three radiologists and 

the automatic results of DCN. The right figure shows the uncertain region without the consensus of all three radiologists. C: Pixel level ROC curve of DCN and performance 

of radiologists. 
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C). Annotated lesions without the consensus of all three radiolo- 

ists are labeled as uncertain regions. A pixel-level ROC curve is 

hown in Fig. 2 (C); our method reached an AUC of 0.964. The re-

ults of the three radiologists are also shown in the diagram. The 

esults show that the performance of our method is comparable 

ith an average of three radiologists, which indicates that our seg- 

entation algorithm is comparable to human-level annotation and 

apable of COVID-19 auxiliary diagnosis. 

.4. Classification results 

.4.1. Internal dataset 

As we used a slice-based strategy, two results would be ob- 

ained on both the slice level and individual level. Five other 
6 
eep learning models (VGG-16, ResNet-34, ResNet50, ResNet101, 

nd DenseNet-121) were also used for comparison with DCN, 

nd the other parts of the framework (lung segmentation and 

CN) were kept for fair comparisons. The slice-level training 

nd testing performances of fold 1 are shown in Fig. 3 . We 

ound that the training process of DCN was more stable com- 

ared to that of other networks. All the other five mod- 

ls suffered from overfitting according to the significant differ- 

nce between the training and testing performances. Using our 

odel, the gap between the training and testing stages was 

maller, which means DCN is more resistant to overfitting. This 

s probably due to the extra input in each LA module from 

he segmentation branch and the benefits from the attention 

echanism. 
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Fig. 3. Training and testing performance of six models (VGG-16, ResNet-34, ResNet-50, ResNet-101, DenseNet-121, and the proposed DCN) on the internal dataset (fold 1). 

Solid lines refer to training and testing accuracies, and dashed lines denote corresponding losses. 

Table 3 

Classification performance. Slice-level and individual-level results of the internal dataset and individual-level results of the external dataset are illus- 

trated. Slice-level results of the external dataset are unavailable due to the lack of slice-level annotation. Acc, AA, Sen, Spc represent accuracy, average 

accuracy, sensitivity, and specificity, respectively. 

Slice-level Individual-level 

Cohort Method Acc (%) AA (%) Sen (%) Spc (%) AUC Acc (%) AA (%) Sen (%) Spc (%) AUC 

Internal validation VGG16 92.68 86.46 74.89 98.02 0.9392 93.49 93.54 93.75 93.33 0.9422 

ResNet-34 92.25 85.37 72.57 98.17 0.9328 91.87 92.13 89.58 94.67 0.9114 

ResNet-50 93.96 89.15 80.20 98.09 0.9510 94.31 94.58 95.83 93.33 0.9506 

ResNet-101 93.05 86.57 74.51 98.62 0.9499 94.31 94.58 95.83 93.33 0.9294 

DenseNet-121 93.50 88.51 79.20 97.81 0.9472 93.49 93.54 93.75 93.33 0.9467 

DCN (ours) 95.99 93.59 89.14 98.04 0.9755 96.74 96.95 97.91 96.00 0.9864 

External validation VGG16 - - - - - 87.58 87.87 87.32 88.42 0.9264 

ResNet-34 - - - - - 90.03 89.47 90.52 88.42 0.9383 

ResNet-50 - - - - - 90.92 90.14 91.62 88.65 0.9512 

ResNet-101 - - - - - 90.58 90.74 90.45 91.02 0.9493 

DenseNet-121 - - - - - 86.41 85.09 87.68 82.51 0.9128 

DCN (ours) - - - - - 92.87 92.89 92.86 92.91 0.9771 
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For all patients and healthy controls, we achieved a slice-level 

ccuracy of 95.99% and an individual-level accuracy of 96.74%, 

hich are significantly higher than the results of other models. The 

OC curves are shown in Fig. 3 . The proposed DCN also achieved 

he best performance with a slice-level AUC of 0.9755 and an 

ndividual-level AUC of 0.9864. The detailed results are presented 

n Table 3 . We further divided the slices with lesions into six 

roups (0–1 k, 1–2 k, 2–3 k, 3–4–k, 4–5 k, ≥5 k) according to the

umber of pixels of the lesion regions and calculated the accuracy 

f each group. As shown in Fig. 5 , the proposed method outper- 
7 
ormed other methods in all six groups and significantly improved 

he classification accuracy of small-lesion slices, which is vital for 

he early diagnosis of COVID-19. 

.4.2. External dataset 

Different CT scanning equipment and parameters may cause 

ariations in CT data. To verify the generalization performance of 

ur method, we tested the model on the external dataset from 

ine different hospitals scanned with different equipment and pa- 

ameters. The external dataset included 1795 CT scans from 656 
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Fig. 4. Slice-level and individual-level ROC curves on the internal dataset and individual-level ROC curve on the external dataset. 

Fig. 5. Classification results on slices of different lesion sizes. The annotated images were divided into 6 groups according to lesion size, and we calculated the sensitivity of 

each group. 
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atients and 423 normal controls. The slice thickness varied from 

.6 mm to 10 mm. The models were pre-trained on the inter- 

al dataset and tested on the external dataset. The proposed DCN 

chieved 92.87% accuracy, 92.86% sensitivity, and 92.91% specificity 

t the individual level, which significantly outperformed those of 

ther models. The ROC curves are shown in Fig. 4 , and the pro-

osed method achieved the best AUC of 0.9771. 

.4.3. Training with small samples 

Training with small samples was also performed to evaluate 

he generalization performance of the models. The models were 

rained with different sample sizes and tested on a balanced 

ataset with 10 0 0 images. The sensitivity (solid lines) and speci- 

city (dashed lines) are shown in Fig. 6 . The specificity of all six

odels maintained a relatively high level (over 95%), and the in- 
8 
rease in the model performance was mainly due to the increase 

n sensitivity; this means the increment of the training samples en- 

anced the ability of the networks to detect lesions. The proposed 

CN achieved significant progress in sensitivity on the small train- 

ng samples. 

.4.4. Comparison to other COVID-19 study 

To better evaluate our method, we compared it with other 

ethods designed for COVID-19 classification. COVNet ( Li et al., 

020a ) and 3D-ResNet ( Zhang et al., 2020 ) were implemented on 

ur dataset, and the results are shown in Table 4 . The results 

emonstrate the superiority of our method. We also observed the 

ignificant drop in performance of COVNet and 3D-ResNet on the 

xternal dataset. It is maybe due to data heterogeneity because the 

xternal dataset was scanned using different parameters with the 
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Fig. 6. Model performance with small-size training datasets. Solid lines refer to sensitivity on slices with lesions while dashed lines represent specificity on normal slices. 

The models were tested on a selected dataset with 500 positive samples and 500 negative samples. 

Table 4 

Comparison of DCN with other COVID-19 classification methods. COVNet and 3D-ResNet were tested, and the individual-level results of internal and external datasets were 

obtained. DCNs with different modules were tested in an ablation study to evaluate the effectiveness of the modules. LA refers to lesion attention; SPM represents slice 

probability mapping. 

Slice-level Individual-level External validation 

Method LA module SPM module Acc (%) AA (%) Sen (%) Spc (%) Acc (%) AA (%) Sen (%) Spc (%) Acc (%) AA (%) Sen (%) Spc (%) 

COVNet - - - - 88.61 87.65 83.33 92.00 77.58 79.83 75.72 83.94 

3D-ResNet - - - - 92.68 91.75 87.50 96.00 77.64 81.27 74.64 87.90 

DCN(base) 94.40 92.93 90.19 95.67 91.87 91.50 89.58 93.33 77.64 84.85 71.67 98.02 

DCN 

√ 

94.40 92.93 90.19 95.67 94.31 94.58 95.83 93.33 89.44 90.81 88.29 93.33 

DCN 

√ 

95.99 93.59 89.14 98.04 94.31 94.21 94.67 93.75 87.48 89.90 85.47 94.32 

DCN 

√ √ 

95.99 95.59 89.14 98.04 96.74 96.95 97.91 96.00 92.87 92.89 92.86 92.91 
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nternal dataset. In comparison, our DCN has better compatibility 

ith data heterogeneity. 

Moreover, we conducted an ablation study on DCN to measure 

he effects of the LA module and slice probability mapping. In the 

ase model of DCN, the LA module was replaced with a 1 × 1 Conv 

ayer, and the slice probability mapping was replaced with the 

ax-pooling of the features derived from the last residual block. 

e observed that the LA module significantly improved the slice- 

evel classification accuracy, which emphasizes the effectiveness of 

he attention mechanism for COVID-19 classification. Moreover, the 

lice probability mapping improved the individual-level accuracy, 

specially for the external dataset, which proved that slice proba- 

ility mapping improved the generalization of the model. 

.4.5. Attention maps 

In further analyzing the proposed DCN, the attention maps de- 

ived from the testing stage are shown in Fig. 7 , including four pa-

ients and four controls. The images of the six rows represent orig- 

nal testing images, lesion masks, and attention maps from four 

A modules, respectively. It can be observed that the consistency 

etween lesion masks and attention maps is very high, especially 

or LA modules 2 and 3. In other words, the module enables the 

etwork to focus on areas with lesions. The attention maps reveal 
9 
he emphasized areas for classification and promote interpretabil- 

ty for the classification results. We also found that some activated 

reas in the first and last attention maps were inconsistent with 

he lesion masks. This is probably because the classification input 

f the first LA module and the segmentation input of the last LA 

odule come from the shallow layer of the network and contain 

ore shallow semantic information. Quantitative analysis was also 

erformed by calculating the DSC of the generated masks. We re- 

ized the generated masks into the same size of input images and 

alculated the DSC of the resized masks. DSCs of 0.28, 0.56, 0.46, 

nd 0.17 were achieved for four LA modules, respectively, which 

re consistent with the analysis above. 

.5. Online platform 

Based on the high accuracy of the proposed method, we built 

 cloud platform for COVID-19 auxiliary diagnosis and lesion seg- 

entation ( http://218.77.58.164:8808/index ). The system can pro- 

ess data in batches and provide feedback on the risks of being in- 

ected and possible lesion regions in a few seconds. The platform 

rovides COVID-19 diagnostic and segmentation assistance to doc- 

ors and others worldwide, thereby relieving their burden and pro- 

iding support for the global fight against the COVID-19 epidemic. 

http://218.77.58.164:8808/index
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Fig. 7. Attention maps of internal dataset produced by LA modules. The first row shows the lung segmentation images, and the second row shows the manually annotated 

lesion masks. Att_maps 1-4 refer to attention maps of LA modules 1-4, respectively. 
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. Discussion 

CT imaging has proven to be an effective tool for the diagno- 

is and quantification of COVID-19, but the image reading is time- 

onsuming. AI-based auxiliary diagnoses of CT scans are crucial for 

he early screening of COVID-19. In this study, we proposed a com- 

ined segmentation–classification framework for the segmentation 

f lesions and diagnosis of COVID-19 based on chest CT images. 

he method achieved an accuracy of 96.74% and AUC of 0.9864 

n the internal dataset with five-fold cross-validation. The gener- 

lization performance of the proposed method was confirmed on 

 large multi-site external dataset with an accuracy of 92.87%. The 

xperiments demonstrated that DCN outperformed five other com- 

only used classification models on both internal and external 

atasets. Furthermore, we compared DCN with two other COVID- 

9 classification methods, and DCN achieved superior performance. 

his is probably because we trained the models on a relatively 

mall dataset, and our slice-based method is easier to be trained 

han the individual-based methods that require more training data. 

he proposed DCN achieved a lung segmentation DSC of 99.11% 

nd a lesion segmentation DSC of 83.51%. Although it is difficult 

o compare DCN with other COVID-19 segmentation methods due 

o their different datasets and annotation quality, we compared our 

esults with segmentation results of radiologists and demonstrated 

he reliability of our lesion segmentation results. 

An LA module was proposed to fuse the intermediate results 

f the segmentation and classification branches for better per- 

ormance. The LA module was inspired by the attention mecha- 
10 
ism ( Fu et al., 2019 ; Oktay et al., 2018 ). The intermediate results

rom two branches were concatenated and produced the atten- 

ion maps for image classification. The classification branch could 

hen concentrate more on the infected loci. The ablation study in 

ection 3.4.4 demonstrated the effectiveness of the LA module as 

t improved the accuracy significantly (1.59% for slice level, 2.43% 

or individual level, and 3.43% for external validation). The high de- 

ree of consistency between the manually annotated and attention 

asks ( Fig. 7 ) verified the effectiveness of the LA module. Based 

n accurate attention maps of LA modules 2 and 3, our method 

an provide good interpretations of the classification results. 

Another advantage of our method is its sensitivity in processing 

mages with small lesions. As shown in Fig. 5 , the proposed DCN 

chieved an average promotion of over 20% for images with lesion 

izes of less than 10 0 0 pixels, compared with other models. This 

s mainly due to the attention mechanism provided by the pro- 

osed LA module, which allows the network to focus on the in- 

ected loci. Considering that lesions are subtle at the early stage 

f COVID-19, our method is highly applicable to early screening 

f the disease. Moreover, DCN also achieved significant progress in 

he case of small training samples, especially for sensitivity. Thus, 

CN would prove invaluable in the absence of sufficient samples, 

uch as in the early stage of the COVID-19 epidemic or other simi- 

ar situations. 

We proposed some other techniques in this study to ensure the 

fficacy of our model. A weighted Dice loss function was proposed 

o handle the different requirements of the training data and dif- 

erent optimization goals between the classification and segmen- 
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ation branches. The loss function also facilitates the training of 

he segmentation branch by reducing the sample imbalance. The 

ifference in slice numbers caused by the diversity of scanning 

achines and parameters raised another technical challenge for 

he slice-based methods. Hence, to utilize the information in ev- 

ry slice, we proposed a slice probability mapping strategy, with 

hich we can derive features with the same dimensions in each 

can case for subsequent calculations. The slice probability map- 

ing enables the analyses of scans with different slice numbers, 

hereby facilitating the implementation of our method on diverse 

atasets. Moreover, the results of ablation study, especially the re- 

ults on external dataset, has proved the effectiveness of the slice 

robability mapping. 

The proposed DCN has several limitations. First, the precision 

f the attention masks partly depends on the accuracy of the seg- 

entation branch. The segmentation branch learns from manual 

nnotation (in which quality is not guaranteed), and inconsisten- 

ies between different radiologists may introduce biases. Semi- 

upervised or unsupervised methods may provide new perspec- 

ives for resolving this problem. Second, due to the large data size, 

he external dataset was not labeled at slice level. Hence, we could 

ot analyze the slice-level performance at the external validation 

tage. Human-in-the-loop methods may be useful for further anal- 

sis. 

. Conclusion 

The proposed combined segmentation–classification network 

or the diagnosis of COVID-19 outperformed commonly used clas- 

ification models on both internal and external validation datasets. 

urther, the proposed LA module enables the network to focus 

n infected loci and significantly improves the detection of small 

esions for early screening of COVID-19. Moreover, the attention 

aps aid the identification of lesion loci, thereby improving the 

nterpretation of classification. 

In the future, we will continue to improve the network perfor- 

ance and extend DCN to a wider range of applications such as 

ung nodule classification and tumor detection. 
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