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Abstract

An important inferential task in functional linear models is to test the dependence between

the response and the functional predictor. The traditional testing theory was constructed

based on the functional principle component analysis which requires estimating the covari-

ance operator of the functional predictor. Due to the intrinsic high-dimensionality of func-

tional data, the sample is often not large enough to allow accurate estimation of the

covariance operator and hence causes the follow-up test underpowered. To avoid the

expensive estimation of the covariance operator, we propose a nonparametric method

called Functional Linear models with U-statistics TEsting (FLUTE) to test the dependence

assumption. We show that the FLUTE test is more powerful than the current benchmark

method (Kokoszka P,2008; Patilea V,2016) in the small or moderate sample case. We fur-

ther prove the asymptotic normality of our test statistic under both the null hypothesis and a

local alternative hypothesis. The merit of our method is demonstrated by both simulation

studies and real examples.

Introduction

Functional regression studies how a response variable Y varies with a functional predictor

X(s), where Y can be scalar (Y 2 R) or functional (Y(t) 2 L2([0, 1])). The space L2([0, 1])

denotes the Hilbert space for square integrable functions. Without loss of generality, we define

the index s and t on the closed interval [0, 1]. In case the raw support of s and t is a closed inter-

val [a, b], one can simply rescale it to the interval [0, 1]. In this paper, we assume data following

the widely used functional linear model (FLM) [1–4]. For a functional response, the FLM is

defined as

YðtÞ ¼ aðtÞ þ
Z 1

0

bðt; sÞXðsÞdsþ �ðtÞ; ð1Þ

where both the intercept α(t) and the random error �(t) are square integrable and

independent of X(s), the regression coefficient β(t, s) is in L2[0, 1] × L2[0, 1]. Denote that
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BðXÞ ¼
R 1

0
bðt; sÞXðsÞds, where B is the regression operator B : L2½0; 1� ! L2½0; 1�. For a

scalar response variable Y, the FLM has a simpler form Y ¼ aþ
R 1

0
XðsÞbðsÞdsþ �, where

both the intercept α and the random error � are real valued, and the regression parameter

β(s) 2 L2[0, 1]. Hereafter, we mainly focus on FLMs with functional responses, but the gen-

eral methodology also applies to scalar responses.

In this paper, we consider testing whether the regression operator B has an assigned struc-

ture B0, that is, to test

H0 : B ¼ B0 versus H1 : B 6¼ B0: ð2Þ

In practice, people often focus on the special case with B0 ¼ 0, i.e. to test the dependency

between the response variable and the predictor. Existing tests in the literature for this problem

can be categorized into parametric and nonparametric tests. In parametric tests, the test statis-

tics are usually established by first estimating the functional regression coefficient through

dimension reduction, such as functional PCA [5, 6–8]. Methods for real-valued responses

include [6], [7] and [8]. [6] used a test statistic based on the L2 norm of the empirical cross-

covariance operator of (X, Y). [8] proposed a Wald-type test with varying thresholds in select-

ing the number of principal components. [7] developed four test statistics based on the func-

tional principal component (FPC) scores. They assume normality on the error distribution

due to the need of the likelihood function. For functional responses, the test statistic proposed

by [5] is constructed based on the eigenvalues and eigenfunctions decomposed from the func-

tional PCA of the response variable Y(t) and the predictor X(s). Such parametric methods

require the costly estimation of the covariance operator of the predictor. Due to the intrinsic

high dimensionality of functional data, the inaccuracy and numerical instability in the covari-

ance operator estimation may render the parametric tests invalid especially for small or mod-

erate size samples. The same issue also occurs in high dimensional problems in multivariate

statistics [9, 10]. Another limitation of FPC is that the principal component scores are com-

puted independently from the predictor. Then the directions which explain X(t) best may

not be the best predictors for the response which may lead to disparate test results for the

regression problems. On the other hand, nonparametric tests utilized a different idea to avoid

estimating the covariaznce operator [11, 12, 15]. For real-valued responses, [11] used the

Nadaraya-Watson technique [13, 14] to estimate the conditional mean of Y � B0ðXÞ given

X = x. [15] also proposed a nonparametric test based on a kernel function for real responses.

However, this method still requires estimating the covariance operator to calculate the semi-

metric. Furthermore, this test needs to split the sample into three groups, one of the three

groups is used to estimate the kernel function, another to estimate the sample mean of

responses variables, and the last group contributes to statistic, which is suitable for large sam-

ple data. The test proposed by [12] is for functional responses, and its test statistic is a weighted

U-statistic with weights obtained from nearest neighbor smoothing. While this test possesses

the correct Type-I error rate, identification of the neighbors requires defining distances

between the functional predictors in the least favorable direction, which tends to result in

lower power in general.

Motivated by [10], we propose a novel nonparametric test, called FLUTE, based on a U-sta-

tistic that measures the L2 distance in the induced space after transforming the original space

of the functional predictor by the covariance operator. Our approach avoids explicit estimation

of the covariance operator as it is based on the distance in the induced space. The FLUTE test

can be applied to both real-valued and functional responses.

The paper is organized as follows. In Section Methodology, we introduce basic notations

about functional linear regression model and the FLUTE test statistic. After presenting the
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theory in Section Asymptotic theory for functional responses, we further discuss the FLUTE

test for FLMs with a scalar response in the next Section. Section Simulation and real data

reports results from simulation studies and real data. The last section is the conclusion section.

Methodology

Notation and assumptions

Let h�, �i denote the inner product in L2[0, 1], that is, for any f1, f2 2 L2[0, 1] hf1; f2i ¼
R 1

0
f1ðtÞf2ðtÞdt: The L2 norm k�k is defined by kfk2 = hf, fi. We assume in the FLM (1) that

both the predictor X(s) and response variable Y(t) are random elements of L2[0, 1] and inte-

grable. The sample functions Xi(s), i = 1, . . ., n, are independently and identically distributed

(i.i.d.) with E[X(s)] = μx(s) and EkX(s)k4 <1. We also assume that the random trajectories

�i(t) are i.i.d with E[�(t)] = 0, E[�2(t)] = σ2(t) and Ek�(t)k4 <1.

Suppose {ϕk, k� 1} and {ηℓ, ℓ� 1} are some orthonormal bases of the Hilbert space H1 and

H2, respectively. To simplify the representation, hereafter we focus on the case where the Hil-

bert spaces H1 and H2 are L2[0, 1]. Then we represent the predictor Xi(s) and the regression

coefficient β(t, s) via the Karhunen-Loève decomposition [16]. For any s 2 [0, 1], we have

XiðsÞ ¼ mxðsÞ þ
X1

k¼1

xik�kðsÞ; ð3Þ

where μx(s) is the mean function of the predictor Xi(s), and the expansion coefficient ξik = hXi, ϕki,

with E[ξik] = 0. For any t, s 2 [0, 1], the regression coefficient β(t, s) is represented as

bðt; sÞ ¼
X1

k¼1

X1

‘¼1

b‘kZ‘ðtÞ�kðsÞ; ð4Þ

where βℓk =
RR
β(t, s)ηℓ(t)ϕk(s)dtds.

Next we introduce the covariance operator C of the predictor X(s) and its empirical coun-

terpart Cn. For any element f 2 L2([0, 1]), we define

Cðf Þ ¼ E hX � mx; f iðX � mxÞ½ � and Cnðf Þ ¼
1

n

Xn

i¼1

hXi �
�X ; f iðXi �

�XÞ;

where �X ¼ 1

n

Pn
i¼1

Xi. And denote the corresponding eigenelements by CðnkÞ ¼ lknk with the

eigenvalues λ1� λ2� . . . and νk the eigenfunction corresponding to λk.

If both the predictor X(s) and response variable Y(t) are fully observed, hereafter we assume

that α(t) = 0 and μx(s) = 0 which will be explained in the next section, then the FLM with a

functional response (1) can be represented as,

YðtÞ ¼
Z 1

0

X1

k¼1

X1

‘¼1

b‘kZ‘ðtÞ�kðsÞ
X1

k0¼1

xk0�k0 ðsÞdsþ �ðtÞ: ð5Þ

In practice, the infinite expansion (3), (4) and (5) above is usually approximated by a trun-

cated basis expansion (e.g. B-spline basis and Fourier basis) [4, 11, 16, 17]. If the functional

variables are densely observed, then recovering each trajectory of the functional variables

based on the least square method is straightforward [18, 19]. If the functional variables are

sparsely observed, [20] and [21] proposed to estimate the FPC scores through local linear sur-

face smoother for the covariance operator, and then approximate each trajectory using the

first K eigenfunctions. For the sparse observation, the error can not be ignored. Due to the
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certified complexity of the asymptotic normality of the statistic, we leave this area for future

investigation.

We will represent the FLM with a functional response (1) using basis expansion when the

approximation error is controlled. Denote ei(t) as the approximation error produced through
PK

k¼1
xik�kðsÞ and

PK
k¼1

PL
‘¼1
b‘kZ‘ðtÞ�kðsÞ approximating BðXÞ, that is,

eiðtÞ ¼
Z 1

0

bðt; sÞxiðsÞds �
XK

k¼1

XL

‘¼1

xikb‘kZ‘ðtÞ ð6Þ

Similar with Condition 1 in Appendix B in [22], then by the Cauchy-Schwarz inequality,

uniformly across all i = 1, . . ., n, we have hei; eii � 6~CC=K4 þ 3C2=L4 (Please see lemma 1),

where C and ~C are two positive constants.

As K, L!1, the approximation error should be more precise and become ignored. Hence

the FLM with a functional response (1) can be rewritten as,

YiðtÞ ¼
Z 1

0

XK

k¼1

XL

‘¼1

b‘kZ‘ðtÞ�kðsÞ
XK

k¼1

xik�kðsÞdsþ �iðtÞ: ð7Þ

In this paper, we assume that both the predictor X(s) and response variable Y(t) are fully

observed or the approximation error is controlled.

The FLUTE test

In this section, we introduce the FLUTE test whose test statistic is a U-statistic. The theory of

U-statistics for fixed-dimensional data, pioneered by [23], has been well documented; see [24]

and [25] for summaries. Recently, [10] developed the theory for high-dimensional multivariate

data.

Under the functional linear model (1), if α(t) = 0 and E[X(s)] = 0, we can see that

kYðtÞ � B0ðXÞk
2
¼ hBðXÞ � B0ðXÞ þ �ðtÞ;BðXÞ � B0ðXÞ þ �ðtÞi, which is then the per-

turbed L2 norm for measuring the distance between BðXÞ and B0ðXÞ. Further, it is easy to see

that

E½kYðtÞ � B0ðXÞk
2
� ¼

Z Z Z

fbðt; sÞ � b0ðt; sÞgcðs; eÞfbðt; eÞ

� b0ðt; eÞgdsdedt þ
Z

s2ðtÞdt;

ð8Þ

where c(s, e) = E[X(s)X(e)]. Note that B ¼ B0 is equivalent to the first term on the right-

hand side of Eq (8) being zero. Thus we may consider testing the hypothesis (2) by a U-

statistic with
R
ðYiðtÞ � B0ðXiÞÞhXi;XjiðYjðtÞ � B0ðXjÞÞdt as the kernel, whose expectation is

RR
C2
ðbðt; sÞ � b0ðt; sÞÞðt; eÞdedt ¼ kCðb � b0Þk

2
, where CðbÞ ¼

R
bðt; sÞcðs; eÞds.

For the general case where α(t) 6¼ 0 and E[X(s)] 6¼ 0, we consider the U-statistic Tn,

Tn ¼
1

ðn
4
Þ

X

A

cði1; i2; i3; i4Þ; ð9Þ

where cði1; i2; i3; i4Þ ¼ 1

3
fφði1; i2; i3; i4Þ þ φði1; i3; i2; i4Þ þ φði1; i4; i2; i3Þg, and

φði1; i2; i3; i4Þ ¼ 1

4
hXi1
� Xi2

;Xi3
� Xi4

i
R
pi1 ;i2

pi3 ;i4
dt, with pi;j ¼ YiðtÞ � YjðtÞ � B0ðXi � XjÞ,

and A ¼ fði1; . . . ; i4Þ : 1 � i1 < . . . < i4 � ng denotes combinations over all subscripts

(i1, . . ., i4). As the statistic Tn is invariant to location shifts in both Xi(s) and Yi(t), without loss
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of generality, we assume that α(t) = 0 and μx(s) = 0 in the rest of the paper. Define θ(F) =

E[ψ(i1, i2, i3, i4)], then E[Tn] = θ(F).

As the statistic Tn measures the distance between the regression operator B and the

assumed structure B0 under the null hypothesis, large values of the statistic Tn are in favor of

the alternative hypothesis and leads to rejection of the null hypothesis.

For the representation of the predictor X(s), we have

XðsÞ ¼ x0FðsÞ; ð10Þ

where F(s) = (ϕ1(s), . . ., ϕK(s))0, ξ = (ξ1, . . ., ξK)0, and var[ξ] = S. We next follow the general

condition in [9] and assume that the loadings ξ of the predictor X(s) have a factor design

structure.

Assumption 1 There exists a m−variate random vector

N = (N1, . . ., Nm)0 for some m<1 so that ξ = ΓN. Here Γ is a K ×m matrix such that

ΓΓ0 = S, and E[N] = 0, var[N] = Im, where Im is the m ×m identity matrix. Each random vari-

able Nℓ, ℓ = 1, . . ., m, is assumed to have finite 8th moment and EðN4
‘
Þ ¼ 3þ r for some con-

stant ρ 2 [0, 1). Further, for any
PD

d¼1
‘d � 8 and 1�m1 <m2 < . . .<md�m, we assume

E½N‘1
m1

N‘2
m2

. . . N‘d
md
� ¼ E½N‘1

m1
�E½N‘2

m2
� . . . E½N‘d

md
�:

Assumption 1 allows factors N to have a weak correlation. If the predictor X(s) follows a

Gaussian process, [16] pointed out that X(s) admits the following expansion

XðsÞ ¼d
Xm

k¼1

ffiffiffiffiffi
lk

p
NknkðsÞ;

with independent standard normal random variables Nk’s. It is easy to see that this is a special

case of the factor design structure in Assumption 1, where the (a, b)th element of the transfor-

mation matrix ΓK×m is
ffiffiffiffiffi
lb

p
hnb; �ai.

Let εi = (εi1, . . ., εiL)0 which is the expansion coefficients of �(t), and Λ = var[ε]. We assume

the following assumption.

Assumption 2 For i 6¼ j, E½ðε0iεjÞ
4
� ¼ Oðtr2ðL

2
ÞÞ and E½ðε0iLεiÞ

2
� ¼ Oðtr2ðL

2
ÞÞ.

Asymptotic theory

In this section, we derive the asymptotic unbiasedness of the FLUTE test and the asymptotic

normality of its test statistic under both the null and a local alternative hypothesis through the

Hoeffding decomposition.

Let Wi = (Xi(s), �i(t)), where �iðtÞ ¼ YiðtÞ � B0ðXiÞðtÞ. Thus, ψ(i1, i2, i3, i4) in Eq (9) can be

represented as cðWi1
;Wi2

;Wi3
;Wi4
Þ. And ψc(w1, . . ., wc) = E[ψ(w1, . . ., wc, Wc+1, . . ., W4)], be

the projections of ψ to lower-dimensional sample spaces for c = 1, . . ., 4, where w1, . . ., wc are

fixed variables (e.g. c1ðwi1
Þ ¼ Eðcðwi1

;Wi2
;Wi3

;Wi4
ÞÞ, c2ðwi1

;wi2
Þ ¼ Eðcðwi1

;wi2
;Wi3

;Wi4
ÞÞ,

c3ðwi1
;wi2

;wi3
Þ ¼ Eðcðwi1

;wi2
;wi3

;Wi4
ÞÞ). The specific forms have been given in the

appendix of Proof of Theorem 1. Let vc = var[ψc] be the variance. Let ~cc ¼ cc � yðFÞ,
then we have the Hoeffding decompositions for Tn is Tn � yðFÞ ¼

P4

c¼1
ð 4

cÞð
n
c Þ
� 1Vnc,

where Vnc ¼
P

Ac
gcðwi1

; . . . ;wic
Þ and gcðw1; . . . ;wcÞ ¼

~cc �
Pc� 1

j¼1

P
Ac

gjðwi1
; . . . ;wij

Þ with

Ac ¼ fði1; . . . ; icÞ : 1 � i1 < . . . < ic � ng. The decomposition for the variance of Tn is

var½Tn� ¼ n4� 1
P4

c¼1
ð 4

c
Þð n � 4

4 � c
Þvc. We assume that E[ψ2(W1, . . ., W4)] exists. The proofs of the

Hoeffding decompositions can be found in [23] and also [24]. [10] recently showed that the

decomposition also holds when the dimension of the predictor K increases to infinity. Based
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on Proposition 1 in [10], if we find the minimum c0 such that v0c, c
0 = 1, 2, or 3, is of the same

order as v4, then Tn will be dominated by the first c0 terms, so that

Tn � yðFÞ ¼
Xc0

c¼1

c0

c

 ! n

c

 !� 1

Vncf1þ opð1Þg: ð11Þ

Theorem 1 Under the FLM ( 1 ) and assuming Assumption (1),
K, L!1 as n!1, we have

(i). E½Tn� ¼ kCðb � b0Þk
2 and var½Tn� ¼ f

16

n v1 þ
72

nðn� 1Þ
v2gf1þ oð1Þg;

(ii). Tn � kCðb � b0Þk
2
¼ f16

n Vn1 þ
72

nðn� 1Þ
Vn2gf1þ opð1Þg;

where E½V2
n1
� ¼ v1 and E½V2

n2
� ¼ v2 � 2v1:

Please see the Proof of Theorem 1 in Appendix.

Let Δ = (βℓk − β0,ℓk)ℓ,k, where β0,ℓk define the loadings of β0(t, s). And let Ma = ΔSaΔ0,
a = 0, 1, 2, 3 (e.g. S0 = IK, S2 = SS), Q0 = Γ0Γ, Q1 = Γ0Δ0ΔΓ, Q2 = Γ0SΔ0ΔΓ, Q3 = Γ0SΓ, Q4 =

Γ0Δ0ΔSΔ0ΔΓ. Under H0 : B ¼ B0, we have Δ = 0, and hence Q1 = Q2 = Q3 = Mi = 0 for i = 0, 1,

2, 3. So it is obvious that v1 = 0, and Tn is then a degenerate U-statistic. Under this case, we

have

var½Tn� ¼
2

nðn � 1Þ
trðL2

ÞtrðS2Þf1þ oð1Þg:

Next we show that the form of the variance for Tn also holds under a subclass of local alter-

native hypothesis H1 specified by the following condition,

trðM1Þ ¼ oð1Þ and trðM3Þ ¼ ofn� 1trðS2Þg: ð12Þ

Under the null hypothesis, the equation v1 = o(n−1 v2) holds with v1 = 0. Under the local

hypothesis, the equation v1 = o(n−1 v2) still holds (see Appendix). The following theorem then

states the asymptotic normality of our test statistic under this local alternative.

Theorem 2. Under the FLM (1), assuming Assumptions (1) and (2), under either the null
hypothesis H0 or the local alternatives H1, as n!1, we have

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2trðL2
ÞtrðS2Þ

q ðTn � kCðb � b0Þk
2
Þ!

d Nð0; 1Þ:

Please also see the Proof of Theorem 2 in Appendix.

For real data, the trace tr(S2) and tr(Λ2) need to be estimated. We use the estimator given in

Chen and Qin [26], which was shown to be unbiased and ratio consistent, i.e. dtrðS2Þ=trðS2Þ!
p

1,

under the null hypothesis or the local alternatives. Specifically, the estimator is given as

dtrðS2Þ ¼ R1n � 2R2n þ R3n;
ð13Þ

where R1n ¼
1

K2
n

P
AhXi1

;Xi2
i

2
; R2n ¼

1

K3
n

P
AhXi1

;Xi2
ihXi2

;Xi3
i, and R3n ¼

1

K4
n

P
AhXi1

;Xi2
i�

hXi3
;Xi4
i with Km

n ¼ n!=ðn � mÞ!. Following the same idea, we can also construct a consistent

estimator of tr(Λ2) under H0.
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Following Theorem 2, the FLUTE test rejects H0 at significant level α if

nTn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 dtrðL2
Þ dtrðS2Þ

q

za;

where zα is the upper α−quantile of N(0, 1).

Theorem 2 also implies that the asymptotic power of the proposed statistic under the local

alternative is

ϒðkb � b0kÞ ¼ F � za þ
nkCðb � b0Þk

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2trðL2
ÞtrðS2Þ

q

0

B
@

1

C
A:

The quantity rnðb � b0;S;LÞ ¼ nkCðb � b0Þk
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2trðL2
ÞtrðS2Þ

q

can be viewed as a signal

to noise ratio (SNR). If rn(β − β0, S, Λ) = o(1), it is obvious that the power converges to α. If

rn(β − β0, S, Λ) is in the order of O(1), the power converges to 1.

FLUTE for scalar responses

In the FLM with a scalar response,

Y ¼ aþ
Z 1

0

XðtÞbðtÞdt þ �; ð14Þ

where Y 2 R. The null hypothesis for the scalar response is defined as

H0 : bðtÞ ¼ b0ðtÞ versus H1 : bðtÞ 6¼ b0ðtÞ:

The idea of the FLUTE method in Section Asymptotic theory directly applies and only

requires slight modification toward the dimension of the response and functional regression

coefficients. For example, the kernel of the FLUTE statistic �Tn is (Yi − hXi, β0i)hXi(s), Xj(s)i
(Yj − hXj, β0i) with expectation E½�Tn� ¼

�yðFÞ ¼ kCðb � b0Þk
2
, where CðbÞ ¼

R 1

0
cðt; sÞbðsÞds.

The expansion of parameter β(t) is bðtÞ ¼
PK

k¼1
bk�kðtÞ. The theory can be developed using

the same idea as in Section Asymptotic theory. We distinguish by denoting the counterpart

to notations in Section Asymptotic theory with a check mark. For example, the kernel of the

FLUTE statistic for scalar response model (14) is denoted by �cc, and its variance is �nc. The fol-

lowing theorems show that the same asymptotic null distribution in Theorems 1 and 2 hold

for the scalar response case.

Theorem 3. Under the FLM with scalar response ( 14 ), assuming Assumption (1), when
K!1 as n!1, we have

(i). E½�Tn� ¼ kCðb � b0Þk
2 and var½�Tn� ¼ f

16

n �v1 þ
72

nðn� 1Þ
�v2gf1þ oð1Þg;

(ii). �Tn � kCðb � b0Þk
2
¼ f16

n
�Vn1 þ

72

nðn� 1Þ
�Vn2gf1þ opð1Þg:

We consider the local alternative hypothesis as follows.
RR
ðbðtÞ � b0ðtÞÞcðt; sÞðbðsÞ � b0ðsÞÞdtds ¼ oð1Þ;

and

RR
ðbðtÞ � b0ðtÞÞc3ðt; sÞðbðsÞ � b0ðsÞÞdtds ¼ ofn� 1trðS2Þg;

where c3ðt; sÞ ¼
P1

i¼1
l

3

i niðtÞniðsÞ.
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Theorem 4. In the FLM with a scalar response ( 14 ), assume Assumption (1) and E[�4] is
finite. Under either the null hypothesis H0 or the local alternatives H1, as n!1, we have

n
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðS2Þ

p ð�Tn � kCðb � b0Þk
2
Þ!

d Nð0; 1Þ;

where σ2 = var[�].
The proofs of Theorems 3 and 4 are omitted because they can be proved in the same way as

Theorems 1 and 2 except with slight modification to the notations to reflect the difference in

dimensionality.

Simulation and real data

In this section, we demonstrate the performance of the FLUTE method by simulation studies

and an application to a real data example. For cases with functional responses, we compare the

FLUTE method with the method in [1], which is constructed based on the functional PCA, we

call KMSZ, and the nonparametric test in [12] is constructed by a weighted U-statistic and we

name as NP. The KMSZ method depends on the functional principal components and is more

suitable for large sample case which could estimate the covariance operator well. The test sta-

tistic of the NP method depends on so-called the least-favorable direction γ which is more suit-

able for the low dimension case. Under the simulation setup, this direction γ can be decided in

three different ways: 1) Pre-estimate γ based on a super large simulated data set and then use it

for all simulated data sets; 2) pre-estimate γ based on the data set generated at each level of |β|2

and then use it for simulated data sets generated at the same level of |β|2; and 3) estimate γ
based on each simulated data set. The simulation results please see Table 1 and more details

can be found in the Supplementary Material A in S1 File. Results reported in this section are

based on the second way, which is consistent with applications of the NP method to real data.

For FLMs with a scalar response, neither the KMSZ nor NP method is applicable because

the former involves functional PCA on the response and the latter requires computing the

L2 norm between two functional response values. The nonparametric test proposed by [15]

which we name as NETRF is for the scalar response. However, the NETRF test still requires

estimating the covariance operator to calculate the semetric. Furthermore, this test needs suffi-

ciently large sample data to provide accurate estimations of each group. Therefore, we do not

directly compare DelSol’s method with our FLUTE test, but we conduct simulation studies

for small/moderate sample cases to demonstrate the incapability of DelSol’s method under

Table 1. Size and power for NP test with different searching methods.

|β|2 case 1 case 2 case 3

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1

0.00 0.059 0.100 0.059 0.100 0.020 0.021

0.02 0.062 0.117 0.082 0.128 0.038 0.039

0.04 0.088 0.140 0.393 0.497 0.042 0.042

0.06 0.090 0.151 0.604 0.708 0.119 0.119

0.08 0.115 0.185 0.755 0.831 0.062 0.062

0.10 0.150 0.227 0.858 0.905 0.185 0.185

0.20 0.246 0.359 0.989 0.994 0.731 0.731

0.30 0.268 0.384 0.998 0.999 0.204 0.204

0.40 0.347 0.467 0.999 0.999 0.922 0.922

0.50 0.359 0.463 0.995 0.998 0.988 0.988

https://doi.org/10.1371/journal.pone.0234094.t001
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these scenarios. Here we choose the current comparison benchmark as the F-test proposed by

[7]. [7] actually proposed four asymptotically equivalent tests which also depends on the func-

tional components, and can be more suitable for large sample case. We use the F-test because

it behaves the best of the four tests for small to moderate samples.

Simulation results

We next conduct a simulation study to evaluate the empirical size and power of our FLUTE

test for small to moderate samples with sample size n varying between 40 and 100. In each sim-

ulation, we generate 1,000 Monte Carlo samples. Our computer codes are written in R. For

basis expansion and functional PCA, we use the implementation in the R package fda.

Functional response. First we present the case of the FLM with functional responses. This

simulation design follows the FLM (1), where we set β(t, s) = |β|2 exp{(t2 + s2)/2}. Here |β|2

indicates the L2 norm of β(t, s) and is used to control the SNR. We generate the functional pre-

dictor Xi(s) according to Eq (10), where the bases f�kðsÞg
K
k¼1

are chosen as Fourier bases. For

instance, the first five orthonormal Fourier basis functions are �1ðsÞ ¼ 1; �2ðsÞ ¼
ffiffiffi
2
p

sinð2psÞ,
�3ðsÞ ¼

ffiffiffi
2
p

cosð2psÞ, �4ðsÞ ¼
ffiffiffi
2
p

sinð4psÞ, and �5ðsÞ ¼
ffiffiffi
2
p

cosð4psÞ. Without loss of general-

ity, we set the mean μx(s) = 0. According to the factor design (Assumption 1), the loadings

ξ1, . . ., ξn are independently generated from the following moving average model,

xik ¼ r1Nik þ r2Niðkþ1Þ þ . . .þ rTNiðkþT� 1Þ; k ¼ 1; . . . ;K; ð15Þ

where the constant T controls range of dependency(see Fig 1). The coefficients frtg
T
t¼1

are ran-

domly generated from U(0, 1), where U(a, b) denotes the Uniform distribution on the interval

(a, b). And the random vectors N i = (Ni1, . . ., Ni(K+T−1))
0 are independently generated from

the N(0, IK+T−1) distribution. It then follows that the (k, ℓ)th element of the covariance matrix

var(ξ) is
PT� jk� ‘j

t¼1
rtrtþjk� ‘jIfjk � ‘j < Tg, which shows that the correlation between ξik and ξiℓ

is controlled by |k − ℓ| and T. The random error function εi(t) is generated according to the

decomposition in Eq (10). We also set bases fZ‘ðtÞg
L
‘¼1

in the same way as {ϕk(s)}. And the

loadings εi1, . . ., εiL are independent identical distribution and generate from N(0, S�).

To evaluate the impact of dimensionality and sample size, we carry out simulations under

four different settings, varying in dimensionality and sample size K = L = 5 (low-dimensional)

and K = L = 11 (high-dimensional), n = 40 and 100. When generating X(t), we set T = 5 in Eq

(15). The variances of the loadings εi1, . . ., εiL are the same, we set S� = IL. Under each setting,

we vary the |β|2 at 10 levels from 0 to 0.5 (see Tables 2 and 3). When |β|2 is 0, the result provides

the empirical size of all tests, and results at the other 9 levels give the power. Each testing

method is evaluated at two nominal significance levels α = 0.05 and 0.1.

Table 2 shows the empirical sizes and power obtained for different dimensionality and sam-

ple size under the nominal significance level α = 0.05. Under the same sample size, the power

of all three tests decrease as the dimensions K and L increase. When the dimensionality is

the same, the power of all three methods improves as the sample size increases. Table 2 also

shows that the FLUTE method performs stably in both the low dimensional cases and the high

dimensional cases. The KMSZ and NP tests are conservative and their power decreases signifi-

cantly as the dimension increases.

Further the NP method has almost no power in the case of high dimension and small sam-

ple size (K = L = 11, n = 40). It is apparent that in Table 2, power of the FLUTE method is con-

sistently higher than that of the KMSZ and NP methods, especially in high dimensional cases.

The simulation results also show that the FLUTE method respects the nominal levels under

high dimensionality at both sample size n = 40 and 100.
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Table 3 shows the results under the nominal significance level α = 0.1, and provides the

same conclusion as Table 2.

To evaluate the impact of the correlation structure, we carry out simulations under two

different settings, T = 5 (weakly correlated) and 11 (strongly correlated) (see Fig 1). Under

each setting, we vary |β|2 at 6 levels from 0 to 0.5 (see Table 4). When T is 5, the correlation

is weak. Table 4 shows the empirical sizes and power obtained for the case of K = L = 11 and

n = 40. The FLUTE method is stable for different T, both of the KMSZ and the NP method are

more sensitive to the correlation structure. On the other hand, the power of the NP statistic

decreases significantly when T increases, since this method needs to search the least-favorable

direction. While the power of the KMSZ statistic decreases significantly when T reduces,

since this method depends on functional PCA. When the correlation is weak, the number of

Fig 1. The autocorrelation functions for loadings fxikg
K
k¼1

.

https://doi.org/10.1371/journal.pone.0234094.g001
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functional PCs would increase to achieve the same percentage of variance explanation, hence

the number of p also increase which results in lower power.

To evaluate the performance of the FLUTE method with heteroscedastic variance, we carry

out simulations under the following settings, the designed variances of the expansion coeffi-

cients of εi(t) are Var(εiℓ) = 1/ℓ, for i = 1, . . ., n, ℓ = 1, . . ., L. We set T = 5, n = 40. And we

vary |β|2 at 6 levels from 0 to 0.5. The significance levels are α = 0.05 and α = 0.1 respectively.

Table 5 shows the empirical sizes and power for the cases of K = L = 5 and K = L = 11, and

Table 2. Size and power for different tests at α = 0.05.

|β|2 K = L = 5, n = 40 K = L = 11, n = 40 K = L = 5, n = 100 K = L = 11, n = 100

NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE

0.00 0.043 0.042 0.072 0.043 0.025 0.055 0.048 0.051 0.065 0.035 0.037 0.057

0.02 0.096 0.178 0.482 0.040 0.107 0.445 0.408 0.699 0.848 0.104 0.317 0.620

0.04 0.132 0.361 0.799 0.034 0.174 0.781 0.788 0.973 0.997 0.217 0.762 0.873

0.06 0.198 0.600 0.932 0.046 0.256 0.907 0.939 0.990 1.000 0.335 0.896 0.969

0.08 0.267 0.711 0.973 0.041 0.341 0.968 0.986 0.999 1.000 0.543 0.954 0.998

0.1 0.300 0.801 0.992 0.034 0.380 0.979 0.995 1.000 1.000 0.747 0.996 1.000

0.2 0.514 0.980 1.000 0.033 0.619 0.998 1.000 1.000 1.000 0.853 0.999 1.000

0.3 0.667 1.000 1.000 0.048 0.707 0.999 1.000 1.000 1.000 0.910 1.000 1.000

0.4 0.751 0.998 1.000 0.045 0.745 1.000 1.000 1.000 1.000 0.995 1.000 1.000

0.5 0.789 1.000 1.000 0.040 0.772 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0234094.t002

Table 3. Size and power for different tests at α = 0.1.

|β|2 K = L = 5, n = 40 K = L = 11, n = 40 K = L = 5, n = 100 K = L = 11, n = 100

NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE

0.00 0.079 0.093 0.128 0.080 0.068 0.111 0.077 0.085 0.103 0.078 0.079 0.097

0.02 0.165 0.322 0.557 0.084 0.208 0.536 0.520 0.803 0.896 0.126 0.342 0.665

0.04 0.193 0.535 0.851 0.067 0.326 0.836 0.862 0.990 0.999 0.248 0.784 0.889

0.06 0.288 0.735 0.948 0.082 0.460 0.942 0.964 0.996 1.000 0.326 0.899 0.983

0.08 0.353 0.843 0.980 0.073 0.525 0.984 0.991 1.000 1.000 0.533 0.905 0.999

0.1 0.392 0.909 0.996 0.066 0.605 0.988 0.998 1.000 1.000 0.738 0.998 1.000

0.2 0.635 0.997 1.000 0.062 0.805 1.000 1.000 1.000 1.000 0.866 1.000 1.000

0.3 0.768 1.000 1.000 0.085 0.885 0.999 1.000 1.000 1.000 0.930 1.000 1.000

0.4 0.821 1.000 1.000 0.076 0.903 1.000 1.000 1.000 1.000 0.997 1.000 1.000

0.5 0.860 1.000 1.000 0.074 0.911 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0234094.t003

Table 4. Size and power for different correlation when K = L = 11, n = 40.

|β|2 T = 5, α = 0.05 T = 11, α = 0.05 T = 5, α = 0.1 T = 11, α = 0.1

NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE

0.00 0.050 0.041 0.064 0.043 0.034 0.066 0.086 0.082 0.098 0.086 0.100 0.107

0.10 0.580 0.452 0.940 0.238 0.849 1.000 0.675 0.652 0.959 0.348 0.954 1.000

0.20 0.794 0.740 0.999 0.340 0.946 1.000 0.824 0.894 0.999 0.443 0.991 1.000

0.30 0.860 0.863 1.000 0.404 0.971 1.000 0.884 0.959 1.000 0.523 0.998 1.000

0.40 0.883 0.883 1.000 0.433 0.983 1.000 0.903 0.975 1.000 0.537 0.998 1.000

0.50 0.900 0.929 1.000 0.443 0.982 1.000 0.911 0.986 1.000 0.562 0.998 1.000

https://doi.org/10.1371/journal.pone.0234094.t004
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provides a similar conclusion as Tables 2 and 3 when n = 40. The power of all three tests

decreases as the dimensions K and L increase. However, the FULTE method performs stably

in both low dimensional cases and the high dimensional cases, the power of the KMSZ and NP

tests decreases significantly as the dimension increases.

Fig 2 shows the histograms of the FLUTE statistic for different dimensionality and sample

size under the null hypothesis, which matches nicely with the imposed standard normal den-

sity. This is consistent with our results in Theorm 2.

Fig 3 shows the power curves of the FLUTE statistic under four different cases with varying

dimensionality and sample size when the nominal significance level α = 0.05 and level α = 0.1.

Under all the four cases, power curves have effective size, and when |β|2 is 0.2, the four power

curves almost reached 1.

Scalar response. This section presents the results for FLMs with scalar responses. This

simulation design follows the model (14). We set the coefficient of regression parameter as

bk ¼
1ffiffiffi
K
p jbj

2
; k ¼ 1; 2; . . . ;K. The functional predictor X(t) is generated in the same way as

in Section Functional response. And the random errors εi are independently generated from

N(0, 1).

Same with FLMs with functional responses in Section Functional response, we carry out

simulations under four different settings, K = 5 (low-dimensional) and K = 11 (high-dimen-

sional), n = 40 and 100. Under each setting, we vary |β|2 at 10 levels from 0 to 0.5 (see Tables 5

and 6). Each testing method is evaluated at two nominal significance levels α = 0.05 and 0.1.

Table 6 shows the empirical sizes and powers obtained for different dimensionality and

sample size under the nominal significance level α = 0.05. The power of the two tests, FLUTE

and the F-test in [7], is similar in these four cases. The results show that the FLUTE test is

more powerful than the F-test. Table 7 shows the same conclusions at nominal significance

level α = 0.1.

Table 8 shows the comparison between FLUTE and Delsol’s method at significant level α =

0.1, and K = 11. NETRF1, NETRF2 and NETRF3 stand for three bootstrap methods in Delsol’s

paper. Due to the three test statistics are nonparametric tests that are constructed based on a

kernel function, the estimation of bias and variance terms seems difficult. Further, it is usually

irrelevant to use the quantiles of the asymptotic law to estimate the threshold directly. Thus,

the bootstrap procedure is needed. For all three methods, we choose the semi-metric induced

by functional principal components, and split the samples into three groups as 20, 10 and 10,

when n = 40, 40, 30 and 30, when n = 100. Under each setting, the empirical significance level

are calculated by 1000 bootstrap iterations. FLUTE stands for our method. It is obviously that

the sizes of Delsol’s methods can not be well controlled at the nominal level for small/moderate

samples.

Table 5. Size and power for heteroscedastic variance when K = L = 11, n = 40.

|β|2 K = L = 5, α = 0.05 K = L = 5, α = 0.1 K = L = 11, α = 0.05 K = L = 11, α = 0.1

NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE NP KMSZ FLUTE

0.00 0.055 0.042 0.061 0.088 0.102 0.095 0.057 0.033 0.055 0.092 0.092 0.087

0.10 0.972 1.000 1.000 0.981 1.000 1.000 0.116 0.404 0.771 0.188 0.628 0.873

0.20 0.998 1.000 1.000 0.999 1.000 1.000 0.176 0.647 0.972 0.286 0.813 0.986

0.30 0.999 1.000 1.000 1.000 1.000 1.000 0.308 0.793 0.993 0.427 0.918 0.997

0.40 1.000 1.000 1.000 1.000 1.000 1.000 0.408 0.808 0.997 0.518 0.929 0.998

0.50 0.998 1.000 1.000 0.999 1.000 1.000 0.474 0.829 1.000 0.589 0.951 1.000

https://doi.org/10.1371/journal.pone.0234094.t005
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Application to Canadian Weather data

The Canadian Weather data is available from the R package fda (http://www.r-project.org)

which named CanadianWeather. The data consists of the daily temperature and rainfall regis-

tered in 35 weather stations in Canada averaged over 1960 to 1994, hence the sample size is 35.

We view the daily temperature as the predictor and the rainfall as the response variable. Both

the predictor and the response variable are functional. We use the FLUTE test to check the

dependency between the daily temperature and the rainfall. Following [3], we choose 11 Fou-

rier bases to fit the temperature curve and rainfall curve for each station separately.

Let Yi(t) represent the logarithm of the rainfall at the station i at time t and xi(t) be the tem-

perature of the same station at time t of the year. The value of FLUTE statistic is 12.17159

based on the whole 35 stations, hence we reject the null hypothesis. To illustrate the efficacy of

the test, we repeat the test on 1000 bootstrap samples. Each bootstrap sample consists of data

at 35 randomly selected stations with replacement from the total 35 stations. Fig 4 shows that

Fig 2. The null distribution of the FLUTE statistic in FLMs with functional responses. The solid line indicates the

density of the standard normal distribution.

https://doi.org/10.1371/journal.pone.0234094.g002
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Fig 3. Power curves of the FLUTE method. Case 1: K = L = 5 and n = 40; Case 2: K = L = 11 and n = 40; Case 3: K =

L = 5 and n = 100; Case 4: K = L = 11 and n = 100. The left figure is for α = 0.05, and the right is for α = 0.1.

https://doi.org/10.1371/journal.pone.0234094.g003
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the density of the FLUTE statistic is far away from the standard normal distribution, hence we

prefer to reject the null hypothesis.

Conclusion

We proposed the FLUTE test for testing dependence between the response and functional pre-

dictor in FLMs with either a real or functional response. By constructing a U-statistic that mea-

sures the L2 distance in an induced space, the FLUTE statistic avoids estimating the covariance

operator of the predictor. The parametric test in [1] requires estimation of the covariance

Table 6. Size and power for normal residual at significant level α = 0.05.

|β|2 K = 5, n = 40 K = 11, n = 40 K = 5, n = 100 K = 11, n = 100

F-test FLUTE F-test FLUTE F-test FLUTE F-test FLUTE

0.00 0.046 0.047 0.044 0.040 0.048 0.055 0.043 0.057

0.02 0.271 0.379 0.267 0.403 0.603 0.771 0.584 0.791

0.04 0.480 0.664 0.452 0.680 0.934 0.968 0.924 0.973

0.06 0.676 0.822 0.671 0.820 0.979 0.993 0.982 0.991

0.08 0.778 0.882 0.760 0.891 0.995 0.999 0.997 0.999

0.10 0.848 0.931 0.881 0.957 0.998 1.000 1.000 1.000

0.20 0.980 0.995 0.989 0.995 1.000 1.000 1.000 1.000

0.30 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.40 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0234094.t006

Table 7. Size and power for normal residual at significant level α = 0.1.

|β|2 K = 5, n = 40 K = 11, n = 40 K = 5, n = 100 K = 11, n = 100

F-test FLUTE F-test FLUTE F-test FLUTE F-test FLUTE

0.00 0.097 0.098 0.098 0.104 0.104 0.104 0.091 0.092

0.02 0.375 0.449 0.381 0.472 0.718 0.818 0.728 0.829

0.04 0.632 0.712 0.584 0.739 0.962 0.975 0.953 0.982

0.06 0.782 0.857 0.769 0.858 0.990 0.997 0.953 0.982

0.08 0.854 0.912 0.851 0.914 0.998 1.000 0.990 0.995

0.10 0.905 0.947 0.948 0.974 1.000 1.000 0.999 0.999

0.20 0.992 0.995 0.997 0.996 1.000 1.000 1.000 1.000

0.30 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.40 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0234094.t007

Table 8. Size for normal residual at significant level α = 0.1.

Y = ε NETRF1 NETRF2 NETRF3 FLUTE

n = 40 0.138 0.142 0.146 0.099

n = 100 0.121 0.127 0.123 0.096

https://doi.org/10.1371/journal.pone.0234094.t008
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operator and demands large samples. The nonparametric test in [12], although avoids explic-

itly estimating the covariance operator, requires estimating the least-favorable direction γ. In

general, using the least-favorable direction leads to lower power. Meanwhile, our experience

suggests the estimation of γ can be numerically unstable across different simulated data sets,

which results in poor test performance.

Our FLUTE test does not suffer from these problems. It requires minimum effort in esti-

mating model parameters, hence achieves higher power, especially for high dimensional cases.

One potential weakness of the FLUTE test is its high computational cost in evaluating a U-sta-

tistic in large samples. However, estimating covariance operator is less a concern in large sam-

ples, one can switch to using parametric methods. We recommend the best context of using

the FLUTE test is small to moderate sample problems.

Fig 4. Empirical distribution of the FLUTE statistic based on 1000 bootstrap samples of size 35 drawn from the Canadian Weather dataset.

https://doi.org/10.1371/journal.pone.0234094.g004
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Appendix

Proof of Theorems.

Lemma 1. Suppose the functional predictors {Xi, i = 1, . . ., n} and the regression function
β(t, s) satisfy the following two conditions,

(A). Functional predictors, {Xi, i = 1, . . ., n}, belongs to a Sobolev ellipsoid of order two: there
exists a universal constant C, such that

P1

k¼1
x

2

ikk
4 � C2 for all i = 1, . . ., n.

(B). The regression functions satisfy
RR
b

2
ðt; sÞdtds � ~C with some constant ~C. Further as

L!1, the summation of coefficients
P1

‘¼Lþ1
bk;‘ � 1=L4 for k = 1, 2, . . ..

then we have the approximation error hei; eii � 6~CC=K4 þ 3C2=L4.

Proof. Recall that

eiðtÞ ¼
Z 1

0

bðt; sÞxiðsÞds �
XK

k¼1

XL

‘¼1

xikb‘kZ‘ðtÞ

¼
XL

‘¼1

X1

k¼Kþ1

xkb‘kZ‘ðtÞ þ
X1

‘¼Lþ1

XK

k¼1

xkb‘kZ‘ðtÞ þ
X1

‘¼Lþ1

X1

k¼Kþ1

xkb‘kZ‘ðtÞ

¼
def A1 þ A2 þ A3:

Then by the Cauchy-Schwarz inequality, we have

hei; eii ¼ hA1 þ A2 þ A3;A1 þ A2 þ A3i � 3ðhA1;A1i þ hA2;A2i þ hA3;A3iÞ:

Next we show the three parts are controlled separately. According to the Holder inequality and

Condition (A), we have

hA1;A1i ¼
XL

‘¼1

X1

k¼Kþ1

xikb‘kZ‘ðtÞ;
XL

‘¼1

X1

k¼Kþ1

xikb‘kZ‘ðtÞ

* +

¼
X1

k;k0¼Kþ1

XL

‘¼1

xikxik0b‘kb‘k0

�
X1

k;k0¼Kþ1

xikx
0

ik

XL

‘¼1

b
2

‘k

XL

‘0¼1

b
2

‘0k0

 !1
2

¼
X1

k¼Kþ1

xikð
XL

‘¼1

b
2

‘kÞ
1
2

 !2

�
X1

k¼Kþ1

x
2

ikk
4
X1

k¼Kþ1

XL

‘¼1

b
2

‘kk
� 4

�
C2 ~C
K4

:

ð16Þ
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And we have

hA2;A2i ¼
X1

‘¼Lþ1

XK

k¼1

xikb‘kZ‘ðtÞ;
X1

‘¼Lþ1

XK

k¼1

xikb‘kZ‘ðtÞ

* +

¼
XK

k;k0¼1

X1

‘¼Lþ1

xikxik0b‘kb‘k0

�
XK

k;k0¼1

xikxik0

X1

‘¼Lþ1

b
2

‘k

X1

‘0¼Lþ1

b
2

‘0k0

 !1
2

¼
XK

k¼1

xik

X1

‘¼Lþ1

b
2

‘k

 !1
2

0

@

1

A

2

�
1

L4

XK

k¼1

x
2

ikk
4
XK

k¼1

k� 4

�
C2

L4
:

ð17Þ

Similar with the proof of Eqs (16) and (17), we get

hA3;A3i ¼
X1

‘¼Lþ1

X1

k¼Kþ1

xikb‘kZ‘ðtÞ;
X1

‘¼Lþ1

X1

k¼Kþ1

xikb‘kZ‘ðtÞ

* +

�
C2 ~C
K4

:

ð18Þ

Hence we complete the proof by combining the bounds on each of the three parts.

Next, to prove Theorems 1 and 2, we first introduce some lemmas.

Lemma 2. Suppose random vector Zi ¼ ðzi1; . . . ; zipÞ
0
2 Rp

; i ¼ 1; 2, satisfy E[Zi] = 0,

var[Zi] = Ip, E½Z4
ik� ¼ 3þ r; k ¼ 1; . . . ; p, where ρ is a constant in (0, 1). If the two random vari-

ables Z1 and Z2 are independent, for any square matrix M = (mkℓ)p×p, we have

(1). E½Z1Z
0

1
MZ1Z

0

1
� ¼ M þM0 þ trðMÞIp þ rdiagðMÞ;

(2). E½Z1Z
0

2
MZ2Z

0

1
� ¼ trðMÞIp;

(3). E½Z1Z
0

2
MZ1Z

0

2
� ¼ M0:

Proof.

(1). Let W1 ¼ Z1Z
0

1
MZ1Z

0

1
, where W1(k, ℓ) indicates the (k, ℓ)th element of W1. With direct

computation, we have W1(k, ℓ) = Z1k Z1ℓ∑i,j mijZ1i Z1j. If k = ℓ,

E½W1ðk; ‘Þ� ¼ mkkE½Z4
1k� þ

X

i6¼k

miiE½Z
2

k �E½Z
2

i � ¼
X

i

mii þ ð2þ rÞmkk;

If k 6¼ ℓ, E[W1(k, ℓ)] = mkℓ + mℓk. Then E[W1] = M + M0+ tr(M)Ip + ρdiag(M).

(2). Since E½Z1Z
0

2
MZ2Z

0

1
� ¼ E½Z1Z

0

1
�E½Z0

2
MZ2�, and E½Z0

2
MZ2� ¼

P
imii, then we have

E½Z1Z
0

2
MZ2Z

0

1
� ¼ trðMÞIp:

(3). It’s simple to show that E½Z1Z
0

2
MZ1Z

0

2
� ¼ E½Z1Z

0

1
�M0E½Z2Z

0

2
� ¼ M0.
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Lemma 3. Consider symmetrical and semi-positive definite matrices A and B, [27] has
improved some inequalities:

(1). tr(AB)2� tr(A2)tr(B2);

(2). tr2(AB)� tr(A2)tr(B2).

Lemma 4. For matries Ma, a = 1, 2, 3 defined as Ma = ΔSaΔ0, we have tr2(M2)� tr(M1)tr(M3).

Proof.

trðM2Þ ¼ tr DS
1
2 � S

3
2D
0

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr DS
1
2S

1
2D
0

� �
tr DS

3
2S

3
2D
0

� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðM1ÞtrðM3Þ

p
:

Proof of Theorem 1.

Recall that the definition of the statistic in Eq (9), it is straightforward to show that

E½Tn� ¼ kCðb � b0Þk
2
.

To find the dominating terms, we need to calculate the following projections,

c1ðw1Þ ¼
1

2
tr Dðx1x

0

1
þ SÞSD

0
� �

þ trðε1x
0

1
SD

0

Þ
n o

;

c2ðw1;w2Þ

¼
1

6

n
trðDðx1 � x2Þðx1 � x2Þ

0

SD
0

Þ þ trððε1 � ε2Þðx1 � x2Þ
0

SD
0

Þ

þtrðDðx1x
0

1
þ SÞðx2x

0

2
þ SÞD

0

Þ þ trðε1x
0

1
ðx2x

0

2
þ SÞD

0

Þ

þtrðDðx1x
0

1
þ SÞx2ε

0

2
Þ þ trðε1x

0

1
x2ε

0

2
Þ
o
;

c3ðw1;w2;w3Þ

¼
1

12

n
trðDðx1 � x2Þðx1 � x2Þ

0

ðx3x
0

3
þ SÞD

0

Þ

þtrððε1 � ε2Þðx1 � x2Þ
0

ðx3x
0

3
þ SÞD

0

Þ þ trðDðx1 � x2Þðx1 � x2Þ
0

x3ε
0

3
Þ

þ trððε1 � ε2Þðx1 � x2Þ
0

x3ε
0

3
Þ þ trðDðx1 � x3Þðx1 � x3Þ

0

ðx2x
0

2
þ SÞD

0

Þ

þtrððε1 � ε3Þðx1 � x3Þ
0

ðx2x
0

2
þ SÞD

0

Þ þ trðDðx1 � x3Þðx1 � x3Þ
0

x2ε
0

2
Þ

þtrððε1 � ε3Þðx1 � x3Þ
0

x2ε
0

2
Þ þ trðDðx1x

0

1
þ SÞðx2 � x3Þðx2 � x3Þ

0

D
0

Þ

þtrðε1x
0

1
ðx2 � x3Þðx2 � x3Þ

0

D
0

Þ þ trðDðx1x
0

1
þ SÞðx2 � x3Þðε2 � ε3Þ

0

Þ

þtrðε1x
0

1
ðx2 � x3Þðε2 � ε3ÞÞ

0
o
:

Based on the expansion of Xi(t) and the orthogonality of the bases, we can derive the vari-

ance of the projections vc.
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With straightforward calculations, we get

v1 ¼
1

4

n
trðM1M3Þ þ trðM2

2
Þ þ rtrðQ2 � Q2Þ þ trðLM3Þ

o
;

v2 ¼
1

36

n
15trðM2

2
Þ þ 28tr2ðM2Þ þ 17trðM1M3Þ þ 18trðLM3Þ þ trðM2

1
ÞtrðS2Þ

þ2trðLM1ÞtrðS
2Þ þ 15rtrðQ2 � Q2Þ þ r

2trðQ0 � Q1Þ
2

þ2rtrðG
0

D
0

LDG � Q3Þ þ 2rtrðQ3 � Q4Þ þ trðL2
ÞtrðS2Þ

o
� tr2ðM2Þ;

v4 ¼
1

48

n
ð62þ 12rÞtrðM2

2
Þ þ ð70þ 8rÞtr2ðM2Þ þ 130trðM1M3Þ

þð46rþ 2ÞtrðQ2 � Q2Þ þ ð34þ 4rÞtrðM2
1
ÞtrðS2Þ þ 14rtrðQ3 � Q4Þ

þ128trðLM3Þ þ 48trðLM1ÞtrðS
2Þ þ 24rtrðG

0

D
0

LDG � Q3Þ

þ8r2trðQ0 � Q1Þ
2
þ 24trðL2

ÞtrðS2Þ
o
� tr2ðM2Þ:

Here, the Hadamard product is defined as A � B = (aijbij) for matrices A = (aij) and B = (bij).

Since both variances v2 and v4 are linear combinations of trðM2
2
Þ, tr2(M2), tr(M1 M3), tr(ΛM3),

trðM2
1
Þ, tr(ΛM1)tr(S2), tr(Q2 � Q2), tr(Q0 � Q1)2, tr(Γ0Δ0ΛΔΓ � Q3), tr(Q3 � Q4), and tr(S2),

they are of the same asymptotic order. This means that the statistic Tn is dominated by the

first two terms corresponding to Vn1 and Vn2. Hence we can get the Hoeffding decomposition

(11) of Tn, Tn � yðFÞ ¼
P2

c¼1
ð 4

cÞð
n
c Þ
� 1
fVnc þ opð1Þg; and var½Tn� ¼ f

16

n v1 þ
72

nðn� 1Þ
v2g�

f1þ oð1Þg: Then we complete the proof.

Proof of Theorem 2.

Using the inequalities in Lemma 3, under either the null hypothesis or the local alternative,

we have

v1 �
1

4

n
trðM1ÞtrðM3Þ þ trðM1ÞtrðM3Þ þ rtrðM1ÞtrðM3Þ þ trðLÞtrðM3Þ

o

¼
n
ð
1

2
þ

1

4
rÞtrðM1Þ þ trðLÞ

o
trðM3Þ

¼
n
ð
1

2
þ

1

4
rÞoð1Þ þ trðLÞ

o
o n� 1trðS2Þ
� �

¼ oðn� 1trðS2ÞtrðLÞÞ:

ð19Þ

v2 �
1

36

n
15tr2ðM2Þ þ 28tr2ðM2Þ � 36tr2ðM2Þ þ 17trðM1M3Þ

þ18trðLÞtrðM3Þ þ tr2ðM1ÞtrðS
2Þ þ 2trðLÞtrðM1ÞtrðS

2Þ

þ15rtrðM1ÞtrðM3Þ þ r
2trðS2Þtr2ðM1Þ þ 2trðM3ÞtrðM1ÞtrðLÞ

þ2rtrðS2Þtr2ðM1Þ þ trðL2
ÞtrðS2Þ

o

�
1

36

n
24trðM1Þ þ 18trðLÞ þ 15rtrðM1Þ þ 2trðM1ÞtrðLÞð ÞtrðM3Þ

þðtr2ðM1Þ þ 2trðLÞtrðM1Þ þ r
2tr2ðM1Þ

þ2rtr2ðM1Þ þ trðL2
ÞÞtrðS2Þ

o

¼ o
1

n
trðS2ÞtrðLÞ

� �

þ O trðL2
ÞtrðS2Þ

� �

¼ OðtrðL2
ÞtrðS2ÞÞ:

ð20Þ

Thus v1 = o(n−1 v2).
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Define

T̂ n ¼ kCðdbÞk
2
þ

12

nðn � 1Þ

X

1�i1<i2�n

~c2ðwi1
;wi2
Þ; ð21Þ

where δβ = β − β0. Then we can get Tn � kCdbk
2
¼ ðTn � T̂ nÞ þ ðT̂ n � kCdbk

2
Þ: We have

Tn � T̂ n ¼
n

4

 !� 1
X

A

n
~c4ðwi1

;wi2
;wi3

;wi4
Þ �

X

1�k1<k2�4

~c2ðwik1
;wik2
Þ
o
;

which can be regarded as a U-statistic with the kernel

Cðw1;w2;w3;w4Þ ¼
~c4ðw1;w2;w3;w4Þ �

X

1�i1<i2�4

~c2ðwi1
;wi2
Þ:

Through direct calculation, we can get the projections of C, C1ðw1Þ ¼ � 2~c1ðw1Þ,

C2ðw1:w2Þ ¼ � 2
P2

i¼1
~c1ðwiÞ, and C3 ¼

~c3ðw1;w2;w3Þ �
P3

i¼1
~c1ðwiÞ �

P
1�i<j�3

~c2ðwi;wjÞ.

By Hoeffding’s variance decomposition, we have var½T̂ n� ¼ Oðn� 2v2Þ, var½Tn � T̂ n� ¼ oðn� 2v2Þ

(see Supplementary Material B in S1 File).

Because

Tn � kCdbk
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q ¼
Tn � T̂ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q þ
T̂ n � kCdbk

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q ¼
T̂ n � kCdbk

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q þ opð1Þ;

we only need to show that

T̂ n � kCdbk
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q !
P Nð0; 1Þ:

From Eq (21) and the form of ~c2, let T̂ n � kCdbk
2
¼ T̂ ð1Þn þ T̂ ð2Þn , where

T̂ ð1Þn ¼
n

2

 !� 1
X

1�i1<i2�n

n
tr
�
Dðxi1

� xi2
Þðxi1

� xi2
Þ
0

SD
0
�

þtr
�
ðεi1
� εi2

Þðxi1
� xi2

Þ
0

SD
0
�
þ tr

�
Dðxi1

x
0

i1
þ SÞðxi2

x
0

i2
þ SÞD

0
�

þtr
�
εi1
x
0

i1
ðxi2

x
0

i2
þ SÞD

0
�
þ tr

�
Dðxi1

x
0

i1
þ SÞxi2

ε0i2

�o
;

and T̂ ð2Þn ¼ ð
n

2
Þ
� 1P

1�i1<i2�ntrðεi1
x
0

i1
xi2
ε0i2Þ: Under the assumptions of this theorem and follow-

ing Eqs (19) and (20) we have var½T̂ n� ¼ var½T̂ ð2Þn �ð1þ oð1ÞÞ and T̂ ð1Þn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ nÞ

q

¼ opð1Þ:

To complete the proof, we now need to show

T̂ ð2Þn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðT̂ ð2Þn

q

Þ ¼
ffiffiffiffiffi
n2
p

T̂ ð2Þn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðL2
ÞtrðS2Þ

q

!
P Nð0; 1Þ:

Define Zni ¼
Pi� 1

j¼1
ε0iεjx

0

ixj=
ffiffiffiffiffi
n2
p

and ~Tnk ¼
Pk

i¼2
Zni, thus ~Tnn ¼

ffiffiffiffiffi
n2
p

T̂ ð2Þnk , which we define

as ~Tn. Let F i ¼ sfð
x1

ε1

Þ; . . . ; ð xi

εi
Þg be a σ−field generated by fðx

0

j; ε
0
jÞ; j � ig. It is obvious to see

that E½ZnijF i� 1� ¼ 0, F 1 � F 2 � . . .. Then it shows that f~Tnk;F k : 2 � k � ng is a zero mean

martingale. Let V�ni ¼ E½Z2
nijF i� 1�; 2 � i � n, V�n ¼

Pn
i¼2

V�ni. The central limit theorem will
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hold Hall 28 if we can show V�n satisfies the following two conditions:

V�n
varð~TnÞ

!
P

1; ð22Þ

and for 8τ> 0

Xn

i¼1

tr� 1ðL
2
Þtr� 1ðS2ÞE

n
Z2

niIðjZnij > t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðL2
ÞtrðS2Þ

q

ÞjF i� 1

o
!
P

0:

We have var½~Tn� ¼ trðL2
ÞtrðS2Þ and

V�ni ¼
n

2

 !� 1
Xi� 1

j¼1

ε
0

jLεjx
0

jSxj þ 2
X

1�j<‘�i

ε
0

jLε‘x
0

jSx‘

 !

:

Hence we can define V�n=varð~TnÞ ¼ Cn1 þ Cn2, where

Cn1 ¼
1

ð n
2
ÞtrðS2ÞtrðL2

Þ

Xn� 1

j¼1

jε0jLεjx
0

jSxj;

Cn2 ¼
1

ð n
2
ÞtrðS2ÞtrðL2

Þ
2
X

1�j<‘�i

ε
0

jLε‘x
0

jSx‘:

It can be shown that E[Cn1] = 1, and

var½Cn1� ¼
1

ð
n

2
Þ

2tr2ðS2Þtr2ðL
2
Þ

E
Xn� 1

j¼1

j2ε0jLεjε
0

jLεjx
0

jSxjx
0

jSxj

" #(

�
Xn� 1

j¼1

j2tr2ðS2Þtr2ðL
2
Þ

)

:

As tr(S4) = O(tr2(S2)), and var[Cn1! 0. Then Cn1!
P

1 (see Supplementary Material B in S1

File). Similarly, E[Cn2] = 0, var½Cn2� ¼
4

ð
n
2
Þ2tr2ðS2Þtr2ðL2Þ

trðL4
ÞtrðS4Þ, then Cn2!

P
0: In summary,

Eq (22) holds.

Since E½Z2
niIfjZnij > t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðL2
ÞtrðS2Þ

q

gjF i� 1� � E½Z4
nijF i� 1�=ft

2trðL2
ÞtrðS2Þg, by the law of

large numbers, the last step is to prove

Xn

i¼1

E½Z4

ni� ¼ oðtr2ðL
2
Þtr2ðS2ÞÞ: ð23Þ

We have E½Z4
ni� ¼ ð

n

2
Þ
� 2E½

Pi� 1

j¼1
ði � 2Þε0jLεjε

0

jLεjx
0

jSxjx
0

jSxj þ
Pi� 1

j¼1
ðε0iεjÞ

4
ðx
0

ixjÞ
4
�, and

E½x
0

ixj�
4
¼ 6trðS4Þ þ ð6rþ r2 þ 4ÞtrðQ3 � Q3Þ þ 2tr2ðS2Þ, thus under Assumption (16), we
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have (see details in S1 File)

Xn

i¼1

E½Z4

ni� �
n

2

 !� 2
Xn

i¼1

2
i � 1

2

 !

þ ði � 1Þ

( )

Oðtr2ðL
2
Þtr2ðS2ÞÞ

¼ Oðn� 1tr2ðL
2
Þtr2ðS2ÞÞ

¼ oðtr2ðL
2
Þtr2ðS2ÞÞ:

Hence we prove that Eq (23) holds. And this completes the proof.
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