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Abstract: A superwicking Ti-6Al-4V alloy material with a hierarchical capillary surface structure
was fabricated using femtosecond laser. The basic capillary surface structure is an array of micropil-
lars/microholes. For enhancing its capillary action, the surface of the micropillars/microholes is
additionally structured by regular fine microgrooves using a technique of laser-induced periodic
surface structures (LIPSS), providing an extremely strong capillary action in a temperature range
between 23 ◦C and 80 ◦C. Due to strong capillary action, a water drop quickly spreads in the wicking
surface structure and forms a thin film over a large surface area, resulting in fast evaporation. The
maximum water flow velocity after the acceleration stage is found to be 225–250 mm/s. In contrast
to other metallic materials with surface capillarity produced by laser processing, the wicking perfor-
mance of which quickly degrades with time, the wicking functionality of the material created here
is long-lasting. Strong and long-lasting wicking properties make the created material suitable for
a large variety of practical applications based on liquid-vapor phase change. Potential significant
energy savings in air-conditioning and cooling data centers due to application of the material created
here can contribute to mitigation of global warming.

Keywords: femtosecond laser processing; nanostructures; microstructures; laser-induced periodic
surface structures (LIPSS); wicking materials; super-hydrophilic materials; surface capillarity; cooling
of electronics; Maisotsenko cycle; global warming

1. Introduction

Recent trends in cooling data centers [1,2], heat dissipation in high-heat flux electron-
ics [3], cooling supercomputers [4], spacecraft thermal management [5–7], water desalina-
tion [8–10], waste heat recovery [11–14], cooling batteries [15], energy-harvesting [16–19],
aircraft anti-icing [20], and Maisotsenko cycle (M-cycle) technologies [21–25] necessitate
the creation of advanced capillary materials with efficient wicking/super-hydrophilic func-
tionality at elevated temperatures. In particular, there is a fast-growing demand for these
materials in cooling high-heat flux 5G electronics and in creating the next generation of
M-cycle air-conditioning systems that will consume less electric power than the traditional
compressor coolers by a factor of 5–8 [21,26–29]. In view of the fact that the air-conditioning
of buildings and cooling data centers consume about 15% of global electricity generation,
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the energy efficiency in these sectors is an important factor for mitigation of global warming
through reduction of air pollution associated with electricity generation.

A typical wicking medium currently used in heat pipes for cooling electronics is a
porous material (mesh or sintered powder), performance of which degrades at high heat
fluxes because of insufficient liquid transport and large thickness of the wicking medium
(>0.5 mm) that limit the heat transfer [30–32]. Hierarchical wicking materials based on
the surface capillary effect offer significantly enhanced cooling performance due to a high
velocity of liquid transport, small thickness (<100 µm), and efficient evaporative func-
tionality [33–38]. Prior studies also show that as compared with wire meshes, sintered
powders, and microgroove structures, the micropillar arrays [39,40], especially hierarchical
ones [41,42], provide superior heat transfer performance due to their good wicking, large
surface area enhancement, and high evaporation rate owing to a large thin-film evapora-
tion area [41,43,44]. Previously, surface nano/microstructuring of materials [34,45] using
direct laser ablation [46–50] has been successfully applied to fabrication of superwicking
silicon [36,51], metals [10,14,33,37,52], glasses [53,54], and polymers [38] by producing an
array of parallel microgrooves on a surface of a material. It has been demonstrated that this
open capillary surface structure provides a strong capillary force capable of unidirectional
transporting of water for a long distance, even against the force of gravity. In contrast
to previously studied microgroove structures produced by femtosecond laser processing,
we investigate a hierarchical micropillar/microhole array structure. To enhance capillary
action, the surface of micropillars/microholes is structured with regular fine microgrooves
using a technique of laser-induced periodic surface structures [34,55,56]. In our work, the
capillary structure is produced on a surface of a Ti-6Al-4V alloy sample. To characterize
wicking functionality of the created material, we investigate water spreading distance z
as a function of time t in a temperature range between 23 and 80 ◦C using high-speed
video imaging. Our study shows that in the initial stage of the capillary flow, the water
spreading distance achieves a very large value of about 9–11 mm at t = 100 ms and the
maximum spreading velocity reaches about 225–250 mm/s in the studied temperature
range, demonstrating excellent wicking performance at elevated temperatures.

Metals are preferable wicking materials for heat/mass exchangers due to their high
inherent thermal conductance. However, previous studies have revealed that the creation of
long-term stable metallic wicks encounters a problem of quick degradation of their capillary
functionality caused by contamination via adsorption of hydrocarbons from the ambient
air [57]. For example, femtosecond laser-treated metals are super-hydrophilic/superwicking
immediately after laser processing, but they quickly become superhydrophobic after exposing
to laboratory air from several days to several months [45,58]. Here, we find that in contrast
to pure Ti [58] and other metals [45], the super-hydrophilic/wicking properties of titanium
alloy (Ti-6Al-4V) degrade very slowly after femtosecond laser processing, making the created
material suitable for practical applications. Due to the long-term stability and excellent
wicking performance in a wide temperature range, the created material can significantly
enhance the efficiency of commercially available M-cycle air-conditioners, where thick porous
wicking cellulose pads are currently used. In particular, the application of the wicking material
created here can provide significant energy savings in air-conditioning of buildings [59] and
cooling data centers [60].

2. Experimental: Fabrication and Characterization

In our study, we use Ti-6Al-4V alloy plates purchased from Goodfellow. Before
laser processing, the samples were wiped with alcohol and then cleaned in an ultrasonic
cleaner with distilled water at 40 ◦C to rinse away remaining contaminants. To fabri-
cate an array of LIPSS-structured micropillars/microholes, we use a femtosecond laser
processing setup, as shown Figure 1a. Our femtosecond laser system (Astrella, Coher-
ent Inc., Santa Clara, CA, USA) generates 86 fs pulses with energy of 7.13 mJ/pulse at
a maximum repetition rate of 1 kHz, with a central wavelength of 800 nm. A lens with
a focal distance of 200 mm focuses the laser beam onto the Ti-6Al-4V sample mounted
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on a computer-controlled XYZ translation stage. To vary the laser power, a half-wave
plate and polarizing beam-splitter cube are used. Measurements of the laser power are
carried out using a non-polarizing beam-splitter and power meter. To produce the array
of micropillars/microholes, we first fabricate an array of parallel microgrooves using a
raster scanning of the sample across the laser beam. Then, we produce the second array of
parallel microgrooves superimposed orthogonally onto the first one, resulting in an array
of LIPSS-textured micropillars/microholes [56]. By varying laser fluence, step between
scanning lines, scanning speed, and pulse repetition rate, we find laser processing param-
eters for producing a highly efficient wicking micropillar/microhole array structure. In
this work, we fabricate a wicking array of LIPSS-structured micropillars/microholes at
normal incidence of the laser beam using laser fluence of 5.1 J/cm2, laser spot diameter
of 120 µm, step between scanning lines of 100 µm, pulse repetition rate of 1000 Hz, and
scanning speed of 0.9 mm/s. Laser processing of Ti-6Al-4V alloy plates is carried out in
air of atmospheric pressure at the temperature of 23 ◦C and relative humidity of 50%. The
dimensions of the laser-textured surface area are 14 × 25 mm. The structural features of
the produced wicking micropillar/microhole array are examined using a scanning electron
microscope (SEM) MIRA 3 from Tescan (Brno, Czech Republic) and three-dimensional (3D)
laser scanning microscope VK-X1100 from Keyence. The elemental composition of both
treated and untreated sample surfaces is studied by energy dispersive X-ray spectroscopy
(EDS) using a Brucker XFlash 6/30 detector (Karlsruhe, Germany). The wetting properties
of the treated and untreated sample surfaces are characterized by measuring water contact
angle, θCA, using an OSA 200 system (Ningbo NB Scientific Instruments, Ningbo, China)
equipped with an accessory for measuring θCA as a function of temperature, T.
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Figure 1. (a) Femtosecond laser setup for producing an array LIPSS-structured micropil-
lars/microholes. (b) Experimental setup for high-speed video capturing of water spreading on
the wicking surface at various temperatures.
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The wicking properties of the produced structure are studied by video capturing the
capillary flow dynamics of de-ionized water on a horizontally positioned sample using the
experimental setup presented in Figure 1b. The studied sample is attached onto a heater.
To regulate the sample surface temperature, we use a temperature controller (TCN4S from
Autonics, Busan, South Korea) and thermocouple (5TC-TT-K-30-36 from Omega, Norwalk,
CT, USA) mounted on the untreated sample surface. In our study, water is supplied to
the capillary structure from a pendant 5 µL drop. To produce the pendant drop, we use
a syringe pump Elite 11 from Harward Apparatus Inc. (Holliston, MA, USA). The water
capillary flow dynamics are studied using a high-speed VEO 710L Phantom camera at a
speed of 1000 frames per second (fps). The water flow behavior is investigated at sample
surface temperature T = 23, 40, 60, and 80 ◦C, relative humidity of the ambient air of 50%,
and ambient air temperature of 23 ◦C. Due to evaporation, the temperature of a pendant
water droplet before its relocation onto the sample can be lower than the room temperature
(23 ◦C). To measure the water droplet temperature, we use a miniature thermocouple
placed inside the water droplet [61,62], and the water droplet temperature is measured to
be 20.8 ◦C. From video recording, we find the dependence of water spreading distance, z,
as a function of time, t. Using z(t) data, we also derive the water spreading velocity, v, as
a numerical derivative ∆z/∆t, where ∆z is the difference of spreading distance between
two consecutive video frames and ∆t = 10−3 s. In our study, we shot three videos for
each studied temperature. After processing these videos, the most characteristic one was
selected for presenting in this paper. In our study, we also investigated the water film
thickness dynamics using a side-view camera (see Figure 1b). For side-view imaging, we
used a high-speed V2012 Phantom camera.

3. Results and Discussion

The commonly termed ‘laser technique for producing micropillars’ [56] produces both
micropillars and microholes formed at intersections of the orthogonal scanning laser beams,
thus giving rise to a hybrid structure of micropillars and microholes, where the micropillar
bottom is taken as a base level. The structural features of the fabricated array of LIPSS-
structured micropillars/microholes are shown in Figure 2a–f. The surface of micropillars
and microholes is textured with both LIPSS and random fine nano/micro-structures of
various shapes and dimensions (see Figure 2b–d). A 3D optical image of the array of
micropillars/microholes is demonstrated in Figure 2e. The period and averaged height of
the micropillars measured by 3D laser scanning microscope are 100 and 52 µm, respectively
(see Figure 2f). The period and averaged depth of the microholes are 100 and 41 µm,
respectively. The dimensions of the LIPSS and fine random nano/microstructures are in a
range between about 50 nm and 10 µm (Figure 2b–d). The presence of LIPSS that partially
covers the micropillar/microhole walls is an important structural feature. These periodic
fine microgrooves enhance the overall capillary action of the fabricated wicking material
through spreading water on the micropillar/microhole walls. As seen in Figure 2c, their
period and width are about 1–3 and 0.5–1.5 µm, respectively. These periodic structures are
a type of LIPSS produced by femtosecond laser pulses in multi-pulse ablation [34,55,63].
At a linearly polarized laser light, the LIPSS period, d, on a metal in an ambient dielectric
medium reads [34]:

d = λlas/(Re[η]∓ sin θ) with g ‖ E (1)

where λlas is the wavelength of incident laser light, θ is the angle of laser beam incidence,
η = [εdεmetal/(εd + εmetal)]

1/2 is the effective refractive index of the dielectric–metal inter-
face for surface plasmons, εd is the dielectric function of the ambient dielectric medium,
εmetal is the dielectric function of the metal, Re[η] is the real part of η, g is the grating vector
of LIPSS, and E is the tangential component of electrical field vector of the incident laser
beam. Typically, η ≈ 1 for air–metal interfaces when a metal surface is smooth [63–65].
Multi-pulse femtosecond ablation at low laser fluences gives rise to the formation of surface
nanostructures that cause η to increase [63–65]. For example, η ≈ 1.3 has been reported
for LIPSS formation on Ti [64]. The increase in η results in LIPSS with a period smaller
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than the laser wavelength at θ ≈ 0. However, the increase in θ causes the LIPSS period
to increase, giving rise to the LIPSS with d > λlas. The LIPSSs with the period larger than
the laser wavelength have been previously studied in References [65,66]. It is known that
LIPSS are produced by multi-pulse ablation of metals at laser fluence slightly above the
damage threshold of a metal [34,55,63,65]. In the course of the micropillars/microholes
fabrication, the laser-irradiated surface area significantly increases due to formation of
surface structures, resulting in a reduction of laser fluence and creating conditions for LIPSS
formation. Another factor that promotes LIPSS formation is a lower laser fluence on the
laser beam periphery. Formation of the micropillars/microholes also causes the incidence
angle to increase, resulting in increasing d. Here, we use these effects for producing LIPSS
on the micropillar/microhole walls by a proper choice of laser processing parameters. An
important feature of this approach is that this hierarchical capillary structure is produced
by a one-step fabrication process. At the incidence angle of the laser beam between 30◦ and
80◦, the LIPSS period for metals is typically in a range of 1–4 µm [65] that agrees with the
range of d for the fine periodic microgrooves observed on the micropillar/microhole walls
in our study. Previously, it has been shown that the surfaces of metals and Ti-6Al-4V alloy
undergo a significant femtosecond laser-induced oxidation [67–69]. Therefore, after laser
processing of the sample, we performed an EDS examination of the elemental composition
of the laser-treated surface. This study shows a significant increase in the oxygen amount
caused by femtosecond laser-induced oxidation, as seen in Figure 2g, h. It is known that
TiO2 oxide has very good hydrophilic properties [57], therefore its formation caused by
laser processing can be beneficial to super-hydrophilic/wicking properties of our sample.

The flow of a liquid in a capillary medium undergoes a sequence of regimes, including
acceleration (z ∝ t2) [70–72], inertial (z ∝ t) [70–75], visco-inertial [36,76], classic Washburn’s
regime (z ∝ t1/2) [77], and final stages [78]. In contrast to many previous works focused on
the classic Washburn regime and other capillary flow stages occurring on the sub-second
(0.1–1 s) and second (1–100 s) time scales [78–95], our study mainly focuses on the early
capillary flow regimes on the millisecond time scale between 0 and 100 ms, understanding
of which has recently become an important issue in fast remediation of dry-out spots in
cooling high-heat flux electronics of 4G/5G telecom networks [96,97], Maisotsenko cycle
(M-cycle) heat/mass exchangers [98–101], and miniaturization of microfluidic devices [102],
where the classic Washburn regime and later capillary flow regimes do not occur because
of the short length of capillary channels. The previous studies on the initial flow regimes
mainly relate to the inertial regime in capillary tubes with a smooth surface, which are
the simplest capillary systems [70,73–75]. Our capillary system has a high hierarchical
structural complexity. Furthermore, due to water supply from a pendant drop, the forces
driving the liquid are more complicated and include the capillary pressure due to surface
structure, Laplace pressure from the curvature of the drop remaining between the sample
edge and needle, Laplace pressure from the curvature of the drop located on the sample,
and gravitational force of the drop on the sample surface [36,103,104]. Therefore, the inertial
regime of water behavior in our capillary system may differ from that in the capillary tubes.
As an example, the inertial regime is not observed in porous capillary media [74].
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Figure 2. (a) Scanning electron microscope (SEM) image of the array of micropillars/microholes pro-
duced by femtosecond laser. (b) SEM image of a LIPSS-structured micropillar/microhole. (c) Magni-
fied SEM image of LIPSS produced on micropillar/microhole walls. (d) SEM image of nanostructural
features on the micropillar top. (e) Three-dimensional (3D) optical image of the array of micropil-
lars/microholes. (f) Profile of the micropillars. (g) Elemental composition of the sample surface
before laser processing. (h) Elemental composition of the sample surface after laser processing.

Figure 3a shows the overall plot of water spreading distance as a function of time at
the sample temperature of 23 ◦C. It is seen that the capillary flow of water in the created
material is very fast, and spreading distance reaches 25 mm in 2450 ms. Figure 3b presents
the plot of spreading distance in the initial stages of water spreading in the time domain
0 < t < 100 ms, where one can see that the spreading distance achieves large values of about
6 and 11 mm at 45 and 100 ms respectively, demonstrating strong capillary action of the
created material. The plot of capillary flow velocity as a function of time shown in Figure 3c
reveals an acceleration stage between 0 and 4 ms, where the velocity increases from 0 to
about 250 mm/s. Snapshot b1 in Figure 3b demonstrates water spreading in the end of the
acceleration stage. As seen in Snapshot b2, about a half of the water drop is relocated from
the needle to the sample at t = 18 ms. Snapshot b3 demonstrates that water relocation is
almost completed at t = 48 ms. After the acceleration stage, in the time domain between
4 and 62 ms (see Figure 3b), the spreading distance exhibits quasilinear flow stage (z ∝ t)
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composed of three linear substages indicated by dashed lines. This water flow behavior
can be explained by time-dependent contributions of the above-mentioned forces driving
the liquid [36]. The time domains of the linear substages are 5–18, 20–48, and 51–62 ms.
These time domains correlate with water drop spreading and its shape changes affecting
the water driving forces, as seen in Snapshots b1–b4 and in Figure 3e, with its associated
Snapshots e1–e3 that demonstrate dynamics of the water drop profile on the sample.
The plot of the spreading velocity as a function of time presented in Figure 3c shows
significant velocity fluctuations that are explained by an uncertainty in velocity derivation
and pinning/depinning effects [36,38,105]. The average velocity in the quasilinear regime
(4 < t < 62 ms) is found to be 142 mm/s. In the time domain 63 < t < 200 ms, the spreading
velocity quickly decreases, reaching a value of about 20 mm/s at t = 200 ms. Snapshot c1
demonstrates water spreading in this time domain. At t > 200 ms, the velocity decreases
slowly with smaller fluctuations (see Figure 3d and its insets i1, i2). It is seen from Snaphots
d1–d5 that at t > 200 ms, the spreading water takes the shape of a thin film spread over a
large surface area, indicating a potentially good evaporative functionality of the created
material that is useful for applications based on liquid-vapor phase change. We also
investigated the dynamics of water film profile using side-view video imaging of water
spreading. We found that the water film thickness, h, achieves a maximum value at a
distance of about 4 mm from the sample edge, and this position of maximum h almost
does not change with time. The plot of the maximum h as a function of time at z = 4 mm is
shown in Figure 3e. As seen in the inset of Figure 3e, the water spreading front reaches
z = 4 mm at t = 28 ms, followed by a quick increase of the water film thickness that achieves
a maximum value of 0.66 mm at t = 36 ms. Then, the water film thickness rapidly reduces
to about 0.3 mm at t = 55 ms, indicating that the contributions to water flow of both Laplace
pressure from the curvature of the drop located on the sample and gravitational force of
this drop occur mainly in the time domain of the quasilinear inertial regime. At t > 55 ms,
the water film thickness decreases slowly, and its value becomes 200, 100, and 50 µm at 420,
1100, and 1700 ms respectively, providing favorable conditions for efficient evaporation.

The water spreading dynamics at 40 and 60 ◦C are presented in Figures 4 and 5,
respectively. Overall, the water behavior at 40 ◦C is similar to that at 23 ◦C, as seen from
a comparison of Figure 4a with Figure 3a. In the initial stages, the z(t) plots at these
temperatures are actually the same within the measurement uncertainty (see the inset in
Figure 4a and compare Figure 4b with Figure 3b). Figure 4c shows that the acceleration
stage takes place at 0 < t < 7 ms, resulting in a maximum velocity of about 250 mm/s. Similar
to the water spreading at 23 ◦C, the spreading dynamics at 40 ◦C after the acceleration
regime can also be characterized as a quasilinear regime composed of three linear substages,
namely at 7 < t < 23 ms, 25 < t < 33 ms, and 35 < t < 62 ms, as shown by dotted lines in
Figure 4b. Snapshots b1–b4 demonstrate the water spreading dynamics in this quasilinear
regime. The v(t) dependence in the time domain 0 < t < 100 ms is presented in Figure 4c.
This dependence is similar to that at 23 ◦C, as can be seen from the comparison of Figure 4c
with Figure 3c. The average velocity in the quasilinear regime (7 < t < 62 ms) found from
the data in Figure 4c is 144 mm/s, which is the same as at 23 ◦C within the experimental
uncertainty. As seen in Figure 4a, the z(t) curves at 23 and 40 ◦C begin to divert at about
600 ms, revealing somewhat smaller spreading distance at 40 ◦C that can be explained by
a higher evaporation rate with increasing temperature. Figure 4d and its insets i1 and i2
present both the overall v(t) dependence and detailed v(t) dependences at t > 100 ms, where
it is seen that the velocity behavior is similar to that at 23 ◦C. Snapshots d1–d5 associated
with the v(t) dependence in Figure 4d demonstrate water spreading dynamics at t > 328 ms.
The plot of the water film thickness in Figure 4e also exhibits a similar behavior as at 23 ◦C.
Thus, the presented experimental data show that the increase in temperature from 23 to
40 ◦C does not essentially affect the capillary water flow on the material created here.
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Figure 3. Dependences z(t), v(t), and h(t) at 23 ◦C and snapshots of water spreading (experiment
was performed 72 days after laser processing of the sample). (a) The overall plot of the spreading
distance as a function of time. (b) Detailed plot of spreading distance as a function of time between 0
and 100 ms. The dashed lines show three z ∝ t substages. (c) Plot of the velocity as a function of time
between 0 and 100 ms. (d) The overall plot of the velocity as a function of time. (e) Plot of water film
thickness as a function of time at z = 4 mm.
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Figure 4. Dependences z(t), v(t), and h(t) at 40 ◦C and snapshots of water spreading (experiment
was performed 74 days after laser processing of the sample). (a) The overall plot of the spreading
distance as a function of time and its comparison with that at 23 ◦C. (b) Detailed z(t) plot between 0
and 100 ms. The dashed lines show three z ∝ t substages. (c) Plot of the velocity as a function of time
between 0 and 100 ms. (d) The overall plot of the velocity as a function of time. (e) Plot of water film
thickness as a function of time at z = 4 mm.
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Figure 5. The z(t), v(t), and h(t) dependences and snapshots of water spreading and receding at 60 ◦C
(experiment was performed 75 days after laser processing of the sample). (a) The overall plot of the
spreading distance as a function of time. (b) Detailed z(t) plot between 0 and 100 ms. The dashed
lines show three z ∝ t substages. (c) Detailed plot of the spreading velocity as a function of time
between 0 and 100 ms. (d) The comparison of z(t) dependences at 23 and 60 ◦C. (e) Plot of water film
thickness as a function of time at z = 4 mm. (f) The overall plot of spreading and receding velocities
as a function of time.
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Figure 5 shows both water spreading and receding (drying) dynamics at 60 ◦C. As seen
in Figure 5a, the spreading distance achieves its maximum value of 21.5 mm at 2400 ms.
This value is smaller than that at 23 ◦C (24.8 mm) and 40 ◦C (24.0 mm), indicating a notice-
able effect of evaporation on the spreading distance. In the time domain 2400 < t < 2800 ms,
the water-front actually does not move, revealing an equilibrium between the capillary
and evaporation effects on water spreading. After the equilibrium stage, the water-front
begins to recede with an increasing velocity, resulting in complete drying of the water
film. The time domains of spreading, equilibrium, and receding stages of water behavior
are indicated in Figure 5a. Figure 5b presents the z(t) dependence in the initial spreading
stage between 0 and 100 ms, where three z ∝ t substages are marked with dashed lines.
Snapshots b1–b4 demonstrate the water behavior in these substages. The velocity of cap-
illary spreading in the initial time domain between 0 and 100 ms is shown in Figure 5c.
It is seen that the water flow velocity remains to be high at 60 ◦C, achieving a maximum
value of about 250 mm/s. The average velocity in the quasilinear regime (5 < t < 58 ms)
is found to be 109 mm/s, which is smaller than that at 23 and 40 ◦C. Snapshots c1, d1,
and f1 show the water film behavior after the quasilinear stage at 85, 240, and 1000 ms,
respectively. Snapshot f2 shows the water film in the beginning of the equilibrium regime.
The temperature effect on the water spreading behavior is demonstrated by a comparison
of the spreading distances at 23 and 60 ◦C in Figure 5d, where the inset shows that the
spreading distance at 60 ◦C becomes smaller already at about 30 ms. As seen in Figure 5e,
the h(t) dependence does not undergo significant changes with increasing temperature to
60 ◦C. Figure 5f and its insets (i1 and i2) demonstrate the plots of both spreading and re-
ceding velocities in the entire lifetime of the water film on the sample surface. The receding
regime begins at 2800 ms. Initially, the receding velocity increases slowly (see insets i1 and
i2), achieving a value of 4.7 mm/s at 8800 ms. As seen in the inset i2, at t > 8800 ms, the
receding velocity quickly increases and achieves a value of 25.3 mm/s at the end of the
drying process. Snapshots f3, f4, and f5 show the water film drying dynamics. It is seen in
Snapshot f5 that the evaporation of the water film comes to an end at z ≈ 4 mm, where the
maximum water film thickness is observed.

The data on water spreading and receding (drying) behaviors at 80 ◦C are presented
in Figure 6. The overall z(t) dependence is shown in Figure 6a, where the time domains of
spreading, equilibrium, and receding regimes are indicated. It is seen that the maximum
spreading distance is observed to be 18.7 mm in the equilibrium stage between 1185 and
1385 ms, indicating a significant effect of evaporation on the maximum spreading distance.
The detailed z(t) dependence in the time domain between 0 and 100 ms is demonstrated
in Figure 6b, where three z ∝ t substages are marked with dashed lines. Snapshots b1–b4
associated with these substages show the water behavior in these linear substages. The v(t)
plot in the time domain between 0 and 100 ms (Figure 6c) shows that the maximum capillary
flow velocity remains high (about 225 mm/s). The average velocity in the quasilinear
regime (6 < t < 61 ms) also remains high (108 mm/s), demonstrating excellent wicking
properties at high temperatures. Snapshots c1 and d1 show the water film behavior in the
spreading regime after the quasilinear stage. The temperature effect on the water spreading
is clearly seen in Figure 6d, where a comparison of the z(t) plots at 23 and 80 ◦C is presented.
The inset in Figure 6d shows that these plots begin to differ at about 20 ms. In the time
domain t > 750 ms, the evaporation effect on the water behavior becomes very significant,
resulting in the equilibrium and then in receding stages of water dynamics indicated in
Figure 6a. Snapshots f1 and f2 show the water film in the beginning (t = 1185 ms) and end
(t = 1385 ms) of the equilibrium regime. Figure 6e and Snapshots e1–e3 obtained by the
side-view camera show the water film profile dynamics. The temperature effect on the h(t)
dependence at z = 4 mm (location of the maximum water film thickness) is demonstrated
in Figure 6e, where we also included the h(t) dependences at other studied temperatures.
These data show that at t = 780 ms, the water film thickness decreases from 142 to 68 µm as
the temperature rises from 23 to 80 ◦C. The overall plot of spreading and receding velocities
as functions of time is presented in Figure 6f, where the time domains of the spreading,
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equilibrium (see the inset i1), and receding regimes are also shown. At t > 1385 ms (see
the inset i1), the water film front begins to recede with an increasing velocity, achieving an
extremely high value of 27 mm/s at 4185–4285 ms (see the inset i2). The sample surface
becomes completely dry at 4285 ms. Snapshots f3–f5 demonstrate the evaporating water
film behavior in the receding regime. Snapshot f5 shows that the water film evaporation
terminates at z ≈ 4 mm, i.e., at the same location as at 60 ◦C (see snapshot f5 in Figure 5f).

The contact angle, θCA, is an important parameter in the capillary flow [106]. There-
fore, we measured θCA as a function of temperature for both untreated and treated surfaces.
The obtained results are presented in Figure 7a. It is seen that in a temperature range be-
tween 23 and 80◦, the contact angle of the untreated surface increases from 49 to 53.5◦. The
treated surface exhibits θCA ≈ 0◦ in the entire studied temperature range, demonstrating
stable super-hydrophilic properties with the variation in temperature. As compared with
other reported micropillars’ structures [107–109], our structure provides a better capillary
performance. For example, a titanium micropillar array reported in Reference [107] demon-
strates water spreading distance of about 5 mm within 100 ms for a water drop supply at
the sample edge, whereas our structure transports water for the distance of about 11 mm
(see Figure 3b).

A critical problem in creating capillary metallic surfaces is a quick degradation of
their capillary performance caused by adsorption of hydrophobic hydrocarbons from the
ambient air [45,57,58]. In our work, the superwicking functionality degradation over time
was assessed by measuring the contact angle, θCA, of a deposited water drop using the
OSA 200 system in video recording mode at a speed of 40 fps, allowing to measure the
contact angle as a function of time after the drop deposition on the laser-structured surface.
This test over a time period of about 7 months shows that the water static contact angle
remains to be close to zero. During this period, the sample used in our experiments was
subjected to multiple heating/cooling cycles, multiple wetting/drying cycles, and long
exposure to Lab air containing hydrocarbons due to the presence of a large number plastic
items in the Lab. The results of the test on contact angle dynamics performed immediately
after laser processing and 7 months later are shown Figure 7b. It is seen that immediately
after laser processing, the contact angle of a water drop deposited on the sample becomes
close to zero within about 200 ms, while 7 months later, this time is about 600 ms, indicating
some degradation of the wicking action. Despite this degradation, our sample retains
its super-hydrophilic/wicking properties (θCA ≈ 0◦), in contrast to other laser-treated
metals, which become superhydrophobic (θCA > 150◦) in 2–3 months [45,56,58]. Taking into
account that the number of wicking metallic materials with surface capillarity is currently
very limited, the creation of both long-lasting and efficient wicking surface in our work is
a significant result for further advancing important technological areas mentioned in the
Introduction Section. An important feature of laser processing technologies is that modern
industrial laser systems with a high pulse repetition rate (up to MHz-range) provide a laser
nano/microstructuring speed up to about 1 m2 s−1, allowing mass production [55].
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Figure 6. The z(t), v(t), and h(t) dependences at 80 ◦C and snapshots of water behaviors in spreading
and receding regimes (experiment was performed 77 days after laser processing of the sample).
(a) The overall plot of the spreading distance as a function of time. (b) Detailed z(t) plot in the
time domain between 0 and 100 ms. The dashed lines show three z ∝ t substages. (c) Detailed plot
of the spreading velocity as a function of time between 0 and 100 ms. (d) The comparison of z(t)
dependences at 23 and 80 ◦C. (e) The comparison of h(t) dependences at the studied temperatures. (f)
The overall plot of spreading and receding velocities as a function of time.
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4. Conclusions

In this work, we fabricated an array of periodic micropillars/microholes on a surface of
a Ti-6Al-4V alloy plate, using a femtosecond laser nano/microstructuring technique. For en-
hancing capillary action, the surface of micropillars/microholes was additionally structured
with both laser-induced periodic surface structures and fine random nano/microstructures.
The created hierarchical capillary surface structure exhibited an extremely good capillary
functionality in the temperature range between 23 and 80 ◦C. After the acceleration stage,
the maximum water flow velocity in the inertial regime was found to be very high, achiev-
ing about 250 mm/s. The strong capillary action provides fast water spreading for a long
distance (up to 5.6–7.2 mm) even in the inertial flow regime (0 < t < 50 ms) at all studied
temperatures. In a later stage of capillary flow, water quickly spread and formed a thin film
over a large surface area, providing conditions for fast evaporation needed in applications
based on liquid-vapor phase change. An important feature of the created material is a very
slow degradation of its wicking functionality with time. The long-lasting wicking function-
ality along with a wide operational temperature range make the created texture suitable for
a variety of practical applications, where the choice of materials is currently very limited,
such as cooling high-heat flux electronics, thermal and fluid management in aerospace sys-
tems [5–7], cooling data centers [1,2], heat dissipation in power batteries and electronics of
hybrid vehicles [15,110,111], and M-cycle applications, including air-conditioning [21–25],
waste heat recovery [10–12], water desalination/purification [8,9,112–114], and cooling
towers [115]. Potential significant energy savings in air-conditioning of buildings [59] and
cooling data centers [60] due to application of the material created here can contribute to
mitigation of global warming.
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