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Purpose: Our objectives were to (1) employ ensemble machine learning algorithms utilizing real-world clinical data to predict 90-day 
prognosis, including dialysis dependence and mortality, following the first hospitalized dialysis and (2) identify the significant factors 
associated with overall outcomes.
Patients and Methods: We identified hospitalized patients with Acute kidney injury requiring dialysis (AKI-D) from a dataset of the 
Taipei Medical University Clinical Research Database (TMUCRD) from January 2008 to December 2020. The extracted data comprise 
demographics, comorbidities, medications, and laboratory parameters. Ensemble machine learning models were developed utilizing 
real-world clinical data through the Google Cloud Platform.
Results: The Study Analyzed 1080 Patients in the Dialysis-Dependent Module, Out of Which 616 Received Regular Dialysis After 90 
Days. Our Ensemble Model, Consisting of 25 Feedforward Neural Network Models, Demonstrated the Best Performance with an 
Auroc of 0.846. We Identified the Baseline Creatinine Value, Assessed at Least 90 Days Before the Initial Dialysis, as the Most Crucial 
Factor. We selected 2358 patients, 984 of whom were deceased after 90 days, for the survival module. The ensemble model, 
comprising 15 feedforward neural network models and 10 gradient-boosted decision tree models, achieved superior performance 
with an AUROC of 0.865. The pre-dialysis creatinine value, tested within 90 days prior to the initial dialysis, was identified as the 
most significant factor.
Conclusion: Ensemble machine learning models outperform logistic regression models in predicting outcomes of AKI-D, compared 
to existing literature. Our study, which includes a large sample size from three different hospitals, supports the significance of the 
creatinine value tested before the first hospitalized dialysis in determining overall prognosis. Healthcare providers could benefit from 
utilizing our validated prediction model to improve clinical decision-making and enhance patient care for the high-risk population.
Keywords: AKI-D, dialysis prognosis, ensemble machine learning, prediction models, risk factors

Introduction
Acute kidney injury (AKI) is a frequently encountered complication in hospitalized patients with acute illness, and its 
incidence is on the rise.1–3 Research has demonstrated that AKI occurs in approximately 20% of adults and 33% of 
children hospitalized due to acute illness.2 The clinical importance of AKI is emphasized by consistent evidence linking 
it to long-term risks, including heightened mortality, the development of chronic kidney disease requiring renal 
replacement therapy (RRT), decreased health-related quality of life, and increased utilization of healthcare resources.4
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Acute kidney injury requiring dialysis (AKI-D) is linked with greater morbidity and mortality, both during and after 
hospitalization.5–9 The recovery of kidney function has a poor prognosis,8,10–14 especially for patients with 
comorbidities.10,15–18 A nationwide study conducted in the US revealed a yearly spike of 10% in the occurrence of AKI-D.19 

Additionally, up to 30% of AKI-D patients might necessitate regular hemodialysis in the outpatient phase following discharge 
from the hospital.17,20–24 Mortality figures for AKI-D patients have been documented at different time intervals, with rates 
reported at 35%, 45%, and 49% for in-hospital, 90-day, and 6-month periods, respectively.25,26 These findings highlight the 
importance of increasing awareness regarding the detrimental effects and substantial economic burden that AKI-D imposes on 
patients, communities, and healthcare systems.

Machine learning techniques offer enhanced predictions of clinical performance and serve as valuable alternatives to 
traditional multivariate regression techniques in clinical medical studies.27 Recent publications indicate an increasing use 
of machine learning in predicting AKI. Mohamadlou et al28 found that a machine-learning-based AKI prediction tool 
could provide crucial prognostic capabilities for identifying patients at risk of AKI, enabling clinicians to intervene 
before renal damage becomes apparent. Similarly, Shawwa et al29 demonstrated that machine learning can predict AKI in 
intensive care unit (ICU) patients using pre-admission information.

Following a comprehensive literature review, we have identified a limited number of studies that concentrate on predicting 
90-day dialysis dependence in AKI-D hospitalized patients. Furthermore, we have observed that most of these studies utilize 
logistic regression models for outcome prediction with relatively small sample sizes, as demonstrated in Supplementary 1.

To address this issue, our study aims to employ machine learning algorithms on real-world clinical data from three 
different hospitals, taking into account multiple attributes, to predict the 90-day prognosis of patients who experience 
their first episode of AKI-D during hospitalization. Furthermore, we will identify the significant factors associated with 
these outcomes.

To evaluate our prediction model, we used the 5-fold cross-validation method. Firstly, we split the dataset into two 
subsets: a training set for development and a testing set for external validation. Secondly, the training set is split into 
a new training fold and a validation fold for internal validation to complete the cross-validation process.

By following these principles of objectivity, our goal is to develop a prediction model with great accuracy for the 
prognosis of first hospitalized AKI-D patients. And further make a valuable contribution to future clinical practice and 
decision-making processes that ultimately benefit both health care providers and patients in their treatment and care.

Materials and Methods
Study Design and Data Source
Study Design
For our case-control analysis, we employed the Taipei Medical University Clinical Research Database (TMUCRD), 
which covered the period from 2008 to 2020. The primary objective was to collect data on patients who experienced 
AKI-D during their first hospitalization and the related clinical information. The patients were subsequently divided into 
two groups based on their prognosis.

Following this, we constructed multiple prediction models with the goal of accurately predicting the recovery of renal 
function to dialysis dependence 90 days after the initial hospitalized dialysis. This time frame is typically considered the 
threshold for determining whether patients have reached end-stage renal disease (ESRD).30 In addition, we constructed 
alternative prediction models to evaluate the mortality risk in the same designated patient population. After evaluating the 
performance of the models, we selected the one with the highest predictive accuracy. The top 10 significant features were 
extracted from this selected model based on the results.

Data processing for this study was produced utilizing SAS software, Version 9.4 of the SAS System for Windows. 
Model training and testing were conducted using Vertex AI from Google Cloud Platform.

Data Source
For this study, patient data was obtained from the TMUCRD, a comprehensive database that aggregates information from 
electronic medical records across three hospitals: Taipei Medical University Hospital (TMUH), Wan-Fang Hospital 
(WFH), and Shuang-Ho Hospital (SHH). This database contains a large amount of electronic medical record data from 
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2008 to 2020, with 3.8 million individual records. It includes structured data such as patient demographics, medical 
details, test reports, diagnosis results, treatment history, surgical records, and medication usage, as well as unstructured 
data like narrative progress notes, pathology reports, and medical imaging reports.

The objective was to gather data on patients who experienced AKI-D during their first hospitalization but had varying 
prognosis after 90 days. The index time began when the patient underwent their first hospitalized dialysis. After 90 days 
of the treatment regardless of the number of dialysis sessions during this period, we documented the patient’s outcome 
based on a 30-day follow-up period. (See Supplementary 2 and Supplementary 3)

To ensure ethical compliance, the Joint Institute Review Board of Taipei Medical University in Taipei, Taiwan 
approved this case-control study on February 7, 2023 (approved number, N201703004). Before any analyses, all patient 
data were anonymized.

Patient and Feature Selection
The inclusion criteria primarily targeted patients who experienced the first episode of AKI-D during hospitalization. The 
patients were selected from the TMUCRD database spanning from 2008 to 2020, which includes three hospitals located 
in the northern part of Taiwan. Exclusion criteria were implemented to exclude those with previous outpatient dialysis 
records and those with underlying ESRD as suggested by relevant ICD codes (ICD-9: 585.6; ICD-10: N18.6).

To build prediction models, features were meticulously selected based on literature reviews and consultations with 
clinicians. The selected features were hypothesized to potentially impact dialysis dependence and mortality in first 
hospitalized AKI-D patients, especially those related to the renal function. We also aimed to include as many clinical 
features as possible to enhance the attributes of the machine learning algorithm. The selected features included:

1. Demographic information: This included age, gender, height, weight, body mass index (BMI), and admission to 
the ICU.

2. Comorbidities: Prior documented medical diseases before the index date of the first hospitalized dialysis were 
classified using the Charlson Comorbidity Index.

3. Medications: Medication records from the year preceding the index date were gathered and categorized using the 
anatomical therapeutic chemical classification system.

4. Laboratory tests: Laboratory parameters measured were blood urea nitrogen (BUN), creatinine, estimated glo-
merular filtration rate (eGFR), albumin, glucose, hemoglobin A1c, thyroid stimulating hormone, uric acid, total 
cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides. C-reactive protein (CRP), 
D-dimer, troponin-I, creatine kinase-MB, creatine phosphokinase (CPK), N-terminal pro-brain natriuretic peptide, 
hemoglobin, urine microalbumin, urine protein, urine glucose, urine microalbumin-creatinine ratio, and urine 
protein-creatinine ratio were all measured.

Of these parameters, BUN, creatinine, and eGFR were clinically recognized as significant tests for evaluating renal 
function.31 Thus, we ensured that each patient in our dataset had complete medical records of creatinine, BUN, and eGFR 
at all time points. Patients without these records were excluded from our analysis, as were other features with a missing 
rate over 30%. For the continuous variables with missing data under 30%, missing values were imputed by replacing 
them with the mean.

Additionally, laboratory tests were selected at three specific time points each: (1) Baseline: 90 or more days prior to 
the index date, (2) Pre-dialysis: within 90 days before the index date, and (3) Post-dialysis: within 2–8 weeks after the 
index date. Furthermore, the difference between two time points of each feature was used as an input. All three time 
points for each parameter were collected for the dialysis-dependent module: Baseline, Pre-dialysis, and Post-dialysis. 
After the initial dialysis, renal function can be unstable, making it crucial to monitor post-dialysis laboratory data in order 
to accurately predict the patient’s long-term outcome. For the survival module, we gathered data at two time points for 
each parameter: Baseline and Pre-dialysis. By doing so, we can more promptly identify survival rates post-initial dialysis, 
particularly in critical and emergent cases.
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Prediction Model Construction
To predict both dialysis dependence and mortality 90 days after the first hospitalized dialysis, we utilized Vertex AI on 
the Google Cloud Platform to train and deploy our machine learning models. Various models were trained, utilizing 
different machine learning algorithms with varying sets of hyperparameters through the Grid Search approach. Based on 
the area under the receiver operating characteristic curve (AUROC) value, we created an optimal ensemble model by 
merging the top-performing models, such as gradient boosted decision trees (GBDT) and feedforward neural networks

Gradient Boosted Decision Trees
GBDT is a highly effective machine learning algorithm utilized for both regression and classification tasks, acknowl-
edged for its efficiency, accuracy, and interpretability. It operates as an ensemble method, combining numerous decision 
trees trained sequentially. In each iteration, GBDT fits the negative gradient to learn from previous iterations’ errors. By 
consolidating the outcomes of each tree, GBDT constructs a durable and compelling model.32

Feedforward Neural Network
Feedforward neural network is a fundamental type of neural network architecture in which information flows in only one 
direction, from the input layer through one or more hidden layers to the output layers. Implementing a neural network 
ensemble can substantially enhance the system’s generalization ability. This ensemble can capture diverse representations 
and different aspects of the data, resulting in better predictive capabilities. The ensemble approach utilizes multiple 
networks’ strengths and diversity to generate more precise and robust predictions.33

Performance Evaluation
To evaluate our prediction model, we applied the 5-fold cross-validation method (see Supplementary 4). Firstly, we split 
the dataset into two subsets: a training set (80% of the patients) for development and a testing set (20% of the patients) 
for external validation. Secondly, we split the training set into a new training fold and a validation fold. This division 
served as an internal validation to complete the cross-validation process, which was repeated five times. The training fold 
was utilized to train the machine learning models, whereas the validation fold was employed to assess the performance of 
various machine learning models and optimize their hyperparameters. The model’s performance on real-world data was 
evaluated using the testing set to provide an unbiased estimate of its predictive capabilities.

Performance of the machine learning algorithms was measured using metrics such as AUROC, accuracy, sensitivity, 
specificity, precision, negative predictive value, and F1-score. A combination of these metrics provides a more compre-
hensive understanding of the model’s performance in various aspects such as discrimination ability, overall correctness, 
and trade-offs between precision and sensitivity: AUROC measures the ability of a model to distinguish between binary 
classes across various thresholds. The curve plots the true positive rate against the false positive rate, providing 
a comprehensive view of a model’s discriminatory power. Accuracy is a general metric that measures the overall 
correctness of the model’s predictions. Sensitivity measures the proportion of actual positive instances correctly predicted 
by the model. In a medical diagnosis task, high sensitivity is crucial to avoid missing positive cases. Specificity measures 
the proportion of actual negative instances correctly predicted by the model. It is crucial when the cost of false positives 
is high. Precision measures the proportion of predicted positive instances that are actually positive, helping to assess the 
accuracy of positive predictions. Negative Predictive Value measures the proportion of predicted negative instances that 
are actually negative, which is relevant in scenarios where the cost of false negatives is significant. The F1-Score is the 
harmonic mean of precision and recall. It is useful in situations where both false positives and false negatives are critical, 
as it provides a balanced measure when there is an imbalance between classes.

Furthermore, we examined the feature importance using Shapley additive explanations (SHAP)34,35 values to under-
stand each feature’s contribution to the model’s predictions. The SHAP method utilizes coalitional game theory to 
compute Shapley values. In this method, the feature values of a data instance act as players in a coalition. The importance 
of features is determined by their absolute Shapley values, with larger values indicating greater importance. To determine 
global importance, the absolute Shapley values per feature are averaged across the data.
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Results
First, we extracted 22,382 patients with hospitalized dialysis records from the TMUCRD database. Next, we excluded 
patients with ESRD and previous dialysis records before the index time, leaving 10,160 patients. Then, based on the 
above-mentioned feature selection, we finally obtained 1080 patents and 2358 patients for the dialysis-dependent and 
survival analyses, respectively. The study workflow is shown in Figure 1. Table 1 and Supplementary 5 summarized the 
final features used for both the construction and analysis of our model. Supplementary 6 lists the number of patients with 
missing values for each selected feature.

Dialysis Dependent Module
Baseline Characteristics of Two Groups
The study comprised 1080 eligible first hospitalized AKI-D patients from the TMUCRD. Among them, 616 (57%) 
continued their dialysis after 90 days, while 464 (43%) did not. Table 1 and Supplementary 5 show the demographic 
characteristics, medication use, comorbidities, and laboratory results. The number of ICU admissions during hospitaliza-
tion was significantly lower in patients who continued the dialysis after 90 days following initial dialysis. Significant 
differences were also observed for height and gender between the two groups, while there were no significant differences 
in age or BMI.

The Performance of the Prediction Model
For the model construction, we utilized 152 features as listed in Table 1 and Supplementary 5. The final model was 
generated by Vertex AI and consisted of an ensemble of 25 feedforward neural network models, which offered the most 
optimal prediction performance. The AUROC was 0.846 (Figure 2), and the accuracy, precision, sensitivity, specificity, 
and F1 score were found to be 0.788, 0.822, 0.845, 0.69, and 0.833, respectively.

Identification of the Significant Features
Based on the SHAP values, we identified the top 10 significant features that influenced our prediction model’s 
performance. These features are illustrated in Figure 3. The 5 most important features were the baseline creatinine 
value, post-dialysis creatinine value, baseline eGFR value, post-dialysis eGFR value, and the BUN value difference 

Figure 1 Workflow of the study design.
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between the baseline and post-dialysis. All of the top 10 significant features indicated no statistical differences between 
the two groups, with the exception of the post-dialysis BUN value, as displayed in Table 2.

Survival Module
Baseline Characteristics of Two Groups
In the study, 2358 first hospitalized AKI-D patients were identified from the TMUCRD for survival analysis. Of these 
patients, 984 (42%) died within 90 days of initial dialysis, while 1374 (58%) did not. Demographic characteristics, 
medication use, comorbidities, and laboratory results are presented in Table 1 and Supplementary 5. In comparison to the 
dialysis dependent module, it was found that age and BMI exhibited significant differences while only height did not, 
between the two groups. Additionally, the patients who did not survive past 90 days from the initial dialysis had 
a statistically significant increase in the number of admissions to the ICU during hospitalization.

The Performance of the Prediction Model
For our model construction, we utilized 139 features detailed in Tables 1 and Supplementary 5. The final model created 
by Vertex AI consists of an ensemble of 15 feedforward neural network models and 10 GBDT models that deliver 
exceptional prediction performance. Our AUROC stands at 0.865 (Figure 4), while accuracy, precision, sensitivity, 
specificity, and F1 scores are recorded as 0.776, 0.729, 0.788, 0.766, and 0.757, respectively.

Table 1 Demographics of the Patients with AKI-Requiring Dialysis in the Study

90-Day Dialysis Dependence 90-Day Survival

Case Control P-value Case Control P-value

No. of patients 616 464 984 1374

Gender Male: 
312

Female: 
304

Male: 
264

Female: 
200

0.04 Male: 
588

Female: 
296

Male: 
747

Female: 
627

0.009

Age (years), mean ± SD, 69.63 ± 13.75 71.03 ± 14.54 0.06 75.21 ± 13.19 69.78 ± 14.02 P<0.001

Height (cm), mean ± SD 159.58 ± 8.98 160.88 ± 8.62 0.02 160.59 ± 8.80 160.16 ± 9.00 0.15

Weight (kg), mean ± SD 64.54 ± 16.17 65.6 ± 15.27 0.12 61.00 ± 13.93 65.37 ± 15.80 P<0.001

Body mass index (kg/m2), Mean ± SD 25.2 ± 5.20 25.26 ± 5.20 0.75 23.63 ± 4.92 25.36 ± 5.15 P<0.001

ICUa admission, n (%) 126 (20.45) 214 (46.12) P<0.001 707 (71.85) 395 (28.75) P<0.001

Comorbidity, n (%)

Myocardial infarction 41 (6.66) 36 (7.76) 0.49 99 (10.06) 91 (6.62) 0.002

Congestive heart failure 200 (32.47) 141 (30.39) 0.47 327 (33.23) 432 (31.44) 0.36

Peripheral vascular disease 15 (2.44) 21 (4.53) 0.06 56 (5.69) 45 (3.28) 0.004

Cerebrovascular disease 97 (15.75) 93 (20.04) 0.07 196 (19.92) 230 (16.74) 0.048

Dementia 10 (1.62) 16 (3.45) 0.053 54 (5.49) 32 (2.33) P<0.001

Chronic pulmonary disease 45 (7.31) 41 (8.84) 0.36 142 (14.43) 103 (7.50) P<0.001

Connective tissue disease-rheumatic disease 9 (1.46) 8 (1.72) 0.73 21 (2.13) 17 (1.24) 0.09

Peptic ulcer disease 83 (13.47) 71 (15.3) 0.40 163 (16.57) 182 (13.25) 0.02

Mild liver disease 34 (5.52) 33 (7.11) 0.28 125 (12.70) 86 (6.26) P<0.001

Diabetes without complications 282 (45.78) 197 (42.46) 0.28 343 (34.86) 611 (44.47) P<0.001

Diabetes with complications 182 (29.55) 94 (20.26) P<0.001 114 (11.59) 375 (27.29) P<0.001

Paraplegia and hemiplegia 9 (1.46) 5 (1.08) 0.58 15 (1.52) 15 (1.09) 0.36

Renal disease 479 (77.76) 250 (53.88) P<0.001 331 (33.64) 941 (68.49) P<0.001

Cancer 83 (13.47) 87 (18.75) 0.02 329 (33.43) 196 (14.26) P<0.001

Moderate or severe liver disease 4 (0.65) 9 (1.94) 0.054 45 (4.57) 17 (1.24) P<0.001

Metastatic carcinoma 12 (1.95) 31 (6.68) P<0.001 136 (13.82) 48 (3.49) P<0.001

AIDSb/HIVc 0 (0) 0 (0) 1 (0.1) 0 (0) 0.42

Charlson comorbidity index, Mean ± SD 3.61 ± 2.02 3.55 ± 2.59 0.03 4.01 ± 2.97 3.53 ± 2.22 0.05

Notes: aICU, intensive care unit; bAIDS, acquired immunodeficiency syndrome; cHIV, human immunodeficiency virus.
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Identification of the Significant Features
We have identified the top 10 significant features that impacted the performance of our prediction model through SHAP 
value calculations. Figure 5 displays these features and indicates that the pre-dialysis creatinine value, baseline creatinine 
value, pre-dialysis eGFR value, baseline eGFR value, and age were the top 5 most significant factors. All of the top 10 
significant features presented statistically significant differences between the two groups, as shown in Table 3.

Discussion
The Comparison of the Discriminative Power with Other Researches
The prediction of dialysis dependence after AKI-D has garnered considerable attention in the medical field. Accurate 
predictions hold great potential to enhance medical decision-making, improve quality of life, and alleviate financial 
burden of patients. With the recent advancements in artificial intelligence and machine learning, the application of these 
technologies in precision medicine has rapidly increased.

Previous studies predicting dialysis dependence or survival have mainly used single, deep, or basic machine learning 
algorithms (Supplementary 1). However, the implementation of ensemble learning techniques that integrate multiple 
innovative machine learning algorithms has been relatively restricted in these investigations.

Figure 2 The AUROC for the final dialysis dependent prediction model.

Figure 3 The top 10 significant features related to the dialysis dependent prognosis. Baseline: lab data tested beyond 90 days before index date; Pre: lab data tested within 
90 days before the index date; Post: lab data tested within 2–8 weeks after the index date.
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Benjamin J Lee et al36 developed prediction models to determine renal recovery after AKI-D within a 90-day period. 
The study included a total of 2214 adult AKI-D patients who underwent either acute intermittent hemodialysis or 
continuous RRT (CRRT). The logistic regression and classification and regression tree models had reported C-index 
values of 0.64 and 0.61, respectively. Dennis Emuron et al37 built a predictive model using the Nutritional Risk Index 
along with other clinical parameters to predict 90-day dialysis dependence in patients with AKI requiring CRRT. The 
resultant logistic regression predictive model demonstrated a discriminative ability with an AUROC of 0.89. However, it 
is important to note that the study had only 77 patients for model training, and the final sensitivity outcome was 0.563, 
indicating a potential issue of the data imbalance. Vin-Cent Wu et al38 employed a multivariate generalized additive 
model to predict 90-day survival and renal function recovery in AKI-D patients who initiated RRT. The study comprised 
a total of 258 patients. The plasma c-terminal FGF-23 predictive model exhibited the greatest ability to discriminate with 
an AUROC of 0.687.

Table 2 The Value of the Top 10 Significant Features Between Two 
Groups of the Dialysis Dependent Prediction Model

Features Case Control P-value

Creatinine_baseline 5.57 ± 2.82 3.12 ± 2.22 P<0.001

Creatinine_post 6.87 ± 2.85 4.31 ± 2.67 P<0.001

eGFRa_baseline 14.8 ± 14.92 34.51 ± 28.18 P<0.001
eGFRa_post 9.6 ± 6.61 22.47 ± 20.76 P<0.001

BUNb_post_baseline_diffc −8.32 ± 45.73 14.94 ± 39.19 P<0.001

BUNb_baseline 68.84 ± 29.64 45.46 ± 28.21 P<0.001
Creatinine_pre 9.01 ± 3.71 6.44 ± 3.49 P<0.001

BUNb_post 60.52 ± 34.15 60.4 ± 33.12 0.93
Albumin_pre_baseline_diffc −0.26 ± 0.53 −0.43 ± 0.67 P<0.001

BUNb_post_pre_diffc −48.27 ± 46.73 −33.08 ± 46.83 P<0.001

Notes: aeGFR: estimated glomerular filtration rate. bBUN: blood urea nitrogen. cDiff: 
difference; Baseline: lab data tested beyond 90 days before index date; Pre: lab data tested 
within 90 days before the index date; Post: lab data tested within 2–8 weeks after the index 
date.

Figure 4 The AUROC for the final survival prediction model.
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Pattharawin Pattharanitima et al39 applied multiple machine learning approaches to predict renal replacement therapy 
free survival (RRTFS) after discharge in 684 critically ill patients with AKI requiring CRRT, using all available 
biomedical data. Among the different approaches tested, the MLP + LSTM model demonstrated the highest performance, 
with an AUROC value of 0.70. Chang Liu et al40 developed prediction models using routinely available clinical 
characteristics and risk factors to predict two outcomes: successful weaning from CRRT at the first attempt and 
RRTFS at hospital discharge. The study cohort involved 1135 AKI patients necessitating CRRT. The ultimate multi-
variable logistic regression models demonstrated discrimination with AUROC values of 0.76 and 0.78, respectively. Min 
Woo Kang et al41 employed machine learning algorithms to predict patient mortality following CRRT for AKI. 
Biomedical data from 1571 adult patients were analyzed, and the Random Forest algorithm achieved an AUROC 
value of 0.768, the highest result. Daniel H Li et al42 developed models for predicting 90-day mortality and RRT 
dependence in critically ill patients with severe AKI who underwent RRT. The logistic regression model’s final 
performance, following external validation, exhibited an AUROC value of 0.61.

The study found that our predictive accuracy surpassed that of earlier review studies in terms of both 90-day dialysis 
dependence and 90-day mortality following first hospitalized AKI-D. We employed an ensemble model consisting of 25 
feedforward neural network models, which produced the highest AUROC value of 0.846, as well as an accuracy of 
0.788, precision of 0.822, sensitivity of 0.845, specificity of 0.69, and F1 score of 0.833 for predicting dialysis 
dependence. Regarding survival prediction, our ensemble model, consisting of 15 feedforward neural network models 
and 10 GBDT models achieved the highest AUROC value of 0.865, as well as an accuracy of 0.776, precision of 0.729, 
sensitivity of 0.788, specificity of 0.766, and F1 score of 0.757.

Figure 5 The top 10 significant features related to the survival prognosis. Baseline: lab data tested beyond 90 days before index date; Pre: lab data tested within 90 days 
before the index date; Post: lab data tested within 2–8 weeks after the index date.

Table 3 The Value of the Top 10 Significant Features Between Two 
Groups of the Survival Prediction Model

Features Case Control P-value

Creatinine_pre 4.27 ± 2.33 8.07 ± 3.87 P<0.001

Creatinine_baseline 2.01 ± 1.58 4.71 ± 2.83 P<0.001

eGFRa_pre 19.30 ± 15.56 9.34 ± 9.40 P<0.001
eGFRa_baseline 49.86 ± 29.84 21.91 ± 22.89 P<0.001

AGE 75.21 ± 13.19 69.78 ± 14.02 P<0.001

Albumin_pre 2.76 ± 0.60 3.31 ± 0.65 P<0.001
CRPb_pre 11.56 ± 9.98 6.65 ± 8.21 P<0.001

ICUc_admission 707 (71.85) 395 (28.75) P<0.001

BUNd_pre_baseline_diffe 54.14 ± 42.32 42.18 ± 39.78 P<0.001
Renal disease 331 (33.64) 941 (68.49) P<0.001

Notes: Baseline: lab data tested beyond 90 days before index date; Pre: lab data 
tested within 90 days before the index date; Post: lab data tested within 2–8 weeks 
after the index date. 
Abbreviations: aeGFR, estimated glomerular filtration rate; bCRP, C-creative pro-
tein; cICU, intensive care unit; dBUN, blood urea nitrogen; eDiff, difference.
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We improved the performance by the implementation of ensemble learning techniques that integrate multiple 
innovative machine learning algorithms. With a larger sample size from three different hospitals, we integrated 
a significant amount of clinical data, such as demographics, comorbidities, medications, and laboratory results, to 
robustly train our models for improved prognosis prediction.

Identification of Potential Clinical Parameters Related to Dialysis Dependence and 
Mortality After 90 Days of the First Hospitalized AKI-D
In our dialysis-dependent analysis, we have identified the serum creatinine as a pivotal biomarker for predicting 
outcomes in the first hospitalized AKI-D. The creatinine levels at three different temporal points ranked among the 
top 10 significant features. It is noteworthy that patients who cannot withdraw from dialysis beyond 90 days present 
a markedly escalated creatinine level, as illustrated in Supplementary 5. We created a paired scatterplot comparing the 
value differences between two groups at different time points using the top 2 significant features: the baseline creatinine 
value and the creatinine value within 2–8 weeks after the AKI-D date. As shown in Figure 6, a higher positive slope was 
found in the case group between these two time points, indicating a poorer response to dialysis. This aligns with the 
existing literature, whereby an increase in serum creatinine typically indicates a decline in kidney function, possibly 
resulting in extended dialysis. Kashani et al43 creatinine is the paramount functional biomarker for assessing renal 
function and is a key contributor to improved AKI detection and management. Similarly, Zavada et al44 described the 
prominent influence of baseline creatinine on subsequent AKI detection and classification. Furthermore, the Acute 
Dialysis Quality Initiative Working Group released a consensus definition and classification scheme for AKI in 2004, 
with a focus on serum creatinine.45

In survival analysis, serum creatinine plays a crucial role in predicting 90-day survival after the first hospitalized 
AKI-D. The measurements of creatinine at two different time points ranked first and second in terms of feature 
significance. We presented both the top 2 features in a paired scatterplot, as shown in Figure 7. Interestingly, patients 
who did not survive beyond 90 days had lower creatinine levels compared to survivors. The control group also exhibited 
a higher positive slope, suggesting a more rapid increase in creatinine values. This may be due to more severe 
comorbidities in patients with relatively preserved renal function. Data in Supplementary 5 indicates that the deceased 
cohort was predominantly older, had elevated CRP values, reduced albumin levels, and higher rates of ICU admissions. 
Lobo et al46 demonstrated that high serum CRP concentrations are associated with a greater likelihood of organ failure 
and death upon admission to the ICU, and are indicative of a poor outcome. Hannan et al47 observed that low albumin 
levels, particularly in older patients, are linked to a higher risk of mortality. Additionally, while not among the top 10 
significant features, the risk group exhibited significantly elevated levels of Troponin I and CPK. Aydin et al48 reported 
that Troponin I is a commonly used biomarker for diagnosing acute myocardial infarction and CKP can estimate the size 
of the infarct. Despite the generally lower levels of creatinine, mortality could result from significant stressors that cause 
AKI-D and subsequent death. Consequently, we recommend a comprehensive approach that includes evaluating 
creatinine levels, age, CRP, albumin metrics, and ICU admissions for accurate survival prediction.

Finally, our study indicated the baseline creatinine value, evaluated at least 90 days before the first dialysis, was 
a crucial determinant of the prognosis from both prognostic modules. This suggests that not only does the laboratory data 
tested right before the dialysis matter, but also the baseline variability of the data plays an important role. If the change in 
the baseline value could be detected in advance, the high and low-risk groups could be identified earlier. If necessary, 
clinicians can adjust the drug dosage, medication use, and daily diet to decrease mortality rates and dialysis dependence.

Limitations
This study has limitations that should be acknowledged. The data collected were obtained from hospitals (eg TMUH, 
WFH, and SHH) in northern Taiwan, which may restrict the generalizability of the findings to patients in other regions. 
Furthermore, the study depended on retrospective data for model development and validation. The observed associations 
between clinical features and the outcomes of dialysis dependence or mortality may not necessarily imply a causal 
relationship. Additionally, the machine learning algorithms developed in this study were based on binary outcomes (eg, 
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dialysis or not), rather than continuous outcomes (eg, length of dialysis). Therefore, the models were unable to accurately 
predict the specific time of discontinuous dialysis but only provided predictions within a time range.

To enhance precision, future studies should validate the model using data from diverse geographical regions and 
a larger sample size to address the prediction of continuous outcomes. Additionally, further prospective studies are 
necessary to establish a more robust understanding of the causal relationships in clinical settings. Finally, we recommend 

Figure 6 The paired scatterplot with box plots of dialysis dependent module. This illustrates the distribution of creatinine values at baseline and post-dialysis for the case 
group (depicted in red) and control group (depicted in green) within dialysis dependent module.

Figure 7 The paired scatterplot with box plots of survival module. The illustrates the distribution of creatinine values at baseline and pre-dialysis for the case group 
(depicted in red) and control group (depicted in green) within survival module.
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that future researchers focus on constructing a nomogram or decision tree. These methods offer clinicians a more direct 
and straightforward way to classify patients into different risk categories.

Conclusion
This study demonstrates the potential of ensemble machine learning algorithms to enhance prognostic accuracy for first 
hospitalized AKI-D patients. Our models were developed by using clinical data from three different hospitals, enabling 
us to successfully predict 90-day outcomes, which encompass the patient’s reliance on dialysis and mortality rate. The 
integration of various clinical parameters significantly improved the predictive accuracy of the models. The first 
hospitalized dialysis outcomes were significantly influenced by the baseline creatinine value, which was evaluated at 
least 90 days prior. Therefore, early assessment and monitoring of creatinine levels in AKI-D patients is crucial. This 
allows clinicians to adjust drug dosage, medication use, and daily diet accordingly to prevent further renal damage. The 
use of prediction models can provide valuable insight into the overall prognosis, improving clinical decision-making, 
early intervention, and patient care for high-risk populations. This can lead to a better patient experience, improved 
quality of care, and more efficient resource utilization for healthcare providers.
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