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Abstract

Icosahedral viruses are under a micrometer in diameter, their infectious genome encapsu-

lated by a shell assembled by a multiscale process, starting from an integer multiple of 60

viral capsid or coat protein (VP) monomers. We predict and validate inter-atomic hotspot

interactions between VP monomers that are important for the assembly of 3 types of icosa-

hedral viral capsids: Adeno Associated Virus serotype 2 (AAV2) and Minute Virus of Mice

(MVM), both T = 1 single stranded DNA viruses, and Bromo Mosaic Virus (BMV), a T = 3 sin-

gle stranded RNA virus. Experimental validation is by in-vitro, site-directed mutagenesis

data found in literature. We combine ab-initio predictions at two scales: at the interface-

scale, we predict the importance (cruciality) of an interaction for successful subassembly

across each interface between symmetry-related VP monomers; and at the capsid-scale,

we predict the cruciality of an interface for successful capsid assembly. At the interface-

scale, we measure cruciality by changes in the capsid free-energy landscape partition func-

tion when an interaction is removed. The partition function computation uses atlases of inter-

face subassembly landscapes, rapidly generated by a novel geometric method and curated

opensource software EASAL (efficient atlasing and search of assembly landscapes). At the

capsid-scale, cruciality of an interface for successful assembly of the capsid is based on

combinatorial entropy. Our study goes all the way from resource-light, multiscale computa-

tional predictions of crucial hotspot inter-atomic interactions to validation using data on site-

directed mutagenesis’ effect on capsid assembly. By reliably and rapidly narrowing down

target interactions, (no more than 1.5 hours per interface on a laptop with Intel Core i5-

2500K @ 3.2 Ghz CPU and 8GB of RAM) our predictions can inform and reduce time-

consuming in-vitro and in-vivo experiments, or more computationally intensive in-silico

analyses.
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Author summary

Viruses, found in all classes of living orgaisms, can be beneficial as well as harmful to their

hosts. Understanding their mechanism of assembly is critical to understanding how we

can inhibit or enhance their life cycle process. Icosahedral viral capsids, as elucidated by

Caspar and Klug, are self-assembled from nearly identical viral capsid or coat-protein

(VP) monomers spontaneously and rapidly, with high efficacy and accuracy, a process

sometimes facilitated by other biomolecules. Understanding virus assembly requires iden-

tifying crucial VP-VP hotspot interactions whose removal would disrupt the process. We

combine a novel geometric method for rapidly atlasing free energy landscapes with a sym-

metry-based combinatorial method to give a two-scale prediction of hotspot interactions.

We validate the predictions for 3 types of viruses, using in-vitro, site-directed mutagene-

sis’ disruptive effects on capsid assembly, found in literature, noting that the biophysical

assays for AAV2 were carried out by the Mavis Agbandje-Mckenna’s lab contemporane-

ously with the development of our computational model and prediction. Our predictions

are reproducible using our curated opensource software EASAL (efficient atlasing and

search of assembly landscapes). To the best of our knowledge, prevailing methods for sta-

tistical mechanical prediction of hotspot interactions use a single scale, are knowledge-

based, are computationally intensive, or have not been validated by in-vitro site directed

mutagenesis results.

Introduction

Viruses can be pathogenic or non-pathogenic, rod-like or icosahedral, enveloped or non-

enveloped. Pathogenic viruses are detrimental to their host and significant research is focused

on their prevention, by disrupting crucial steps in their life cycle [1]. Virus capsid assembly is a

critical step in the generation of infectious virus particles during their replicative life cycle.

Understanding assembly processes in the viral life cycle illuminates the pathophysiology of

infectious diseases, and allows us to target assembly processes with drugs. Improving assembly

of non-pathogenic viruses can be utilized for certain beneficial applications, for example can-

cer treatment with oncolytic viruses, cell and gene therapy applications, and for vaccine pro-

duction [2].

Icosahedral viral capsids assembled from almost identical viral capsid or coat protein (VP)

monomers were elucidated by Caspar and Klug [3]. The number of VP monomers is some

multiple (called the T number) of 60. At each inter-monomeric, symmetry-related interface,

the assembly is a nanoscale process influenced by inter-atomic interactions, while the entire

capsid can be between 10’s to 100’s of nanometers in diameter, involving 100’s of interfaces,

making capsid assembly a multiscale process. While several aspects of icosahedral capsid

self-assembly have been studied in detail [4, 5], its multiscale aspect still remains poorly

understood.

Like most other supramolecular assemblies that occur widely in nature, viral capsid self-

assembly is extremely robust, rapid, and spontaneous. Spontaneity makes it difficult to control

in vitro, rapidity makes it difficult to get snapshots of the process, and robustness makes it dif-

ficult to isolate crucial combinations of assembly-driving inter-atomic interactions (see Fig 1).

Assembly involves two types of interactions: (i) the viral coat protein (VP) interactions and

(ii) the VP-genome interactions. Although the genome or other biomolecules could influence

the VP-VP interaction during the first step of capsid assembly, understanding VP-VP interac-

tions and the VP intermediates generated, in system not requiring additional input, can
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inform the utilization of viruses for beneficial applications or the generation of assembly inhib-

itors that disrupt the formation of pathogenic viruses. Consequently, the self-assembly of sev-

eral types of icosahedral, non-enveloped viral capsids from identical VP monomers is to date

an area of major interest.

A key component in understanding the virus assembly process is identifying those crucial
hotspot interactions whose removal disrupts assembly. Experimental approaches used to mea-

sure the forces involved in determining or orchestrating the VP-VP interaction of the assem-

bled virus include cryo-electron microscopy and image reconstruction, X-ray crystallography,

and a variety of quantitative interaction proteomic methods [6] which provide high resolution

information about the purified capsid in the crystalline and aqueous states respectively [7],

Fig 1. Structures of a T = 1 and T = 3 viruses, and a cartoon showing the types of VP monomers and interfaces in

the former. (a) X-ray structure of AAV2 (a T = 1 virus). All VP monomers are identical, and the VP monomers

colored using the non-dominant colors are used only to highlight the 3 types of interfaces. VP monomers at the 5-fold

interface are colored shades of green, light green and blue form a 2-fold interface assembly, and dark green, blue and

yellow pairwise form 3-fold interface assemblies. (b) X-ray structure of BMV (a T = 3 virus) showing 3 types of VP

monomers (green, blue, and red). (c) A cartoon of a T = 3 virus showing the 3 types of VP monomers (green, blue, and

red), 7 types of interfaces, and 3 symmetries (shown in pink). See the introduction.

https://doi.org/10.1371/journal.pcbi.1008357.g001
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complete list found on VIPERdb (https://urldefense.proofpoint.com/v2/url?u=http-3A__

viperdb.scripps.edu&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=kGsKDXNcJq1WRG

evTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsos

EhffocKHs&s=jGUYBEB7WJuz-3UVMaAiQ9g8N_TjuqBf9qIbDULVhVY&e=). These high-

resolution structures can be used to select residues that are conserved within the virus genus

or family and located within symmetry-related interfaces of the icosahedron. Site-directed
mutagenesis of the VP followed by gel filtration, light scattering, or sedimentation coefficient

to measure the size of the VP oligomer and to determine the effect of the mutagenesis on

capsid assembly [8]. Other methods used to verify capsid assembly include native capsid

immunoblot or enzyme-linked immunosorbent assay (ELISA), and sometimes cryo-electron

microscopy and other techniques for measuring sizes and concentrations of subassemblies.

These methods of capsid assembly prediction and verification are time consuming and expen-

sive. Additionally, the predictions may not yield mutants that are critical to the process. Thus,

there is a need for rapid and reliable mathematical and computational tools for modeling

supramolecular assembly that can inform further experimentation, including resource inten-

sive in-silico experimentation using computational alanine scanning (CAS) or fine-grained

molecular dynamics (MD) that have to be scaled up from the protein-protein interface level to

the capsid level consisting of at least 150 interfaces.

Contribution. The strong influence of entropy contributes to the poorly understood statisti-

cal mechanics of the capsid assembly process, whose free-energy landscape arises from the sys-

tem of inter-atomic interactions at interfaces between the nearly identical VP monomers.

Icosahedral symmetry restricts the interface types to a small set.

To predict the importance (cruciality) of a specific inter-atomic interaction at an interface

for successful capsid assembly, we analyze the viral capsid assembly landscape at two scales,

the interface-scale and the capsid-scale. At the interface-scale, we measure the cruciality of an

interaction for successful subassembly across an interface type by approximating the changes

in the partition function when the interaction is removed (discussed in the background section

on configurational entropy). We use two measures of change in the partition function. The

first uses the partition function for all the minimal energy regions, representing all the stable

subassembly configurations. The second uses the normalized partition function for the poten-

tial energy basin corresponding to the specific subassembly configuration occurring in the suc-

cessfully assembled capsid. This estimates the probability that a stable configuration is in fact

the successful subassembly configuration. We use the ratio of each of these quantities with and

without an interaction—averaged over a principled selection of small subassemblies across an

interface type—to measure cruciality of that interaction for that interface type (discussed in

the section on output of cruciality prediction).

Both measures of change in partition function are rapidly approximated as a bar-code that

abbreviates the atlas of the interface assembly landscape. The atlas is generated—with minimal

sampling—by the geometric method and curated opensource software EASAL (efficient atlas-

ing and search of assembly landscapes [9–11]). The input to EASAL consists of (a) the VP

monomer geometry—atom coordinates; and for each interface type, (b) pair-potentials for a

candidate set of assembly-driving interactions along with Van der Waals sterics, and (c) small

subassembly structures extracted from known capsid structures. An atlas is a partition of the

assembly landscape into contiguous region of nearly equipotential energy called active con-
straint regions or macrostates (discussed in the section on entropy computation), organized as

a refinable, queryable roadmap, that can further be abbreviated as a bar-code. The constraints

are the pair-potentials as in (b) above. The active constraint graphs are analyzed using combi-

natorial graph rigidity, whereby the effective dimension of a macrostate becomes a proxy for
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its energy level. The methodology gives fast, light-weight algorithms (100 to 1000 times faster

than prevailing methods [11–13]) with rigorously proven accuracy-efficiency tradeoffs.

We additionally give two types of predictions, each validated by in-vitro, site-directed muta-

genesis results found in literature [14–20]. We note that the biophysical assays for AAV2 were

carried out by the Mavis Agbandje-Mckenna’s lab [20] contemporaneously with the develop-

ment of our computational model and prediction. Our first direct, ab-initio prediction gener-

alizes an interface-scale prediction to the capsid-scale by assuming equal importance of each

type of interface for capsid assembly and without explicitly accounting for kinetics. Despite this
assumption, and despite the prediction being completely blind to the in-vitro site-directed muta-
genesis data used for validation, this direct, interface-scale prediction correlated well with site-

directed mutagenesis data towards capsid assembly disruption in 3 viruses (see the figures in

the section on validating the first two-scale prediction).

Our second prediction additionally incorporates a capsid-scale prediction of the cruciality

of an interface for capsid assembly. The dimension of the capsid assembly landscape—involv-

ing several VP monomers (60 for T = 1 and 180 for T = 3)—makes direct computations intrac-

table. Hence, we treat the capsid as being recursively assembled from stable subassemblies at

interfaces [21, 22], where subassemblies are intermediate oligomeric structures of the capsid,

assembled at interfaces (subassemblies are formally defined in the background section on com-

binatorial entropy). The likelihood of such an assembly tree, given successful capsid assembly,

is a measure of combinatorial entropy (discussed in the background section on combinatorial

entropy). This depends both on the stability and formation rates of the intermediate subassem-

blies, and the number of equivalent assembly trees under icosahedral symmetry [23–25]. The

cruciality of an interface for successful capsid assembly is then determined by all the assembly

trees that involve that interface. The relative weights of the cruciality measures described

above—the bar-code measuring change of partition function at the interface-scale, and the

combinatorial entropy at the capsid-scale—are then determined by statistical learning (dis-

cussed in the section on interface cruciality). The learning algorithm uses—for training—a

small fraction of the mutagenesis and biophysical assay data towards assembly disruption, to

learn the parameters of the statistical model. The remainder of the mutagenesis data is used to

validate the cruciality of residues for capsid assembly of 3 types of viral capsids, Adeno Associ-

ated Virus serotype 2 (AAV2), which is non-pathogenic, and Minute Virus of Mice (MVM),

which is pathogenic to mice, both T = 1 single stranded DNA viruses, and Bromo Mosaic

Virus (BMV), a T = 3 single stranded RNA virus, pathogenic to both monocotyledon and

dicotyledon plants.

Our predictions are reproducible using our curated opensource software EASAL (efficient

atlasing and search of assembly landscapes https://urldefense.proofpoint.com/v2/url?u=http-

3A__bitbucket.org_geoplexity_easal&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=

kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-

Z0oiqNxBsosEhffocKHs&s=UvqE7o05ehbIXBe1Sgt920eHlxMg3vQCOuBWk0QU0l4&e=,

see also video https://cise.ufl.edu/~sitharam/EASALvideo.mpeg, and user guide https://

urldefense.proofpoint.com/v2/url?u=https-3A__bitbucket.org_geoplexity_easal_src_

master_CompleteUserGuide.pdf&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=

kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-

Z0oiqNxBsosEhffocKHs&s=AoV5PriolpjfwaF8CxB19gyo8W-Lzbom7Ci4_jTl1VQ&e=). Fig 2

summarizes our overall approach.

Overall, the emphasis of this paper is not the comparison of our interface-scale or capsid-

scale predictions with prevailing methods for each individual scale. Rather, our emphasis is on

the novel conceptual underpinnings of each of our single-scale predictions, and the validation,

using in-vitro site directed mutagenesis data, of our synthesized two-scale predictions. As
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Fig 2 shows, different aspects of our method can be mixed and matched with prevailing meth-

ods to leverage complementary strengths (e.g., for interface-scale hotspot prediction, or exten-

sive in-silico validation).

We are unaware of any previous study that spans the range from multiscale statistical

mechanical predictions of crucial hotspot inter-atomic interactions to validation using site-

directed mutagenesis results. Previous studies use coarse-grained single-scale, or knowledge-

based predictions or use resource-intensive in-silico validation via Computational Alanine

Scanning (CAS) or via fine-grained Molecular Dynamics (MD) (see detailed discussion in in

the related work section). By reliably and rapidly (taking no more than 1.5 hours per interface

on a laptop with Intel Core i5-2500K @ 3.2 Ghz CPU and 8GB of RAM) narrowing down tar-

get interactions, our predictions can inform and reduce the time spent on time-consuming in-

vitro and in-vivo experiments, as well as more computationally intensive in-silico analyses.

Related work

At the interface-scale there are several types of methods for predicting crucial hotspot protein-

protein interactions (PPI). All of these methods (like ours) use as input a shortlist of candidate

hotspot interactions selected using evolutionary sequence or structure preservation. Many of

the methods are based on computational alanine scanning (CAS) surveyed recently in [26].

CAS in turn uses Monte Carlo (MC) or Molecular Dynamics (MD) simulations [27–29] to

compute binding affinity, free energy or entropic influences of the hotspots. Other methods

additionally use a combination of shape specificity, solvent accessibility and prior knowledge-

base of PPI via different types of statistical inference or machine learning, see e.g., [30–42].

While exhaustive CAS methods are sometimes validated by site-directed mutagenesis data,

most of the hotspot predictions are validated by in-silico CAS experiments, e.g., the SKEMPI

database [43]. For example, in a recent paper [44], interface-scale hotspot predictions, com-

bined with specific sequence and structure conservation, have been directly extrapolated to

viral capsid scale hotspot predictions. Validation, however, was through computationally

intensive all-atom MD sampling. In Fig 2, this approach involves the boxes marked by �.

Free-energy landscapes of protein-protein interface assembly are driven by weak inter-

atomic forces and non-covalent bonds and are strongly influenced by the configurational

entropy. However, full-blown computation of configurational entropy is a notoriously difficult

problem. All prevalent methods for configurational entropy computation rely on computing

Fig 2. Flow chart of the methodology in this paper and connections to existing methods. See the introduction and

related work sections.

https://doi.org/10.1371/journal.pcbi.1008357.g002
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the volumes of assembly landscape regions, typically by MC or MD sampling [45–56], which is

prohibitive due to the high dimension of the assembly landscape. High geometric or topologi-

cal complexity of the assembly landscape (disconnectedness, channels of varying effective

dimension etc.), means that sampling techniques like MC or MD can only claim stochasticity

and uniform sampling in the limit, i.e., when they run for sufficiently long or start from suffi-

ciently many initial configurations [57–62]. Some works such as [51, 63, 64] infer the topology

of the configuration space starting from MC and MD trajectories and use topology to guide

dimension reduction. On the other hand, methods based on principal component analyses of

the co-variance matrices from a trajectory of samples in internal coordinates generally overes-

timate the volumes of assembly landscape regions. For these reasons, formal accuracy-effi-

ciency tradeoffs are not provided. In contrast, EASAL uses the novel geometric idea of

convexifying Cayley parameters to represent macrostates, and avoids gradient descent used by

the above-mentioned methods, thereby significantly reducing discarded samples and increas-

ing efficiency. Moreover, the EASAL method is able to approximate the configurational

entropy of small assembly systems using an atlas bar-code, without relying heavily on sam-

pling, thereby ameliorating the curse of dimension, as shown using rigorous complexity analy-

sis and computational experiments [11]; furthermore formal accuracy-efficiency tradeoff

guarantees are provided.

Ab initio methods such as [65], based on geometric algebras are used to give bounds or

approximate configurational entropy without relying on Monte Carlo or Molecular Dynamics

sampling. However, it is not clear how to extend them beyond restricted assembly systems

such as a chain or loop of rigid molecular components, each component consisting of at most

3 atoms, non-covalently bound to their neighboring components at exactly 2 sites. EASAL on

the other hand is applicable more generally to assemblies with larger inputs.

While for small assemblies it is possible to atlas the assembly landscape and compute the

entropy directly, for larger assemblies, such as virus capsid systems (consisting 60 VP mono-

mers for T = 1 and 180 VP monomers for T = 3 viruses), the assembly landscape is too big to

be atlased directly, although all-atom MD simulations of viral capsid life-cycle processes (dock-

ing etc.) post-assembly in the literature, e.g., [66, 67]. Therefore, to tractably deal with the high

dimension of their assembly landscape, larger assemblies are typically treated as being recur-

sively assembled as an interface assembly system, from a small number of stable intermediate

subassemblies [21].

Several statistical mechanical approaches, as surveyed in [68, 69], could be said to combine

configurational entropy and combinatorial entropy into a single scale to analyze kinetics [1,

70–77]. The assembly model [78] based on the local-rules theory [79–82] computes the combi-

natorial entropy considering both the number of different assembly pathways and the kinetics

at each assembly stage. However, such single-scale models rely crucially on the simplified

representation of the VP monomers and their geometric interactions, and feature kinetics,

rates and concentrations of subassemblies prominently in their analyses. The assembly model

in [5] analyzes the efficiency and kinetics of the capsid assembly process. However, they use a

simplified coarse-grained model, which assumes that identical capsomeres (pentamers and

hexamers) assemble together to form the entire capsid. Similarly, the assembly models in [4,

83, 84] use truncated capsomeres as sub-units of assembly, which when assembled give a per-

fect icosahedron.

While our method does not separately model kinetics, it combines interface-scale and cap-

sid-scale analyses of free-energy, configurational and combinatorial entropy, which could

affect kinetics. Furthermore, our method does not rely on a single, capsid-scale analysis with

simplified representations of VP monomers, but uses a multiscale analysis.

PLOS COMPUTATIONAL BIOLOGY Rapid prediction of crucial hotspot interactions in icosahedral viral capsid self-assembly

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008357 October 20, 2020 7 / 32

https://doi.org/10.1371/journal.pcbi.1008357


Several computational studies have been conducted on various aspects of the virus life

cycle. The paper [85] uses rigidity analysis on the fully assembled capsids of icosahedral pro-

teins to identify functional units of the capsid. Assembly pathways have been used to study the

self-assembly of polyhedral systems from identical sub-units; for example, the paper [86] stud-

ies the role of assembly pathways and the degrees of freedom of intermediate subassemblies in

the self-assembly of polyhedra with known isomers. The goal is to manipulate the degrees of

freedom of the intermediate sub-assemblies to increase the concentration of one isomer over

others. In contrast, we use graph and symmetry analysis of assembly pathways of viral capsids

with the goal of identifying interfaces that are crucial to assembly. We further use graph

rigidity to analyze and synthesize the two scales, namely configurational and combinatorial

entropy, of capsid assembly.

Organization. The paper is organized as follows. The materials and methods section

describes the predictions of cruciality of inter-monomeric interactions for interface assembly

and for capsid assembly as a whole. The results section provides the results validating the cru-

ciality prediction of interactions to the capsid, in three viruses, AAV2, MVM, and BMV.

Materials and methods

In the background section on configurational entropy, we provide some background on

the configurational entropy of virus capsid assembly. The section on entropy computation

describes key features of the EASAL methodology (see software https://urldefense.proofpoint.

com/v2/url?u=http-3A__bitbucket.org_geoplexity_easal&d=DwIGaQ&c=sJ6xIWYx-

zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=

RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKHs&s=UvqE7o05ehbIXBe1Sgt920eHlxMg

3vQCOuBWk0QU0l4&e=, video https://cise.ufl.edu/%5C~sitharam/EASALvideo.mpeg, and

user guide https://urldefense.proofpoint.com/v2/url?u=https-3A__bitbucket.org_geoplexity_

easal_src_master_CompleteUserGuide.pdf&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=

kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-

Z0oiqNxBsosEhffocKHs&s=AoV5PriolpjfwaF8CxB19gyo8W-Lzbom7Ci4_jTl1VQ&e=) and

entropy computation with it. In the background section on combinatorial entropy we discuss

the combinatorial entropy in viruses.

In the section on interaction cruciality, we describe the computation of the cruciality of

inter-atomic interactions across VP monomers to interface subassembly and thereby to capsid

assembly. In the section on interface cruciality, we describe a second scale of cruciality of inter-

faces to capsid assembly. In the section on two-scale prediction, we describe statistical models

to combine the interface-scale configurational entropy and the capsid-scale combinatorial

entropy to predict the cruciality of an interaction at the capsid level.

Background: Configurational entropy in virus assembly

The efficacy of viral capsid assembly is largely due to the structure of its equilibrium free

energy landscape. Specifically, the depth and volume of the potential energy basins, including

the basin containing the successfully assembled capsid configuration. The free energy at a

basin depends on the average potential energy and the configurational entropy of the basin.

Of these, the computation of the configurational entropy dominates the computation of free

energy.

Let E(x) be the potential energy function, defined over the assembly landscape, for an

assembly configuration x (the function E is described in detail in the next section). The
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partition function Q is a integral over the energy basin β, given by

Q ¼
Z

b

e

� EðxÞ
kB T dx

where x 2 β is a configuration in the basin, kB is the Boltzmann’s constant and T is the absolute

temperature. The configurational entropy S of the basin is

S ¼ kB lnQþ
hEi
T

where hEi is the the average energy over the basin.

The free energy F of a system with a single energy basin β is given by:

F ¼ hEi � TS

Hence, over a region C of constant energy EC, for example an active constraint region as

defined in EASAL, the entropy is merely a function of the volume VC of the region.

SC ¼ kB lnVC ð1Þ

where VC =
R
C dx.

In a landscape with multiple potential energy basins βi, each of which has a constant energy

Ei, the partition function of each energy basin Qi can be expressed as a weighted sum of the

volumes Vi of the different basins.

Qi ¼

Z

bi

dx � e
� Ei
kBT ¼ Vi � e

� Ei
kBT ð2Þ

The normalized partition function pi is the probability of finding the system in the energy

basin βi:

pi ¼
QiP
iQi

ð3Þ

In the next section we show how to approximate the computation of the partition function

by generating an atlas of the capsid assembly landscape using EASAL and extracting a relevant

bar-code.

Atlasing and entropy computation using EASAL

An interface assembly system (see Fig 1) consists of (a) the VP monomer geometry—atom

coordinates; and for each interface type, (b) short-range Lennard-Jones potentials for a candi-

date set of interactions, i.e., atom pairs (one from each VP monomer) along with Van der

Waals sterics, and (c) small subassembly structures extracted from successfully assembled

capsid.

The potential energy E(x) for an interface assembly configuration x has one Lennard-Jones

term for each atom pair (one from each VP monomer). In EASAL, the short-range Lennard-

Jones pair potentials are geometrized by discretizing into three intervals: large distances at

which Lennard-Jones potentials are no longer relevant, contributing Eh to the potential energy

of the configuration; short distances prohibited by Van der Waals forces; and interval between

the two known as the Lennard-Jones well, contributing El to the potential energy of the config-

uration. We say that a pair of atoms has an active constraint if the distance between their cen-

ters is within the discretized Lennard-Jones well.
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For a landscape with N Lennard-Jones terms, potential energy of a configuration with Na

active constraints is given by:

E ¼ NaEl þ ðN � NaÞEh ¼ NEh � NaðEh � ElÞ ð4Þ

In the expression for partition function in Eq 2, each configuration contributes a weight

e
� E
kT ¼ e

� NEh þ NaðEh � ElÞ
kT ¼ C � ðe

Eh � El
kT Þ

Na

where C ¼ e
� NEh
kT is a constant of the landscape and is canceled out when calculating the nor-

malized partition function, and the weight

wðNaÞ ¼ ðe
Eh � El
kT Þ

Na ð5Þ

With this geometrization of energy, the potential energy basin is completely determined by

its partition into active constraint regions, i.e., regions of the assembly landscape whose config-

urations have a particular set of active constraints and hence, nearly constant potential energy.

This gives a queryable roadmap of the basin, where each region is uniquely labeled by an active
constraint graph, whose edges are the active constraints and whose vertices are the participat-

ing atoms (see Fig 3). Using combinatorial rigidity [87], each active constraint generically

reduces the effective dimension of the region by one. The bottom of each basin is a 0-dimen-

sional region R, with active constraint graph G, containing the minimum energy configura-

tions. The higher energy regions leading to R are exactly those that have active constraint

graphs that are subgraphs of G.

Fig 3. Screenshot of the EASAL software showing all configurations in an active constraint region in the atlas of

the interface assembly system of the two VP monomers shown on top right. The region’s active constraint graph is

shown at bottom right, with red and yellow representing atoms in different VP monomers, the single bold edge

representing a single active constraint or interaction c, and the dashed lines representing the 5 Cayley parameters that

are used to convexify this effectively 5-dimensional region. On the main screen, the red VP monomer is held fixed and

all of the second VP monomer’s relative positions (satisfying the one active constraint c) are shown. The 3 different

colors (cyan, green and purple) of the second VP monomer sweeps represent distinct orientations within the same

active constraint region. (inset) Atlas with changes when an interaction is disabled. Active constraint regions (nodes of

the atlas) of different dimensions are shown in different colors, with red nodes representing regions with 2 active

constraints, or 4 effective dimensions, and each of the successive strata (from right to left) showing regions of one more

active constraint, or one lower energy level or effective dimension. The left most are the 0-dimensional or lowest

energy regions, each of which is the bottom of a potential energy basin, with all its ancestor regions participating in the

basin. The black nodes are the active constraint regions that disappear from the atlas due to the removal of a candidate

inter-atomic interaction. See the section on entropy computation and the section on interaction cruciality.

https://doi.org/10.1371/journal.pcbi.1008357.g003
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One of EASAL’s key features is the generation of roadmaps for all basins, called an atlas,
without relying heavily on sampling. This is achieved by using a recursive method that

searches the interior of higher energy regions for boundary regions with exactly one new active

constraint. Searching for such boundary regions (which are effectively of one fewer dimen-

sion) has a higher chance of success than directly looking for the lowest energy regions, which

are the lowest dimensional active constraint regions.

Staying within active constraint regions is achieved by a second key feature of EASAL: con-
vexifying active constraint regions using customized, distance-based or Cayley parametriza-

tion, avoids gradient-descent to enforce active constraints, and results in high efficiency search

with minimal sampling and reduced repeated or discarded samples. In addition, it is straight-

forward to compute the inverse map from the Cayley parameter values to their corresponding

finitely many Cartesian configurations. Altogether, EASAL obtains comparable coverage with

100 to 1000 times fewer samples than prevailing methods [11–13]. Cayley convexification

leverages geometric features that are unique to assembly (as opposed to protein folding).

Together, the active constraint regions, their effective dimensions, and their volume approxi-

mations obtained through Cayley parameterization, provide an abbreviated atlas bar-code for

the basin structure of the assembly landscape.

Background: Combinatorial entropy in virus assembly

Combinatorial entropy of capsid assembly captures the number of possible ways in which a

successful assembly configuration can be recursively decomposed into subassemblies down to

the rigid motifs in the VP monomers [21, 23–25]. In reverse, larger assemblies are treated as

being recursively assembled as interface assembly systems. Since the VP monomers that are far

away from the interface tend to have little impact on the assembly, we can simplify the partici-

pants of each interface assembly system to VP monomers or dimers near the interface.

As shown in Fig 4, there is typically more than one way of treating a subassembly as

an interface assembly. When there are multiple interfaces to choose from, we consider

the free energy and reaction rates of each of the options and pick the best interface for the

subassembly.

With this setup, we define a labeled binary tree, called an assembly tree, to describe how a

series of subassemblies leads to a full capsid assembly. In an assembly tree, the root node is a

successfully assembled viral capsid, and the leaves are VP monomers. Every internal node of

the tree is a subassembly, labeled by its best interface (as defined earlier). Fig 4, shows an

assembly tree for a T = 3 viral capsid. Given the free energy and reaction rate of each subassem-

bly and the structure of the assembly tree, we can define its likelihood under the assumption of

successful assembly.

An assembly pathway is a collection of assembly trees that satisfy some prediction-related

criteria [23–25]. For example, all assembly trees that are in one equivalence class under icosa-

hedral symmetries can be grouped as a single assembly pathway. As another example, an

assembly pathway can be defined as the collection of such symmetry classes that do not use

specific types of interfaces. The papers [23–25] enumerate assembly pathways and compute

their likelihood for such criteria.

Interaction cruciality at interface-scale

We use the atlas generated by EASAL to compute two quantities for each interface assembly

landscape: (a) the partition function for minimal energy regions (basin bottoms), and (b) the

normalized partition function for the potential energy basin corresponding to the known
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(successful) interface subassembly configuration called the true realization. These two parame-

ters serve as an atlas bar-code to determine the cruciality of interactions at the interface-scale.

As mentioned earlier, the bottom of each basin is a 0-dimensional region R, with active con-

straint graph G, containing the minimum energy configurations. The higher energy regions

leading to R are exactly those that have active constraint graphs that are subgraphs of G. Fig 5

illustrates, using EASAL screenshots, the basin structure of two VP monomers assembling

across a hexamer interface in BMV.

Two assembly configurations are considered distinct if and only if their similarity distance

(the 2-norm distance between their point coordinate vectors) is at least ε. The number of dis-

tinct Cartesian configurations in a region then becomes an approximate measure of the size or

volume of the region (configurational entropy associated with that region).

For any interface assembly system s, since the energy of all 0-dimensional configurations is

the same, we approximate the sum of the Qi’s in Eq (2), with the number of distinct configura-

tions in the union—denoted by Rs
0
—of all the 0-dimensional active constraint regions. For-

mally, the partition function for all minimal energy regions of the atlas of a given interface

assembly system s is denote it by

nsminima ≔ jRs
0
j ð6Þ

The approximation to the normalized partition function of Eq (5) is the ratio of the number

of distinct 0-dimensional configurations in the basin of the true configuration (we call this set

Rs
true) to nsminima. This approximates the probability that the assembly process ends in the true

Fig 4. An assembly tree of a T = 3 viral capsid. The root node represents a successfully assembled viral capsid. Each

internal node represents an interface assembly system that contains a stable subassembly configuration that is part of

the known, successfully assembled capsid configuration. Children of a node are the participating multimers for the

node’s interface assembly system. The leaf nodes represent the VP monomers. To the right of the nodes are their

candidate stable subassembly configurations taken from the T = 3 BMV X-ray capsid structure. At internal nodes, a

choice is made between multiple candidate interface assembly systems. On the left we highlight an internal node with 2

available choices for hexamer-hexamer interfaces, of which one is chosen: the inset shows the choices—a single VP

dimer interface highlighted in red; and two VP dimer interfaces, highlighted in yellow. See the background section on

combinatorial entropy.

https://doi.org/10.1371/journal.pcbi.1008357.g004
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configuration. To improve this approximation we weight each configuration x inversely to its

proximity to a higher energy region A by the weight w(Na(x)) of Eq (5), where Na(x) is now

the number of active constraints in the configurations in A.

Thus the normalized partition function for the potential energy basin corresponding to a

successful interface assembly configuration is computed using Eq (3) as follows:

nscapsid ≔

P
x2Rstrue

wðNaðxÞÞ
P

x2Rs
0

wðNaðxÞÞ
ð7Þ

Finally, these quantities are used to define our measure of cruciality of a given input inter-
atomic interaction r for a given interface assembly system s to result in a given true configura-

tion. First we define n
r;s
minima and n

r;s
capsid as the same quantities in Eqs (6) and (7), respectively,

obtained by restricting to a portion of the atlas, i.e., those regions where r is not an edge in the

Fig 5. Prediction using cruciality bar-codes described in the section on interaction cruciality for two VP

monomers assembling across a hexamer interface in BMV. Each node in the atlas roadmap in the middle represents

an active constraint region (macrostate) in EASAL. Example active constraint graphs are shown at far left: the yellow

and red circles represent atoms participating in active constraints (interactions) in the two VP monomers. At each

successive level, the number of active constraints increases by 1 and the energy level and effective dimension decrease

by 1. The atlas nodes in the bottom-most row represent the 0-dimensional, lowest energy, stable assembly

configurations; example configurations shown below them. Their total number (for a given interface s, on removal of a

given interaction or constraint r) gives n
r;s
minima in the computation of the cruciality bar-code. Each such configuration

together with nearby higher-energy configurations in all of their ancestor nodes constitute one potential energy basin.

Their sum, across all basins, weighted by energy level gives the denominator of n
r;s
capsid. The rightmost of the stable

assembly configurations at the bottom corresponds to the true realization. Above it, the 3 solid configurations and the

transparent sweeps around them show the closest configurations to the true realization in successively higher energy

regions in its basin (one region each for 3 energy levels shown). To the far left, these sweeps are shown as orange

highlights in the corresponding Cayley parameterized regions. The colorful basin plot shows the total weighted

configurations in the true basin, stratified by dimension or energy level. Their sum is the numerator of n
r;s
capsid.

https://doi.org/10.1371/journal.pcbi.1008357.g005
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active constraint graph (see Figs 3 and 5). Now, the cruciality bar-code is defined as:

m
r;s
minima ≔

n
r;s
minima

nsminima
; m

r;s
capsid ≔

n
r;s
capsid

nscapsid

 !

ð8Þ

Accounting for multimers assembling at an interface. In a capsid assembly tree, the sub-

assembly at an interface could involve either a VP monomer pair or a multimer pair. Although

the pair potentials at the interface are specified between the VP monomers closest to the inter-

face, each VP monomer could be part of a multimer whose atoms influence the interface

assembly landscape through Van der Waals sterics. We have found that for larger multimers

the steric contribution from the VP monomers far from the interface is negligible and that it is

sufficient to consider those interface assembly systems involving certain VP monomer-dimer

pairs selected as follows.

The dual graph of a virus capsid is obtained from the icosahedrally symmetric capsid poly-
hedron, with one face per VP monomer, where interfaces are represented by adjacent faces

(see Fig 6). There is one vertex of the dual graph corresponding to each face of the capsid poly-

hedron and an edge between two vertices if the corresponding faces share an interface.

For the interface represented by the edge ab in the dual graph, we consider each triangle

abc, and generate 3 atlases with the following assembly systems s: (i) with VP monomers a and

b, (ii) VP dimer ac and VP monomer b, (iii) with VP dimer bc and VP monomer a. For the

three T = 1 interface types, this gives 9 assembly systems, and for the seven T = 3 interface

types, this gives 31 assembly systems.

Now, m
r;s
minima and m

r;s
capsid are computed using the atlases for the 3 assembly systems s for the

same interface ab, and then averaged to get cumulative values. These are denoted mrminima and

mrcapsid and are used to measure the cruciality of the interaction r to the interface ab.

Interface cruciality at capsid-scale

As mentioned in background section on combinatorial entropy, given the free energy and

reaction rate of each subassembly of all the nodes and the structure of the assembly tree, we

can define its likelihood under the assumption of successful assembly and we can group assem-

bly trees into assembly pathways based on some prediction-related criteria [23–25]. To sim-

plify our model, we abbreviate the notion of the assembly pathway, to a connectivity pathway,

which only requires a test of connectivity for the internal nodes of the assembly tree.

Fig 6. The dual graphs of T = 1 and T = 3 capsid polyhedra. Faces of the capsid polyhedra are shown with black

edges and the colored edges give the dual graph. See the section on interaction cruciality.

https://doi.org/10.1371/journal.pcbi.1008357.g006
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Informally, a connectivity pathway corresponds directly to a minimal set of interfaces that a

successfully assembled capsid must contain to even be a connected structure. It consists of the

icosahedral symmetry classes of assembly trees that use only this minimal set of interfaces,

weighted by the number of trees.

Given the dual graph G = (V, E), of the capsid polyhedron (defined in the section on inter-

action cruciality), E can be partitioned into sets Eι, one for each interface type ι (for T = 1

capsid polyhedra, there are 3 interface types and for T = 3 capsid polyhedra, there are 7 inter-

face types as shown in Fig 6). A set I of interface types is a connectivity pathway if the set of

edges EI ≔
[

i2I

Ei, is a connected subgraph of G and for each ι 2 I EI\Eι is not connected.

Given the small number of interface types for a capsid polyhedron of any T number, we can

find all connectivity pathways using a simple graph algorithm. Fig 7, shows 3 sets I of interface

types, for a T = 1 capsid polyhedron that correspond to connectivity pathways. Fig 8 shows 2

sets I of interface types for a T = 3 capsid polyhedron, one of which is a connectivity pathway

and one that is not. The cruciality of an interface type is the number of connectivity pathways

containing that interface type.

Two-scale prediction: Interaction cruciality at capsid-scale

We use two different types of two-scale predictions. The first prediction assumes that all inter-

face types are equally important and is based only on the cruciality of interactions to interface

types. For an interface of type ι, the probability Pr
i

of breaking the interface when dropping an

interaction r is measured by the the cruciality bar-code: ðmrminima; m
r
capsidÞ, as described in the sec-

tion on interaction cruciality. Results validating these predictions are shown in the section on

the output of cruciality prediction.

Fig 7. T = 1 capsid polyhedra showing all 3 possible connectivity pathways. See the section on interface cruciality.

https://doi.org/10.1371/journal.pcbi.1008357.g007
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For the second two-scale prediction, we combine the interaction cruciality at the interface-

scale and the interface cruciality at the capsid-scale using a statistical model as follows.

A simple linear model is used to learn the relative weights aι, bι, and cι for

Pr
i
¼ sðai � mrminima þ bi � mrcapsid þ ciÞ

where σ is the standard sigmoid or threshold function used in neural networks. The training

data are obtained from site-directed mutagenesis results found in literature [14–20], that mea-

sure the effect of removing an interaction r on capsid assembly.

In addition, we learn the relative weights of the two scales through a scalar parameter

wι 2 [0, 1] which represents the cruciality of an interface type ι to any connectivity pathway.

The probability of breaking a connectivity pathway when an interaction is dropped is approxi-

mated by the equation:

Cr
p ¼ 1 �

Y

i2p

ð1 � wi � P
r
i
Þ ð9Þ

For example, when wι = 0, the corresponding term in Eq (9) vanishes, and breaking any

interface of type ι has no effect on disrupting assembly. Conversely, when all wι are equal, the

probability of disruption depends only on Pr
i
’s, namely the cruciality of the interactions to

interfaces and the number of connectivity paths in which an interface participates.

Putting these together, we get the cruciality of an interaction r for capsid assembly given by

HðrÞ ¼
X

p

Cr
p:

In this model, the parameters aι, bι, cι, and wι are all unknown. We determine their value

using simple machine learning. For a given partial order over the interactions T = {(ri, rj):ri
has bigger impact on the capsid assembly than rj}, the cruciality function H should satisfy

H(ri)>H(rj). Towards this end, we design a loss function:

L ¼
X

ðri ;rjÞ2T

sðHðriÞ � HðrjÞÞ

where σ is the standard sigmoid or threshold function used in neural networks. When the

cruciality function H satisfies the partial order, the loss function will be minimal. So the

Fig 8. T = 3 capsid polyhedra. (a) Only the 5 fold and 3 fold interfaces are shown. This does not correspond to a

connectivity pathway. (b) 5 fold, 3 fold and 5 fold-3 fold 2 interfaces are shown. This corresponds to a connectivity

pathway. See the section on interface cruciality.

https://doi.org/10.1371/journal.pcbi.1008357.g008
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parameters can be determined by evaluating

arg min
ai ;bi ;ci ;wi

L

Results validating these predictions are shown in the section on validating the second two-

scale prediction.

Results

The ab-initio computational predictions were blind to the results of the directed mutagenesis

biophysical assays, noting that the biophysical assays for AAV2 were carried out by the Mavis

Agbandje-Mckenna’s lab [20] contemporaneously with development of our computational

model and prediction. The section on experimental setup describes how the the in-vitro muta-

genesis data were collected and processed from sources in literature. The section on input and

output describes the input and output of the computational model used for prediction. The

section on output of cruciality prediction describes the validation of the interaction cruciality

prediction assuming that all interface types are equally important and is hence effectively

based only on the interaction cruciality for interface assembly. The section on validating the

second two-scale prediction describes the validation of the two-scale prediction which com-

bines the interaction cruciality at the interface-scale and the interface cruciality at the capsid-

scale using a statistical model.

Experimental setup

We validate our prediction for AAV2 (T = 1), MVM (T = 1), and BMV (T = 3) viral capsids,

using site-directed mutagenesis and biophysical assays to characterize the variants generated.

AAV2, MVM, and BMV residues were selected based on their location in the 2-fold, 3-fold,

and 5-fold symmetry-related interface of the viral capsid, and alanine scanning of all charged

residues in the VP. The mutagenesis results used for validation were found in literature [14–

20]. We note that the biophysical assays for AAV2 were carried out by the Mavis Agbandje-

Mckenna’s lab [20] contemporaneously with the development of our computational model

and prediction.

The residues were classified by the yield of successfully assembled capsids compared to wild

type after the mutation: a yield of 100% indicates that mutation has no effect on the assembly

and the residue is marked non-disrupt; a yield of 0% indicates the assembly is completely dis-

rupted, and the residue is marked as disrupt [14–19, 88–90].

All the in-vitro mutagenesis results used in this manuscript are detailed in Tables 1, 2 and 3,

along with the sources of the data. Fig 9 shows these residues on a cartoon of their respective

VP monomers.

Input and output of computational prediction model

For the interface-scale prediction, we started from simplified potential energies designed from

known X-ray structure of the VP monomers of each of the viruses and all their interfaces [91–

93] We treated the participating VP monomers or dimers as single rigid motifs in the interface

assembly systems.

The potential energy includes the hard-sphere potential between all atom pairs (one from

each participating VP monomer or dimer) with the Van der Waals radius set to 1.2 Å. We

used Lennard-Jones pair potentials, setting the energy difference of Eq (4) to Eh − El = 0.997kJ/
Mol [94], and the weight in Eq (5) to wðNaÞ � 1:5Na . An implicit solvent was assumed.
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Interface assembly landscapes were atlased using EASAL using the X-ray 3D structures of

the participating VP monomers and dimers and the above-described pair potentials as input.

Altogether 9 such atlases were obtained for different interface assembly systems for each of the

T = 1 interface types and 31 such atlases for the T = 3 interface types, as described in the section

on interaction cruciality. Each atlas computation takes no more than a couple of hours on a

laptop with Intel Core i5-2500K @ 3.2 Ghz CPU and 8GB of RAM. Computations of cruciality

required modification and analysis of each atlas for each interaction (approximately 20 per

interface). Furthermore, we took into account the simultaneous disabling of all interactions

involving a residue, as occurs in site-directed mutagenesis experiments. These analyses took

microseconds.

Table 2. Mutagesis data used in this manuscript for MVM along with the sources of the data.

Residue Mutagenesis result Source

55 Disrupt [17]

129 Disrupt [17]

153 Disrupt [17]

168 Non-Disrupt [17]

261 Non-Disrupt [20]

302 Disrupt [19]

507 Non-Disrupt [20]

540 Non-Disrupt [20]

543 Disrupt [17]

546 Disrupt [17]

567 Disrupt [19]

https://doi.org/10.1371/journal.pcbi.1008357.t002

Table 1. Mutagesis data used in this manuscript for AAV2 along with the sources of the data.

Residue Mutagenesis result Source

227 Disrupt [14]

231 Disrupt [14]

232 Disrupt [14]

292 Disrupt [14]

294 Disrupt [20]

297 Disrupt [20]

298 Disrupt [20]

334 Non-Disrupt [16]

337 Non-Disrupt [16]

382 Non-Disrupt [18]

389 Non-Disrupt [20]

397 Disrupt [20]

402 Disrupt [20]

661 Non-Disrupt [20]

692 Disrupt [20]

694 Disrupt [20]

696 Disrupt [14]

704 Non-Disrupt [18]

706 Non-Disrupt [18]

https://doi.org/10.1371/journal.pcbi.1008357.t001
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In all cases, the interface-scale predictions were performed blindly without knowledge of

in-vitro site directed mutagenesis results concerning assembly-driving interactions. In particu-

lar, for AAV2, mutagenesis results were only obtained subsequent to the interface-scale predic-

tions. For MVM and BMV, the in-vitro site directed mutagenesis results were also gathered,

subsequent to the interface-scale prediction, from multiple sources [14–19, 88–90]. For the

training phase of the second two-scale prediction, less than half of the mutagenesis results

were used, picking pairs of interactions marked disrupt and non-disrupt. Both training and

learning phases took microseconds for each virus.

Table 3. Mutagesis data used in this manuscript for BMV along with the sources of the data.

Residue Mutagenesis result Source

51 Disrupt [15]

180 Partial Disrupt [15]

181 Disrupt [15]

182 Disrupt [15]

183 Partial Disrupt [15]

184 Disrupt [15]

185 Non-Disrupt [15]

188 Partial Disrupt [15]

189 Partial Disrupt [15]

https://doi.org/10.1371/journal.pcbi.1008357.t003

Fig 9. AAV2 [91], MVM [92], and BMV [93] monomers showing the list of residues that were analyzed in this

manuscript.

https://doi.org/10.1371/journal.pcbi.1008357.g009
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Justifying input assumptions. There are two aspects of the Lennard-Jones potential that

could possibly affect our prediction: (a) the energy difference Eh − El and (b) the width we set

for the discretized Lennard-Jones well. Our prediction method relies significantly more on the

width of the discretized Lennard-Jones well rather than the actual energy difference Eh − El.
The number of atom-pairs within the well essentially determines the quantity Na which is the

deciding quantity in the computation of the normalized partition function affecting the cruci-

ality prediction. However, since we know that the given capsid assembly configuration is feasi-

ble, the minimum pairwise distance (which in all cases turned out to be Van der Waals) forces

the lower bound of the width of the discretized Lennard-Jones well. On the other hand, since

the given capsid assembly configuration is a local energy minimum with (at least) 6 atom-pairs

within the Lennard-Jones well, we can measure a natural upper bound value for the width of

the discretized Lennard-Jones well (a larger value would permit a energy-neutral motion

within the basin to a configuration with more atom-pairs in the Lennard-Jones well, and

hence lower-energy, contradicting the minimality of the given capsid assembly configuration).

Although, theoretically, the potential energy should include the Lennard-Jones potential of

all atom pairs, only the set of atom pairs that are close enough to interact and are conserved in

related viruses have noticeable contribution to the configurational entropy. For the different

types of interfaces (3 types for T = 1 and 7 types for T = 3), we determined such pairs of inter-

acting residues (10-20 pairs for each interface), called the candidate interactions of each

interface.

Output of interface-based cruciality prediction. As discussed in the section on interac-

tion cruciality, for each interface assembly system s, we use the unweighted versions of the cru-

ciality bar-code ðm
r;s
minima; m

r;s
capsidÞ to predict the cruciality of an interaction to an interface. Fig

10(a) shows the plot of of the these two parameters for the interface assembly system s being

the 5-fold interface with VP monomers for BMV. Each row shows m
r;s
minima, m

r;s
capsid and their ratio

in two BMV 5-fold interface assembly systems (shown at the bottom right) where the interac-

tion r (which is the row label) is removed. The row labeled ‘None’ is the wild type assembly sys-

tem where no interaction has been removed. The wild type system has been used to normalize

the values of all the other rows. The rows are sorted according to the largest value of mrcapsid.

Fig 10(b) plots the same parameters, but instead of considering VP monomers assembling at

the 5-fold interface, we consider the assembly of a VP monomer and a VP dimer (as shown to

the bottom right). As explained in the section on interaction cruciality, sterics play a larger role

Fig 10. Cruciality bar-codes. Each row shows mrminima, m
r
capsid and their ratio in two BMV 5-fold interface assembly

systems (VP monomer-monomer and VP monomer-dimer shown at bottom right) where the interaction r—listed as

the row label—is removed. The row labeled ‘None’ is the “wild-type” assembly system where no interaction has been

removed, whose νminima and νcapsid values have been normalized. The rows are sorted according to the largest value of

μcapsid. See the section on output of cruciality prediction.

https://doi.org/10.1371/journal.pcbi.1008357.g010
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during the assembly of VP dimers than during the assembly of VP monomers. Note that certain

interactions that had a lower value of μcapsid in Fig 10(a) have a higher value in Fig 10(b). Since

these plots merely illustrate our predictions without comparing them to mutagenesis data,

the interested reader is referred to the following link https://urldefense.proofpoint.com/v2/url?

u=https-3A__geoplexity.bitbucket.io_virusSuppInfo.html&d=DwIGaQ&c=sJ6xIWYx-

zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=

RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKHs&s=GJyeBJcg4t2Sc8FaAu4t7P-RY_2U88_

KxKF54dzWcPY&e=. for the complete set of such data, for all the interface assembly systems

for all the viruses.

Validating the first two-scale prediction

Fig 11 shows the cruciality bar-code of residues for those interface types (6 out of 13 interface

types across the 3 viruses) for which there were sufficient in-vitro site directed mutagenesis

results for validation and for which we were able to obtain cruciality predictions (see the dis-

cussion section). As explained in the section on interaction cruciality, the cruciality bar-code

for an interface type is a cumulative value obtained from cruciality bar-codes computed for all

the assembly systems at that interface.

Our interface-scale predictions were completely blind to the results of the directed muta-

genesis biophysical assays, noting that the biophysical assays for AAV2 were carried out by the

Mavis Agbandje-Mckenna’s lab [20] contemporaneously with development of our computa-

tional model and prediction. Although generalizing an interface-scale prediction to the capsid

level assumes the necessity of that interface for capsid assembly, our interface-scale predictions

were validated successfully using mutagenesis data towards capsid assembly disruption.

However, since this interface-scale prediction was part of a second prediction (see the section

on interface cruciality) using statistical learning, that training data have been removed from

Fig 11.

The points in Fig 11 represent candidate hotspot residues. The coordinate values at which

they have been placed, are our computational cruciality predictions. The blue and red coloring

of the points indicate residues found through mutagenesis to disrupt and not disrupt assembly

respectively. The green circles are residues on which no mutagenesis was performed. The blue

convex hull delineates the residues that are shown to disrupt, the red convex hull delineates

the residues that are shown to not disrupt. Yellow delineates outliers. The sub-figures show

that the predicted cruciality values of the residues that were later shown to disrupt assembly

are linearly separated from the predicted cruciality values of the residues that do not disrupt

assembly. I.e., the prediction convex hull formed by assembly-disrupting residues does not

significantly intersect the convex hull formed by the non-assembly-disrupting residues. Con-
versely, if the correlation between prediction and results were poor, there would not be such a lin-
ear separation (or separation of convex hulls).

For a reader interested in independently running the EASAL software to reproduce our

predictions, or in using other sources of experimental data to check our predictions, we refer

to the link https://urldefense.proofpoint.com/v2/url?u=https-3A__geoplexity.bitbucket.io_

virusSuppInfo.html&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGev

TkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKH

s&s=GJyeBJcg4t2Sc8FaAu4t7P-RY_2U88_KxKF54dzWcPY&e=, containing a complete set of

such cruciality bar-code plots, individually for all the interface assembly systems, as well as the

cumulative values for all the interface types, for the 3 viruses.

To compensate for the paucity of in-vitro site directed mutagenesis results, and to mitigate

possible bias introduced when picking the candidate interactions, we added 2 more candidate
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interactions to each interface. These interactions are unlikely to be crucial, since they were not

conserved across similar viruses. Atlases were regenerated for each interface assembly system,

with these additional interactions and the cruciality bar-codes were computed for all interac-

tions using the new atlases. The results for the two T = 1 viruses are shown as the last 4 figures

of Fig 11. Overall the added residues (red convex hull) fall outside the blue convex hull delin-

eating the residues shown to disrupt assembly.

Validating the second two-scale prediction

Fig 12 shows, for AAV2, MVM and BMV, residues with their cruciality at the capsid-scale,

calculated using the statistical model described in the section on interface cruciality. The

Fig 11. Validation of direct interface-scale cruciality prediction: 2D plot of cruciality bar-codes for each interface.

The blue cross marks and red squares are residues found, through mutagenesis, to disrupt and non-disrupt assembly.

The green circles are residues on which no mutagenesis was performed. The convex hulls are computational

predictions from our method. The blue convex hull delineates the residues that are shown to disrupt, the red convex

hull delineates the residues that are shown to not disrupt the assembly process, yellow convex hull delineates the

outliers. In (g)-(j), the pink diamonds are the extra interactions that were added to test for biases arising due to the

paucity of mutagenesis data. The black line shows a linear separation of the crucial and non-crucial residues. See the

section on validating the first two-scale prediction.

https://doi.org/10.1371/journal.pcbi.1008357.g011
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correlation between our second two-scale prediction and in vitro site directed mutagenesis

data is illustrated by the correlation between the prediction ranking of cruciality (top to bot-

tom) and the mutagenesis data shown (using in-vitro mutagenesis and biophysical assays)

extent of assembly disruption (color blue to red). More precisely, the residues listed on the top

of the table are computationally predicted through our method to be more crucial, and the

ones listed lower are predicted as less crucial. On the other hand, residues shown (using in-

vitro mutagenesis and biophysical assays) to strongly disrupt assembly are blue and those that

do not disrupt are red, with partial disruption indicated by the spectrum of colors in between.

Conversely, if the correlation between prediction and mutagenesis data were poor, the blues and
reds would have been more interleaved.

Fig 13 gives the full list of two-scale cruciality predictions using our statistical model for the

three viruses. As before, the residues listed on the top of the table are computationally pre-

dicted through our method to be more crucial, and the ones listed lower are predicted as less

crucial. The color codes have the same significance as explained in the previous paragraph. In

addition, white indicates residues that do not yet have mutagenesis results for validation at the

time of this writing.

As can be seen from Fig 13, the amount of available biophysical assays data for BMV was

quite small when compared to the other two viruses. This paucity leads to the BMV results not

showing the strong correlation seen in the results of the other two viruses. Despite this, it still

correctly predict the cruciality for most of the residues for which in-vitro mutagenesis results

are available.

Discussion

Our prediction of crucial hotspot inter-atomic interactions between VP monomers for the

assembly of icosahedral viral capsids in 3 viruses, starts from a candidate list of such interac-

tions gleaned through sequence and structure conservation in evolutionarily similar viruses.

This data was provided by Dr. Mavis Agbandje-Mckenna’s lab. The crucial interaction predic-

tion at the interface-scale is purely using statistical mechanics: it is not knowledge-based. We

use an atlas (computed using the EASAL methodology) to approximate the changes in the par-

tition function of the capsid. The prediction of interface cruciality at the capsid-scale uses an

approximation of combinatorial entropy. One of our two types of predictions uses statistical

learning to relatively weight the predictions at the two individual scales. site-directed mutagen-

esis and biophysical assays results validate both types of predictions.

Fig 12. Validation of two-scale cruciality prediction using our statistical model for (a) AAV2, (b) MVM, and (c)

BMV. The residues listed higher in the table are computationally predicted through our method as more crucial and

the ones lower in the table are predicted as less crucial. Experimental mutagenesis results are used to mark all the

residues by color. Blue indicates that the residue disrupts assembly while red indicates that it does not. See the section

on validating the second two-scale prediction.

https://doi.org/10.1371/journal.pcbi.1008357.g012
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Kinetics have clearly been shown to affect many aspects of viral capsid assembly. While our

method does not separately model kinetics, it combines interface-scale and capsid-scale analy-

ses of free-energy and configurational entropy, which could affect kinetics. Our predictions do

strongly rely on thermodynamics, specifically free energy. We believe that our results show

that geometry and consequently configurational entropy may already be determinative in

answering the narrow question of which inter-atomic interactions are more or less crucial to

assembly, at least for the viral capsids studied here.

Besides a planned comparison of our interface-scale crucial interaction prediction method

with a host of prevailing hotspot PPI prediction methods [26] on the SKEMPI database [43],

there are several observations we made during the development of the method that may lead

to future work.

Additional interactions: The candidate interactions that serve as the input to EASAL are

hand picked and pre-screened. Some interactions are excluded because they are not likely to

be crucial based some prior experience and some are excluded since no mutation on that resi-

due is possible for now. This could potentially introduce bias in that the picked interaction are

already likely more crucial than the others. In addition, since other non-crucial interactions

also contribute to the potential energy, ignoring them will change the energy landscape. Using

an extended set of candidate interactions as input would improve accuracy of prediction. Vali-

dation however would require more extensive mutagenesis results.

Fig 13. Full list of two-scale cruciality predictions using our statistical model for (a) AAV2, (b) MVM, and (c)

BMV. The residues listed higher in the table are computationally predicted through our method as more crucial and

the ones lower in the table are predicted as less crucial. Experimental mutagenesis results are used to mark all the

residues by color. Blue indicates that the residue disrupts assembly while red indicates that it does not. White indicates

residues that do not yet have mutagenesis results for validation at the time of this writing. See the section on validating

the second two-scale prediction.

https://doi.org/10.1371/journal.pcbi.1008357.g013
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Rigidity of the 3 and 5 fold interfaces: As explained in the background section on configu-

rational entropy, we decompose the viral capsids into interface bi-assembly systems involving

two assembling units. However, for the 3 and 5 fold interfaces, simultaneous tri-assembly and

pent-assembly should be considered. Better prediction could be obtained using newer variants

of EASAL that handle more than two input assembling units [11].

Omitted interfaces: Our results in the section on output of interface-based cruciality predic-

tion do not show the predictions of interaction cruciality for all interface types. Some of these

omitted interfaces did not have mutagenesis results for validation, and have been included

in the following link https://urldefense.proofpoint.com/v2/url?u=https-3A__geoplexity.

bitbucket.io_virusSuppInfo.html&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=

kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-

Z0oiqNxBsosEhffocKHs&s=GJyeBJcg4t2Sc8FaAu4t7P-RY_2U88_KxKF54dzWcPY&e=.

However, there are some interface that are not shown in the above link either, since we were

unable to get any useful predictions for these interfaces. These include the 3-fold interfaces for

T=1, T=3 virus and some 2-fold interfaces for T=3.

For 3-fold interfaces in AAV2, we could not obtain useful cruciality bar-codes or rankings

due to the heavy influence of sterics caused by interdigitation. In addition, mutagenesis of the

3-fold interface interactions did not disrupt assembly. We do not believe that the removal of

any of the 3-fold interactions causes assembly disruption. Most of the residues in the 3-fold

interface of BMV cross-link to the RNA and hence have no effect on assembly. We conjecture

that in these cases, the assembly proceeds primarily by 2-fold and 5-fold interface interactions.

Trimer interdigitation contributes to post-assembly stability of the capsid.

BMV results: In the second two-scale prediction, the results for BMV do not exhibit the

strong correlation seen in the results of AAV2 and MVM. While both AAV2 and MVM form

empty capsid followed by the packing of the ssDNA genome, BMV instead co-assembles the

capsid with the ssRNA genome, which plays an essential role in coordinating the assembly

[95]. While empty BMV capsids can assemble in-vitro, the BMV wild-type has selected capsid

proteins that co-assemble with the genome. Since our methodology only considers VP-mono-

mers for crucial hotspot prediction, and doesn’t take into account co-assembly, the BMV

results may be skewed. However, we beleive that the bigger issue impacting the BMV results is

the paucity of mutagenesis data available for the training model. Ranking of residues which

currently do no have mutagenesis data for validation, are made available in the following link

https://urldefense.proofpoint.com/v2/url?u=https-3A__geoplexity.bitbucket.io_virusSupp

Info.html&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGevTkYaLh

Te8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKHs&s=

GJyeBJcg4t2Sc8FaAu4t7P-RY_2U88_KxKF54dzWcPY&e=.

Raw prediction data: The raw prediction data for cruciality bar-codes, and ranking of resi-

dues which currently do no have mutagenesis data for validation, are available at https://

urldefense.proofpoint.com/v2/url?u=https-3A__geoplexity.bitbucket.io_virusSuppInfo.

html&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGevTkYaLh

Te8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKHs&s=

GJyeBJcg4t2Sc8FaAu4t7P-RY_2U88_KxKF54dzWcPY&e=.

The above-mentioned results, as well as all the results in the paper can be reproduced using

the opensource EASAL software, curated by ACM TOMS in the collected algorithms of the

ACM [10]. Software freely available on Bitbucket at https://urldefense.proofpoint.com/v2/url?

u=http-3A__bitbucket.org_geoplexity_easal&d=DwIGaQ&c=sJ6xIWYx-zLMB3EPkvcn

Vg&r=kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=RJ2zjPeU5q0XB4tHk

gFcey-Z0oiqNxBsosEhffocKHs&s=UvqE7o05ehbIXBe1Sgt920eHlxMg3vQCOuBWk0QU0l4

&e=. A user guide (https://bitbucket.org/geoplexity/easal/src/master/CompleteUserGuide.pdf)
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and a video illustrating the features of the software https://cise.ufl.edu/%5C~sitharam/

EASALvideo.mpeg are also provided.

Conclusion

In this paper we predict crucial inter-atomic interactions between VP monomers for the

assembly of icosahedral viral capsids in 3 viruses, AAV2, MVM, and BMV. The crucial interac-

tion prediction at the interface-scale uses an atlas generated with minimal sampling using the

EASAL geometric methodology that relies on convexifying landscape regions using Cayley

parameters. From the atlas, a cruciality bar-code approximates the changes in the partition

function of the capsid assembly landscape when an interaction is removed. At the capsid-scale,

an approximation of combinatorial entropy is used to predict the cruciality of interface types

at the capsid scale. We use 2 two-scale methods to predict interface cruciality at the capsid

scale. The first method is entirely blind to known site-directed mutagenesis and biophysical

assay results, and assumes that each interface type is equally important for capsid assembly

and only uses interaction cruciality at the interface scale to predict interaction cruciality at the

capsid scale. The second method takes the variation among interface types into account, using

statistical learning to relatively weight the predictions at the two scales. Site-directed mutagen-

esis towards assembly disruption are used to validate our predictions. The method, being com-

putationally lightweight, rapid (100 to 1000 times faster than prevailing methods [11–13]),

rigorous, and reliable, could be used to narrow down the field of candidate assembly-driving

interactions for in-vitro experiments, or even computationally intensive in-silico experiments.

For reproducibility, the reader can access and run the EASAL source code [12] with the help of

descriptive papers [10, 11], user guide [96] and video tutorial [97], as well as all of our raw pre-

diction data for cruciality bar-codes at URL https://urldefense.proofpoint.com/v2/url?u=

https-3A__geoplexity.bitbucket.io_virusSuppInfo.html&d=DwIGaQ&c=sJ6xIWYx-

zLMB3EPkvcnVg&r=kGsKDXNcJq1WRGevTkYaLhTe8S0Zrq5pLMzpMb45Vy0&m=

RJ2zjPeU5q0XB4tHkgFcey-Z0oiqNxBsosEhffocKHs&s=GJyeBJcg4t2Sc8FaAu4t7P-RY_

2U88_KxKF54dzWcPY&e=. This data includes EASAL predictions that could not be validated

with the mutagenesis data we had access to, but could be checked against future mutagenesis

experiments. At the interface-scale, the method is general enough to apply to any assembly sys-

tem, in particular those that occur at various stages of the viral life-cycle, or during the action

of tests and drugs. As Fig 2 shows, our single-scale methods can be mixed and matched piece-

meal with prevailing methods to leverage complementary strengths (e.g., interface-scale hot-

spot predictions, or sequence and structure conservation, or extensive in-silico validation). We

are unaware of any previous study that spans the range from multiscale statistical mechanical

predictions of crucial hotspot inter-atomic interactions to validation using site-directed muta-

genesis results, as opposed to Computational Alanine Scanning (CAS) and other computation-

ally intensive Molecular Dynamics (MD) in-silico validations (explained in detail in the

related work section).
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