Diagnostic performance of ¹⁸F-DCFPyL PET vs. ⁶⁸Ga-PSMA PET/CT in patients with suspected prostate cancer: A systemic review and meta-analysis

ZHIBING JIANG, JINJING GUO, LIANG HU, SIYU YANG, BIN MENG and QUN TANG

Department of Clinical Medicine, Medical College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China

Received October 26, 2023; Accepted February 13, 2024

DOI: 10.3892/ol.2024.14321

Abstract. In this systematic review and meta-analysis, the diagnostic performance of ⁶⁸Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/CT was compared with that of ¹⁸F-DCFPvL PET for patients with suspected prostate cancer (PCa). Up to September 2023, the PubMed, Embase and Web of Science databases were thoroughly searched for relevant papers. Studies examining the diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT in patients with suspected PCa were included in the present review. The Quality Assessment of Diagnostic Performance Studies-2 tool was used to rate the diagnostic performance of each study. The diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT for primary PCa was examined by 13 studies included, comprising 1,178 patients. The pooled sensitivity and specificity of ¹⁸F-DCFPyL PET were 0.92 (95% CI, 0.85-0.96) and 0.59 (95% CI, 0.08-0.96), respectively. For ⁶⁸Ga-PSMA PET/CT, the pooled sensitivity and specificity were 0.96 (95% CI, 0.88-0.99) and 0.71 (95% CI, 0.57-0.82), respectively. ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT both had an area under the receiver operating characteristic curve of 0.92 (95% CI, 0.89-0.94). In addition, the Fagan nomogram revealed that the post-test probabilities for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT could rise to 69 and 77% when the pre-test probability was set at 50%. In conclusion, a comparable diagnostic performance for patients with suspected PCa was determined for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT. However, it is crucial to keep in mind that the findings of the present meta-analysis come

Correspondence to: Professor Qun Tang or Mr. Bin Meng, Department of Clinical Medicine, Medical College, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu, Changsha, Hunan 410208, P.R. China E-mail: 003713@hnucm.edu.cn E-mail: 1223491619@qq.com

Key words: ¹⁸F-DCFPyL PSMA PET, ⁶⁸Ga-PSMA PET/CT, prostate cancer, diagnostic performance, meta-analysis

from investigations with modest sample sizes. Therefore, more extensive research is required to obtain more solid data.

Introduction

The second most frequent disease globally and the fifth most common cause of cancer-related mortality in men is prostate cancer (PCa) (1). Digital rectal examination and serum prostate-specific antigen (PSA) testing, followed by transrectal ultrasonography (TRUS)-guided biopsy, have historically been used to identify PCa (2). Despite being the preferred approach for PCa diagnosis, TRUS-guided biopsy has several inherent drawbacks. A TRUS-guided biopsy may ignore abnormalities in the anterior and apical prostate, producing false-negative findings in addition to being an invasive treatment with a chance of potentially life-threatening infections (3). As a result, it is critical to investigate alternative strategies that may decrease the number of needless prostate biopsies or perhaps completely replace puncture biopsy to diagnose PCa (4,5).

A non-invasive diagnostic called multiparametric MRI (mpMRI) has great potential for identifying and staging PCa (6). The Prostate Imaging Reporting and Data System version 2.1 (PI-RADS v2.1), the most recent version of the structured reporting system for mpMRI, aims to improve inter-reader agreement and streamline the evaluation of prostate mpMRI using PI-RADS criteria (7). Despite these developments, mpMRI also has numerous defects, such as false-positive results (8) and new histopathological patterns (9), and alternative non-invasive diagnostic modalities still need to be researched and used.

A type II transmembrane glycoprotein called prostate-specific membrane antigen (PSMA) is overexpressed in almost all cases of PCa (10-12). However, the clinical use of the nuclide ⁶⁸Ga has been constrained by the cost, its short half-life and high electron energy during synthesis. Specifically, producing ⁶⁸Ga is costly due to the need for specialized equipment. Its short half-life requires rapid use, challenging for centers far from production sites. The high electron energy needed for creating ⁶⁸Ga compounds adds to the complexity and cost, limiting its wider clinical use (13). The most frequently utilized positron nuclide in clinical practice has been ¹⁸F-DCFPyL, based on a glutamate-urea-lysine structure. In contrast to ⁶⁸Ga-PSMA-11, ¹⁸F-DCFPyL has excellent affinity, advantageous *in vivo* pharmacokinetics, good solubility and the possibility for a better rate of minor lesion detection. As a result, it performs better and is more appropriate for broader usage in clinical practice (14-16).

Only a few studies have evaluated the use of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT in the diagnosis of patients with suspected PCa; most of this research involved patients with biopsy-proven PCa. In the present study, a meta-analysis was performed using previously published data to acquire complete comprehension of the diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT in evaluating patients with suspected PCa.

Methods

Search strategy. The guidelines for preferred reporting items for systematic reviews and meta-analyses (PRISMA) (17) were followed when conducting this study. The protocol for this study was registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols database on February 13, 2024 (INPLASY202420059) and is available in full on inplasy (https://doi.org/10.37766/inplasy2024.2.0059).

Using the PubMed (http://pubmed.ncbi.nlm.nih. gov/), Embase (www.embase.com) and Web of Science (https://www.webofscience.com/) databases, a comprehensive search for literature up until September 2023 was conducted. 'Positron-Emission Tomography' OR 'PET' OR 'Positron Emission Tomography Imaging' OR 'PET Scan' OR 'PET Imaging' AND 'Prostate Specific Membrane Antigen' OR 'PSMA' AND 'Prostate Neoplasms' OR 'Prostatic Cancers' OR 'Prostatic Cancer' OR 'Prostatic Neoplasm' OR 'Prostate Neoplasm' OR 'Prostate tumor' were the key words used (Table SI). Two researchers (JG and LH) independently integrated computer-generated search results with manual searches to ensure diversity and prevent omitting pertinent literature. In addition, the list of references included in the study was screened to find any other articles that were left out in the initial search.

Inclusion and exclusion criteria. Studies were considered eligible for inclusion if they met all of the following criteria: i) They involved untreated patients with suspected PCa, which included individuals whose prostates had abnormalities found during an abnormal PSA test, an abnormal MRI scan or a digital rectal examination; ii) diagnostic imaging was performed using an ¹⁸F-DCFPyL PET scan or a ⁶⁸Ga-PSMA PET/CT scan; iii) the reference standard used for comparison was histological biopsy and histopathology; and iv) the number of subjects was ≥ 10 .

The following exclusion criteria were applied: i) Duplicate articles; ii) abstracts, editorial comments, letters, case reports, reviews or meta-analyses; iii) titles and abstracts that were clearly irrelevant; iv) insufficient data to perform calculations; and v) articles not written in English.

Two researchers (JG and LH) meticulously assessed the titles and abstracts of the retrieved papers whilst applying the above-mentioned inclusion and exclusion criteria. Following this initial screening procedure, the full-text versions of the remaining articles were carefully examined to determine whether they were appropriate for inclusion in the ensuing stage. The researchers reached a consensus in a discussion with a third author (ZJ) to resolve any disagreements during the evaluation.

Quality assessment and data extraction. Using the Quality Assessment of Diagnostic Performance Studies (QUADAS-2) method, two researchers (SY and BM) independently assessed the quality of the included articles (18). The following areas of each study were evaluated: Patient selection, the index test, the reference standard and the flow and timing of the study. These domains were assessed for risk of bias and given a high, low or unclear applicability rating. Discussions with a third reviewer (ZJ) helped to settle any differences that came up.

For each study, two researchers independently extracted the data. General information, characteristics of the literature, demographic information regarding the patients, technical information and outcomes related to the total number of patients, as well as true positive (TP), false positive (FP), true negative (TN) and false negative (FN) counts, were all included in the data. These values were computed using test findings for sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) in cases where they weren't expressly provided. The sensitivity was calculated as the ratio of TP to the sum of TP and FN [sensitivity=TP/(TP + FN)], while specificity was calculated as the ratio of TN to the sum of TN and FP [specificity=TN/(TN + FP)]. The PPV was derived as the ratio of TP to the sum of TP and FP [PPV=TP/(TP + FP)], and the NPV as the ratio of TN to the sum of TN and FN [NPV=TN/(TN + FN)]. These formulas allowed for a consistent and objective assessment of the diagnostic performance across the included studies.

Statistical analysis. The best outcome was chosen for analysis when the included publications provided a range of diagnostic performances based on cut-off thresholds for classifying positive and negative scans. Stata 16.0 (StataCorp LP) and Meta-Disc 1.4 (http://www.hrc.es/investigacion/metadisc_ en.htm) were used to examine the data of a four-grid table. As the bivariate random-effects model can simultaneously adapt to the inherent correlation between the sensitivity and specificity of different studies, it also explains the heterogeneity between studies (19). Using a bivariate random random-effects model, the pooled sensitivity and specificity for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT were reported as estimates with 95% confidence intervals (CIs). In addition, because the summary receiver operating characteristic (SROC) model facilitates the interpretation of diagnostic test accuracy in the presence of heterogeneity and varying threshold effects, this model was used to generate the SROC curve and determine the area under the curve (AUC) (19,20). The difference of the pooled AUC between ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT was analyzed using Z test statistics (21,22).

Using the I² statistic, the heterogeneity between the pooled studies was evaluated. Meta-regression analysis was used to explore potential causes of heterogeneity when there was significant heterogeneity (I²>50%) (23). The funnel plot test developed by Deek was used to evaluate publication bias. Stata 16.0 and Meta-Disc 1.4 were used for all statistical calculations. Statistical significance was defined as P<0.05.

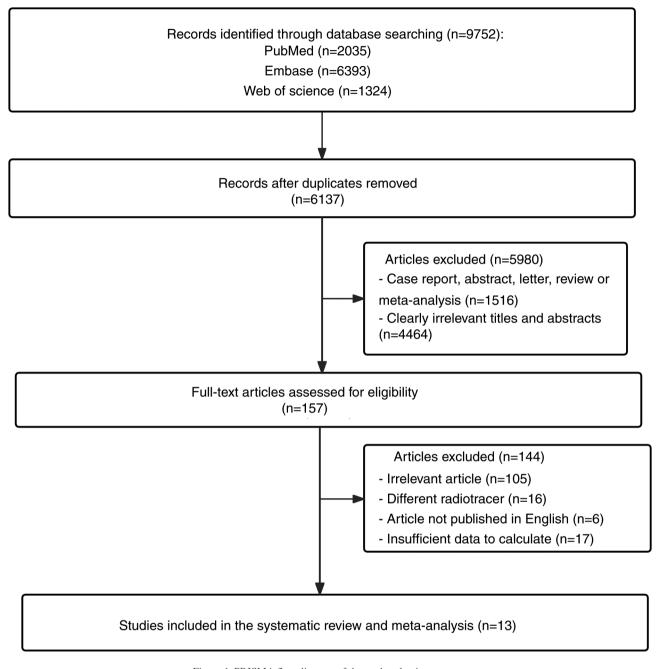


Figure 1. PRISMA flow diagram of the study selection process.

Results

Literature search and study selection. A total of 9,752 entries were found in the original search and 3,615 duplicates were removed, leaving 6,137 articles for further analysis. After examining the titles and abstracts, 5,980 items were deemed unrelated and discarded. The 105 unrelated studies, 6 articles not published in English, 16 articles using various radiotracers and 17 articles not providing sufficient data for the computation were all eliminated after further study of the remaining articles. Finally, 13 studies (24-36) assessing the diagnostic performance of ¹⁸F-DCFPyL PET or ⁶⁸Ga-PSMA PET/CT were considered eligible for meta-analysis. The study selection procedure is depicted by a PRISMA flow diagram in Fig. 1.

Study description and quality assessment. There were 1,178 patients with suspected PCa in the 13 qualifying studies. The mean of the median and mean ages of the patients in the evaluable articles was 67.4 years (range, 43-90 years). The study and patient characteristics are listed in Table I and the technical details of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT are provided in Table II.

Fig. 2 shows the results of the risk of bias assessment for these 13 studies, which was performed using the QUADAS-2 technique. The included studies' quality was deemed to be adequate.

Quantitative synthesis. The analysis comprised a total of 13 trials with 1,178 patients. The pooled sensitivity and specificity of ¹⁸F-DCFPyL PET for suspected PCa were 0.92 (95% CI,

Table I. Study and patient characteristics of the included articles.

Number of patientsPSA level, ng/mlAge, yearsGleason score55 8.8 ± 5.3 65.1 ± 7.2 NA56 20.4 Mean: 68 $\leq 7:33.9\%$; Unknown:420Median: 11.1Mean: 68.5 $\leq 7:53.3\%$; 10.7% 420Median: 11.1Mean: 68.5 $\leq 7:53.3\%$; 10.7% 5218.3\pm16.0Mean: 68.5 $\leq 7:53.3\%$; 20.4 ± 33.5 5314.3\pm11.6Mean: 65.5 $\leq 7.64.7\%$; (44.80) 5314.3\pm11.6Mean: 65.5 $\leq 7.64.7\%$; (44.80) 54Median: 7.24Median: 67.2 $\leq 7.60\%$; $28:35.3\%$; $(1.31-9.9)$ 5811.56 67.0 ± 8.1 $\leq 7.60\%$; (37.73) 5815.44.70; $(51.19.5)$ (57.73) $\geq 8.73\%$; (76.8) 5815.46.77; $(3.1-19.5)$ (57.73) $\geq 8.73\%$; (74.81) 5815.48.977 65.5381 $\geq 7.92\%$; $28:31\%$ 9318.54.8.977 $65.53.81$ $\geq 7.92\%$; $\geq 8.71\%$ 93NA 68.21 ± 9.37 $\leq 7.29\%$; $\geq 8.71\%$ 94A 68.21 ± 9.37 $\leq 7.29\%$; $\geq 8.71\%$ 94A 68.21 ± 9.37 $\leq 7.92\%$; $\geq 8.71\%$ 95NA 68.21 ± 9.37 $\leq 7.92\%$; $\geq 8.71\%$ 9610.86-21\pm9.37 $\leq 7.92\%$; $\geq 8.71\%$ 97A 68.21 ± 9.37 $\leq 7.92\%$; $\geq 8.71\%$ 98A 68.21 ± 9.37 $\leq 7.92\%$; $\geq 8.71\%$ 99A 68.21 ± 9.37 $\leq 7.29\%$; $\geq 8.71\%$ 91A 66.21 ± 9			Study	Study characteristics	cs		Patient characteristics	racteristics		
Messer <i>et al.</i> 2021 "F-DCFPyLPET Canada Pro PB 55 8.8.5.3 65.1.4.7.2 NA (25) Zhang <i>et al.</i> 2022 "F-DCFPyLPET China Retro PB 56 20.4 Mean: 68 2:3.3.9%; (26) Zhang <i>et al.</i> 2022 "F-DCFPyLPET China Retro PB 50 0.41.3.3.1 Mean: 68 5:3.3.3%; (23) Bodar <i>et al.</i> 2020 "F-DCFPyLPET Netherlands Pro LB 420 Mediar: 11.1 Mean: 68.5 5:7.3.3%; (23) Lin <i>et al.</i> 2020 "F-DCFPyLPET Anstralia Retro PB 52 18.3.41.6.0 Mean: 67 57.6.47.%; (23) Derahithssa <i>et al.</i> "F-DCFPyLPET Anstralia Retro PB 52 14.3.41.16 Mean: 67 57.6.47.%; (23) Derahithssa <i>et al.</i> "Ga.PSMA PET/CT India Pro PB 50.4.3.5.6 (74) 56.6%; (23) Delogiet <i>et al.</i> 2019 "Ga.PSMA PET/CT India Pro PB	Author(s), year	Modality	Country	Study design	Analysis	Number of patients	PSA level, ng/ml	Age, years	Gleason score	(Refs.)
Zhang et al. 2022 ⁿ F.DCFPJL.PET Chia Retro PB 56 20.4 Mean: 68 s.7: 33.9%; (24) Bolar et al. 2020 ⁿ F-DCFPJL.PET Netherlands Pro LB 420 Median: 11.1 Mean: 68 s.7: 33.9%; (24) Bolar et al. 2020 ⁿ F-DCFPyL.PET Chia Retro PB 52 18.3.416.0 Mean: 66 s.7: 33.4%; (23) Panthithasan et al. ⁿ F-DCFPyL.PET Chia Retro PB 52 18.3.416.0 Mean: 67 s.7: 33.4%; (23) 2022 ⁿ F-DCFPyL.PET Chia Retro PB 52 14.3.411.6 Mean: 67 s.7: 33.4%; (23) 2021 ⁿ F-DCFPyL.PET India Pro PB 25 0.4.33.35 67.0.4%; (23) (30) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31) (31)	Metser et al, 2021	¹⁸ F-DCFPyL PET	Canada	Pro	PB	55	8.8±5.3	65.1±7.2	NA	(25)
	Zhang et al, 2022	¹⁸ F-DCFPyL PET	China	Retro	PB	56	20.4	Mean: 68	≤7: 33.9%;	(26)
							(1.9-1000)	(43-83)	≥8: 55.3%;	
Bodar et al., 2020 ¹ F-DCFPyL PET Netherlands Pro LB 420 Median: 11.1 Mean: 65 $\frac{27, 33, 37}{8, 61, 67}$ (24) Lin et al., 2021 ¹ F-DCFPyL PET China Retro PB 52 18, 3\pm 16.0 Mean: 67 $\frac{27}{3, 64, 76}$ (28) Parahlithasan et al. ¹ F-DCFPyL PET China Retro PB 55 18, 3\pm 11.6 Mean: 67 $\frac{27}{3, 64, 76}$ (28) Parahlithasan et al. ¹ F-DCFPyL PET Anstralia Retro PB 55 20,4±33 67,045 (28) (28) 2017 ⁰ Ca-PSMA PET/CT Ialay Pro PB 45 Median: 72,4 Median: 64 NA (30) 2017 ⁰ Ca-PSMA PET/CT Ialay Pro PB 45 Median: 72,4 Median: 64 (33) (34) (30) (31,53) (31,53) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) (31,56) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Unknown:</td><td></td></td<>									Unknown:	
Determination of all of al	Bodar <i>et al</i> 2020	¹⁸ F_DCFPvI PFT	Netherlands	Pro	IB	420	Median [,] 11-1	Mean: 68.5	<7 53 30%	(74)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			commin no i			07			≥8,46.7%	(17)
Paratitubasan et al., 2022 "F=DCFPyL PET Australia Retro PB 65 $14,3\pm11.6$ (48.79) >8, 61.6% (28) 2022 2022 Hoffmann et al., 6Ga-PSMA PET/CT Germany Retro PB 25 $20,4\pm33.5$ $67,0\pm37.6$ $29,61.7\%$ $29,61.7\%$ $29,61.7\%$ $29,61.7\%$ $29,61.7\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,61.6\%$ $29,75\%$	Liu <i>et al</i> , 2021	¹⁸ F-DCFPyL PET	China	Retro	PB	52	18.3 ± 16.0	Mean: 65	≤7, 38.4%;	(27)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								(48-79)	≥8, 61.6%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parathithasan et al,	¹⁸ F-DCFPyL PET	Australia	Retro	PB	65	14.3 ± 11.6	Mean: 67	≤7, 64.7%;	(28)
Hoffmann et al., $^{\circ}$ Ga-PSMA PET/CT Germany Retro PB 25 20.4±33.5 67.0±8.1 $\leq 7:60\%$; (29) 20017 20017 2001 28:76%; 201 28:40% 28:06%; 29 20.4±33.5 67.0±8.1 $\leq 7:60\%$; 29 20:05%; <	2022							(44-80)	≥8, 35.3%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hoffmann et al,	68Ga-PSMA PET/CT	Germany	Retro	PB	25	20.4 ± 33.5	67.0±8.1	≤7: 60%;	(29)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2017								≥8: 40%	
Sasikumar et al. 66 Ga-PSMA PET/CTIndiaProPB6611.5667 (48-90) $\leq 7:72\%$;(31)2018 66 Ga-PSMA PET/CTIndiaProPB15Mean: 9.9Mean: 66.2 $\leq 7:53\%$;(32)2018 66 Ga-PSMA PET/CTIndiaProPB15(5.1-19.5)(57-73) $\leq 7:53\%$;(32)2018 66 Ga-PSMA PET/CTIndiaProPB5815.4670 (55-85) $\leq 7:53\%$;(33)2010 66 Ga-PSMA PET/CTChinaRetroPB3118 (5.484-977)65 (53-81)NA 40% 210 66 Ga-PSMA PET/CTItalyProPB3118 (5.484-977)65 (53-81)NA(34)2020 66 Ga-PSMA PET/CTItalyProPB3118 (5.484-977)65 (53-81)NA(34)2020 66 Ga-PSMA PET/CTItalyProPB3118 (5.484-977)65 (53-81)NA(34)2020 66 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)7.4.7 (43-81) $\leq 7:29\%$;(35)2130 et al. 2020 66 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)7.4.7 (43-81) $\leq 7:29\%$;(35)2130 et al. 2021 66 Ga-PSMA PET/CTItalyProPB93NA $\leq 8:21\pm9.37$ $\leq 7:29\%$;(35)2130 et al. 2021 66 Ga-PSMA PET/CTChinaProPB193NA $\leq 8:21\pm9.37$ $\leq $	Lopci et al, 2018	68Ga-PSMA PET/CT	Italy	Pro	PB	45	Median: 7.24	Median: 64	NA	(30)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sasikumar <i>et al</i> ,	68Ga-PSMA PET/CT	India	Pro	PB	99	11.56	67 (48-90)	≤7: 72%;	(31)
Kumar et al, 2019%Ga-PSMA PET/CTIndiaProPB15Mean: 9.9Mean: 66.2 ≤ 7 : 53%;(32)Zhang et al, 2018%Ga-PSMA PET/CTChinaRetroPB5815.4670 (55-85) ≤ 7 : 69%;(33)Lin et al, 2020%Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77) $65 (53-81)$ NA(34)Lopci et al, 2020%Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77) $65 (53-81)$ NA(34)Lopci et al, 2020%Ga-PSMA PET/CTItalyProPB3118 (5.48-49.77) $65 (53-81)$ NA(34)Lopci et al, 2020%Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) $\leq 7: 92\%$;(35)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(35)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA $\leq 8: 21\pm9.37$ $\leq 7: 29\%$;(36)Jiao et al, 2021%Ga-PSMA PET/CTChinaProPB193NA <td>2018</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(0.85 - 4156)</td> <td></td> <td>≥8: 28%</td> <td></td>	2018						(0.85 - 4156)		≥8: 28%	
	Kumar et al, 2019	68Ga-PSMA PET/CT	India	Pro	PB	15	Mean: 9.9	Mean: 66.2	≤7: 53%;	(32)
Zhang et al, 2018 68 Ga-PSMA PET/CTChinaRetroPB5815.4670 (55-85) 27 : 69%;(33)Liu et al, 2020 68 Ga-PSMA PET/CTChinaProPB3118 (5.48.49.77)28: 31%NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB3118 (5.48.49.77)65 (53-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) 27 : 92%;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA68.21±9.37 27 : 29%;(35)Values are expressed as the median (range) or mean ± standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA							(5.1 - 19.5)	(57-73)	≥8: 7 <i>%</i> ;	
A0%Zhang et al, 2018 66 Ga-PSMA PET/CTChinaRetroPB5815.4670 (55-85) $\leq 7: 69\%$; (33)Liu et al, 2020 68 Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77)65 (53-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB3118 (5.48-49.77)65 (53-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) $\leq 7: 92\%$; (35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA68.21\pm9.37 $\leq 7: 29\%$; (35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA68.21\pm9.37 $\leq 7: 29\%$; (35)Values are expressed as the median (range) or mean ± standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA									Unknown:	
Zhang et al, 2018 68 Ga-PSMA PET/CTChinaRetroPB5815.4670 (55-85) $\leq 7: 69\%$; (33)Liu et al, 2020 68 Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77)65 (53-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) $\leq 7: 92\%$; (35)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB193NA (34) Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB193NA (34) Lopci et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (35) Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (35) Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (32) $\leq 7: 29\%$; (36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (32) L49.37 $\leq 7: 29\%$; (36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (32) L49.37 $\leq 7: 29\%$; (36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (32) L49.37 $\leq 7: 29\%$; (36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA (32) L49.37 $\leq 7: 29\%$; (36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB									40%	
Liu et al, 2020 68 Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77) 65 (5.3-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) $\leq 7: 92\%$;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTItalyProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 $\leq 7: 29\%$;(36)Jabet expressed as the median (range) or mean \pm standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA	Zhang <i>et al</i> , 2018	68Ga-PSMA PET/CT	China	Retro	PB	58	15.46	70 (55-85)	≤7: 69%;	(33)
Liu et al, 2020 68 Ga-PSMA PET/CTChinaProPB3118 (5.48-49.77)65 (53-81)NA(34)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) ≤ 7 : 92%;(35)Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) ≤ 7 : 92%;(35)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA 68.21 ± 9.37 ≤ 7 : 29%;(36)Values are expressed as the median (range) or mean \pm standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(1.31 - 49.07)</td> <td></td> <td>≥8: 31%</td> <td></td>							(1.31 - 49.07)		≥8: 31%	
Lopci et al, 2020 68 Ga-PSMA PET/CTItalyProPB977.6 (1.86-32.6)74.7 (43-81) $\leq 7: 92\%$;(35) $\geq 8: 8\%$ Jiao et al, 2021 68 Ga-PSMA PET/CTChinaProPB193NA68.21\pm9.37 $\leq 7: 29\%$;(36) $\geq 8: 71\%$ Values are expressed as the median (range) or mean \pm standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA	Liu <i>et al</i> , 2020	68Ga-PSMA PET/CT	China	Pro	PB	31	18 (5.48-49.77)	65 (53-81)	NA	(34)
Jiao <i>et al</i> , 2021 ⁶⁸ Ga-PSMA PET/CT China Pro PB 193 NA $68.21\pm9.37 \le 7729\%$; (36) $\ge 8.71\%$ $\ge 8.71\%$	Lopci et al, 2020	68Ga-PSMA PET/CT	Italy	Pro	PB	<i>L</i> 6	7.6 (1.86-32.6)	74.7 (43-81)	≤7: 92%;	(35)
Jiao <i>et al</i> , 2021 ⁶⁸ Ga-PSMA PET/CT China Pro PB 193 NA $68.21\pm9.37 \le 71\%$ (36) $\ge 8:71\%$									≥8: 8%	
$\geq 8:71\%$ Values are expressed as the median (range) or mean \pm standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA	Jiao <i>et al</i> , 2021	68Ga-PSMA PET/CT	China	Pro	PB	193	NA	68.21 ± 9.37	≤7: 29%;	(36)
Values are expressed as the median (range) or mean ± standard deviation unless otherwise indicated. NA, not available; Pro, prospective; Retro, retrospective; PB, patient-based; LB, lesion-based; PSMA									≥8: 71%	
prostate-specific membrane antigen: PA, prostate-specific antigen: PEL position emission fomography.	Values are expressed a prostate-specific memb	s the median (range) or mean ± rane antigen: PSA, prostate-spe	standard deviation un scific antigen: PET, r	iless otherwise	; indicated. NA, on tomography.	not available; Pro, J	prospective; Retro, retro	spective; PB, patient	-based; LB, lesion-bas	ed; PSMA

JIANG et al: ¹⁸F-DCFPYL PET VS. ⁶⁸GA-PSMA PET/CT FOR DETECTING PCA

studies.
of included
aspects c
Technical
Table II.

Author(s), year	Scanner modality	Ligand dose	Image analysis	ЧĻ	FР	ЧN	NT	Total	(Refs.)
Metser et al, 2021	Siemens Healthcare: Biograph mMR; PET/MRI, Siemens Healthineers	329.5 MBq/kg	Quantitative	39	12	3		55	(25)
Zhang <i>et al</i> , 2022	Siemens Medical Solutions: PET/CT, Siemens Healthineers	4.44 MBq/kg	Quantitative	45	0	5	9	56	(26)
Bodar <i>et al</i> , 2020	Philips Healthcare [®] : PET/CT system	313 MBq/kg	Quantitative	103	6	19	289	420	(24)
Liu <i>et al</i> , 2022	Siemens Healthcare: Biograph 64 PET/CT Biograph mMR; PET/MRI, Siemens Healthineers	NA	Quantitative	40	0	\mathfrak{S}	L	52	(27)
Parathithasan <i>et al</i> , 2022	General Electric Medical Systems: PET/CT	250 MBq/kg	Quantitative	59	4	7	0	65	(28)
Hoffmann <i>et al</i> , 2017	Siemens Healthcare: Biograph 64, PET/CT scanner, Siemens Healthineers	176 MBq/kg	Quantitative	21	0	0	0	25	(29)
Lopci et al, 2018	Siemens Healthcare: Biograph LSO 6 scanner; PET/CT, Siemens Healthineers	Range: 250-400 MBq/kg	Quantitative	11	14	0	20	45	(30)
Sasikumar <i>et al</i> , 2018	NA	100 MBq/kg	Quantitative	50	9	0	10	66	(31)
Kumar <i>et al</i> , 2019	Siemens Healthcare: PET/CT, Siemens Healthineers	Range: 1.8-2.2 MBq/kg	Quantitative	8	7	1	4	15	(32)
Zhang <i>et al</i> , 2018	Siemens Medical Solutions: Biograph 40 system, PET/CT, Siemens Healthineers	206.09 MBq/kg	Quantitative	33	4	\mathcal{O}	18	58	(33)
Liu <i>et al</i> , 2020 Lopci <i>et al</i> , 2020	Philips Medical Systems: PET/CT Siemens Medical Solutions:	206.09 MBq/kg Range:	Quantitative	14	4	1	12	31	(34)
	Biograph LSO 6 scanner, PET/CT, Siemens Healthineers	250-400 MBq/kg	Quantitative	23	41	0	33	76	(35)
Jiao <i>et al</i> , 2021	Siemens Medical Solutions: Biograph 40 system, PET/CT, Siemens Healthineers	NA	Quantitative	126	7	22	48	193	(36)

ONCOLOGY LETTERS 27: 188, 2024

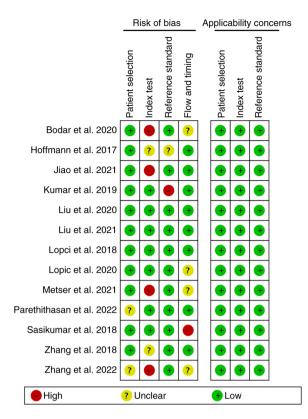


Figure 2. Graph of risk of bias and applicability of all eligible studies based on the Quality Assessment of Diagnostic Performance Studies-2 tool.

0.85-0.96) and 0.59 (95% CI, 0.08-0.96), respectively. The pooled sensitivity and specificity for 68 Ga-PSMA PET/CT were, respectively, 0.96 (95% CI, 0.88-0.99) and 0.71 (95% CI, 0.57-0.82) (Fig. 3).

In the SROC analysis, the AUC for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT were calculated to be 0.92 (95% CI, 0.89-0.94) and 0.92 (95% CI, 0.89-0.94) and there was no statistically significant difference according to Z-test statistics (Z<0.001, P<0.999) (Fig. 4).

Furthermore, the Fagan nomogram in Fig. 5 showed that the post-test probabilities for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT could rise to 69 and 77%, respectively, when the pre-test probability was 50%.

Heterogeneity analysis. The I² values for ¹⁸F-DCFPyL PET's pooled sensitivity and specificity for primary cancer were 49.29 and 97.07%, respectively. The corresponding I² values for ⁶⁸Ga-PSMA PET/CT's heterogeneity were 50.49 and 79.57% (Fig. 3). It was attempted to identify the cause of heterogeneity by using meta-regression analysis. It demonstrated that diversities in geographical region and study design were two potential causes of heterogeneity for these two imaging agents (Tables III and IV).

In addition, Deek's funnel plot showed no evidence of publishing bias for both imaging modalities, with P-values of 0.17 and 0.90 (Fig. 6).

Discussion

Currently, there is a scarcity of studies investigating the application of $^{18}\mbox{F-DCFPyL}$ PET and $^{68}\mbox{Ga-PSMA}$ PET/CT in the

diagnosis of suspected PCa. The present study was the first meta-analysis on the comparative efficacy of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT in the detection of PCa in patients with a suspicion of the disease. The purpose of the present study was to quantitatively assess and evaluate the diagnostic accuracy of two different diagnostic methods for patients with suspected PCa. Based on the results, ¹⁸F-DCFPyL PET demonstrated a pooled sensitivity, specificity and AUC of 0.92, 0.59 and 0.92, respectively. ⁶⁸Ga-PSMA PET/CT exhibited a pooled sensitivity, specificity and AUC of 0.92, respectively. This suggests that both ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT have the potential to serve as 'rule-out' tests for patients suspected of having PCa based on clinical or biochemical evidence. Consequently, these tests can help avoid unnecessary biopsies.

Numerous PCa cases progress slowly and typically do not produce severe symptoms, thereby not necessitating immediate active treatment or intervention (37,38). Therefore, there is a strong emphasis on detecting clinically relevant PCa at an early stage. Clinically relevant PCa often refers to tumors with a Gleason score of 3+4 or higher (39). The present findings indicate that both ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT had a high level of accuracy in detecting clinically significant tumors. The pooled sensitivity for ¹⁸F-DCFPyL PET was 0.92, while that for ⁶⁸Ga-PSMA PET/CT was 0.96. These findings have the potential to impact the categorization of risk and improve the decision-making process for treating such patients (40).

In the present meta-analysis, a comprehensive evaluation of the efficacy of two imaging methods in identifying suspected PCa was performed. The AUC for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT in identifying suspected PCa was 0.92 (95% CI: 0.89-0.94) for both. Although there was no statistical difference by Z-test statistics (Z<0.001, P<0.999), ⁶⁸Ga-PSMA PET/CT was indicated to have higher sensitivity, specificity and post-test probability compared to ¹⁸F-DCFPyL PET. The present results indicated that ¹⁸F-DCFPyL and ⁶⁸Ga-PSMA PET/CT have similar diagnostic accuracy in detecting suspected PCa. Van Kalmthout et al (41) discovered in their earlier research that the diagnostic performance of both ¹⁸F-DCFPyL and ⁶⁸Ga-PSMA PET/CT in the setting of biochemical recurrence of PCa post-prostatectomy is comparable. Perhaps the similarity in biodistribution patterns of ¹⁸F-DCFPyL and ⁶⁸Ga-PSMA in normal tissues is due to their comparable characteristics (42). In addition, it has been indicated that ⁶⁸Ga-PSMA PET/CT remains highly valuable due to its accessibility and cost-effectiveness (43), although ¹⁸F-DCFPyL PET may offer slight advantages in terms of imaging clarity and patient safety in certain contexts (44). However, the finding was derived from a limited sample size and thus, the reliability of the results may be limited.

In the present study, papers that assessed the diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT for suspected PCa were analyzed using various thresholds for detecting positive and negative scans. Of note, a consensus on the precise diagnostic threshold choice for different imaging techniques has yet to be obtained. Studies have used measurements such as the standardized uptake value threshold and the choline/creatinine ratio. The reported sensitivity and specificity of the imaging technique may change depending

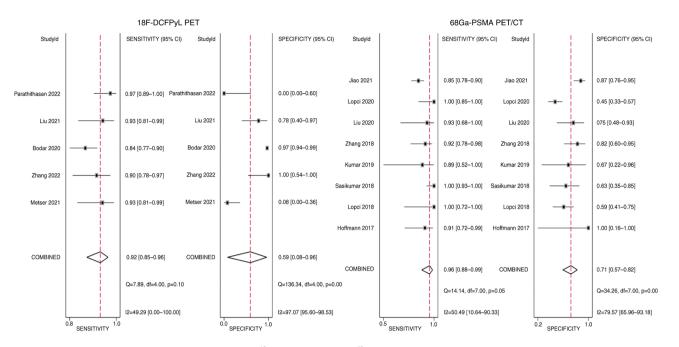


Figure 3. Forest plot showing the sensitivity and specificity of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT for primary prostate cancer. PSMA, prostate-specific membrane antigen; PET, positron emission tomography; df, degrees of freedom.

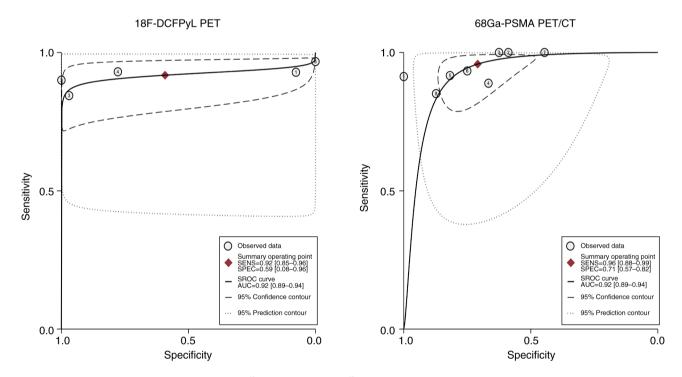


Figure 4. SROC curve of the diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT for detecting prostate cancer. SROC, summary receiver operating characteristic; PSMA, prostate-specific membrane antigen; PET, positron emission tomography; SENS, sensitivity; SPEC, specificity; AUC, area under the curve. In the ¹⁸F-DCFPyL PET section: 1, Metser *et al* (25), 2021; 2, Zhang *et al* (26), 2022; 3, Bodar *et al* (24), 2020; 4, Liu *et al* (27), 2022; 5, Parathithasan *et al* (28), 2022. In the ⁶⁸Ga-PSMA PET/CT section: 1, Hoffmann *et al* (29), 2017; 2, Lopci *et al* (30), 2018; 3, Sasikumar *et al* (31), 2018; 4, Kumar *et al* (32), 2019; 5, Zhang *et al* (33), 2018; 6, Liu *et al* (34), 2020; 7, Lopci *et al* (35), 2020; 8, Jiao *et al* (36), 2021.

on the choice of diagnostic thresholds (45). In some of the included articles, ROC curves were generated to assess diagnostic performance, and the diagnostic threshold that produced the highest sensitivity and specificity products was chosen. Although this method of determining the ideal diagnostic threshold is frequently utilized, it may only be suitable under certain circumstances, mainly when there is a trade-off

between sensitivity and specificity. Therefore, additional research examining the ideal diagnostic cutoff for ⁶⁸Ga-PSMA PET/CT and ¹⁸F-DCFPyL PET in patients with suspected PCa is necessary.

The identification of significant heterogeneity in the present examination of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT, as evidenced by an I²-value exceeding 50%, highlights the

Covariate	Studies, n	Sensitivity (95%Cl)	P-value	Specificity (95% CI)	P-value
Analysis			0.48		0.13
Patient-based	4	0.94 (0.90-0.97)		0.42 (-0.28-1.00)	
Lesion-based	1	0.84 (0.75-0.94)		0.97 (0.83-1.00)	
Region			0.24		0.03
Western	3	0.92 (0.87-0.98)		0.24 (-0.47-0.95)	
Asian	2	0.92 (0.84-0.99)		0.95 (0.75-1.00)	
Sample size			0.48		0.13
≤60	4	0.94 (0.90-0.97)		0.42 (-0.28-1.00)	
>60	1	0.84 (0.75-0.94)		0.97 (0.83-1.00)	
Study design			0.02		0.80
Prospective	2	0.89 (0.81-0.97)		0.61 (-0.50-1.00)	
Retrospective	3	0.94 (0.89-0.99)		0.67 (-0.29-1.00)	

	egression and subgro	1	18D DODD I	• • • •	1
Table III Meta r	earection and subar	analysis of		nosifron emission f	amooranhy
Table III. Micia-I	Ceression and suber	JUD allalysis OL			JIIIO2IaDIIV.

Table IV. Meta-regression and subgroup analyses of ⁶⁸Ga-prostate-specific membrane antigen positron emission tomography/CT.

Covariate	Studies, n	Sensitivity (95%Cl)	P-value	Specificity (95% CI)	P-value
Year of publication			0.71		0.65
2017-2018	4	0.96 (0.92-1.00)		0.72 (0.55-0.89)	
2019-2021	4	0.95 (0.87-1.00)		0.71 (0.52-0.89)	
Region			0.42		< 0.001
Western	5	0.97 (0.95-1.00)		0.54 (0.41-0.67)	
Asian	3	0.88 (0.80-0.95)		0.83 (0.75-0.92)	
Sample size			0.85		0.93
≤60	5	0.95 (0.88-1.00)		0.74 (0.59-0.89)	
>60	3	0.97 (0.92-1.00)		0.66 (0.47-0.85)	
Study design			0.50		0.44
Prospective	6	0.97 (0.92-1.00)		0.67 (0.54-0.80)	
Retrospective	2	0.92 (0.81-1.00)		0.84 (0.65-1.00)	

complex and diverse characteristics of diagnostic accuracy research in this field. In the following meta-regression analysis, it was attempted to find the underlying factors that contribute to the observed heterogeneity. It was indicated that the diversity in geographical region among the research populations, as well as the combination of prospective and retrospective study designs, were significant factors. However, it is crucial to recognize that the observed heterogeneity can also be attributed to methodological differences, such as variations in imaging techniques, thresholds for determining positives and discrepancies in the criteria used to choose patients among the studies included. These factors indicate that, although specific variables have a significant impact on heterogeneity, a wider range of methodological and clinical factors should be considered when interpreting the results of diagnostic accuracy meta-analyses in PCa imaging.

The present study acknowledges several methodological limitations that warrant careful consideration. First, the relatively small sample size, with only 13 studies included, restricts the statistical power and robustness of the present findings. This limitation underscores the need for caution when extrapolating the present results to broader populations. Furthermore, the heterogeneity introduced by differing diagnostic cutoffs and design of the included studies was a challenge. Such heterogeneity may lead to biases in the synthesis of data, particularly in deciding which results are emphasized, potentially skewing the overall interpretation of diagnostic efficacy. In addition, the study's selection criteria may have inadvertently resulted in a narrow representation of geographical region. This limitation is significant because the diagnostic performance of the tests under review may vary across different regional groups, thereby affecting the applicability of the conclusions across diverse populations. Finally, the reliance on histology and follow-up as the gold standard for confirming tumor recurrence is a critical point for consideration. The fact that not all patients in the included studies had accessible confirmatory pathology results introduces an element of uncertainty regarding the diagnostic precision of the imaging modalities evaluated. This limitation is particularly pertinent, as it may compromise the reliability

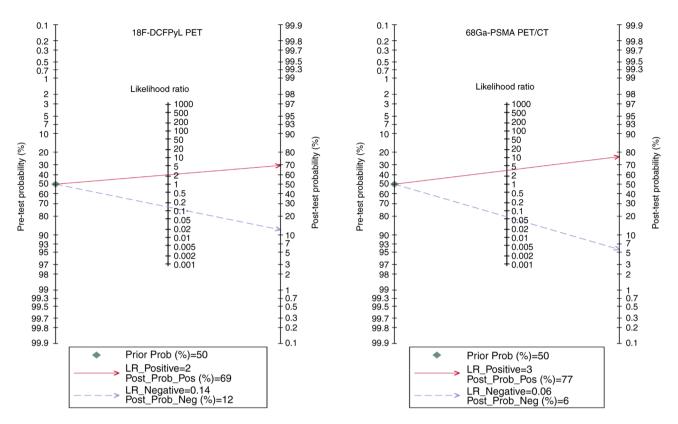


Figure 5. Fagan nomogram for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT. The pre-test probability was set at 50%. PSMA, prostate-specific membrane antigen; PET, positron emission tomography; LR, likelihood ratio; Prob, probability/probably; Neg, negative; Pos, positive.

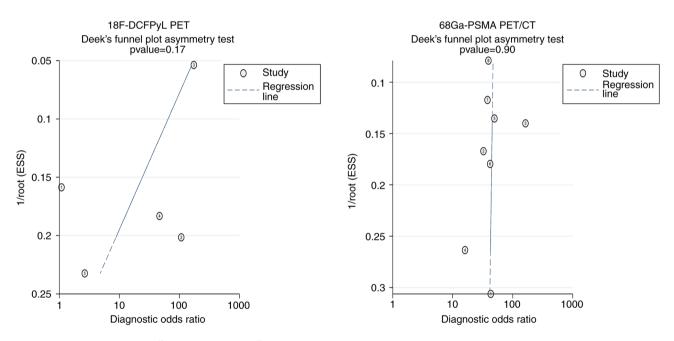


Figure 6. Deeks' funnel plot tests for ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT. PSMA, prostate-specific membrane antigen; PET, positron emission tomography. ESS, effective sample size. In the ¹⁸F-DCFPyL PET section: 1, Metser *et al* (25), 2021; 2, Zhang *et al* (26), 2022; 3, Bodar *et al* (24), 2020; 4, Liu *et al* (27), 2022; 5, Parathithasan *et al* (28), 2022. In the ⁶⁸Ga-PSMA PET/CT section: 1, Hoffmann *et al* (29), 2017; 2, Lopci *et al* (30), 2018; 3, Sasikumar *et al* (31), 2018; 4, Kumar *et al* (32), 2019; 5, Zhang *et al* (33), 2018; 6, Liu *et al* (34), 2020; 7, Lopci *et al* (35), 2020; 8, Jiao *et al* (36), 2021.

of the current findings. Considering these limitations, the conclusions of the present study should be interpreted with caution. The identified weaknesses and sources of heterogeneity highlight the need for additional, more comprehensive research to validate and extend the current findings, ensuring

their relevance and applicability to a wide range of clinical contexts.

From the pooled data it was inferred that the diagnostic performance of ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT is comparable in patients with suspected PCa. Although only

a small number of studies have been carried out thus far, it is significant to emphasize that the comparative evidence in this field currently needs to be more extensive. Therefore, subsequent studies concentrating on direct head-to-head comparisons of these two radiotracers may produce fresh and intriguing findings, offering new insight into the diagnostic capacities of these imaging modalities.

In conclusion, comparable diagnostic performance is seen for patients with suspected PCa using ¹⁸F-DCFPyL PET and ⁶⁸Ga-PSMA PET/CT. It is suggested that both modalities can be valuable tools in the diagnostic arsenal against this prevalent disease, underscoring the potential for flexibility in clinical choices, based on availability and patient-specific factors. However, given the modest sample sizes of the studies included in the present meta-analysis, it is crucial to interpret these results with caution. Further studies with larger, more diverse populations are essential to solidify our understanding and refine suspected PCa diagnostic protocols. Such research will also help in addressing the limitations identified, ultimately contributing to more effective and personalized patient care.

Acknowledgements

Not applicable.

Funding

This work was supported by the University Student Innovation and Entrepreneurship Training Program Project (grant no. S202210541145), the Key Projects of Hunan Provincial Department of Education (grant no. 21A0242) and the General Project of Hunan Natural Science Foundation (grant no. 2021JJ30506).

Availability of data and materials

The data generated in the present study may be requested from the corresponding author.

Authors' contributions

QT and ZJ conceived of and designed the study. JG, SY and BM performed data acquisition, data analysis and manuscript preparation. ZJ, JG, LH and SY assisted with data acquisition, data analysis and statistical analysis. ZJ and BM confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394-424, 2018.
- 2. Descotes JL: Diagnosis of prostate cancer. Asian J Urol 6: 129-136, 2019.
- Lomas DJ and Ahmed HU: All change in the prostate cancer diagnostic pathway. Nat Rev Clin Oncol 17: 372-381, 2020.
- 4. Stefanova V, Buckley R, Flax S, Spevack L, Hajek D, Tunis A, Lai E and Loblaw A; Collaborators: Transperineal prostate biopsies using local anesthesia: Experience with 1,287 patients. prostate cancer detection rate, complications and patient tolerability. J Urol 201: 1121-1126, 2019.
- Liss MA, Ehdaie B, Loeb S, Meng MV, Raman JD, Spears V and Stroup SP: An update of the American urological association white paper on the prevention and treatment of the more common complications related to prostate biopsy. J Urol 198: 329-334, 2017.
- complications related to prostate biopsy. J Urol 198: 329-334, 2017.
 6. Ghai S and Haider MA: Multiparametric-MRI in diagnosis of prostate cancer. Indian J Urol 31: 194-201, 2015.
- Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, *et al*: Prostate Imaging reporting and data system version 2.1: 2019 Update of prostate imaging reporting and data system version 2. Eur Urol 76: 340-351, 2019.
- Laudicella R, Rüschoff JH, Ferraro DA, Brada MD, Hausmann D, Mebert I, Maurer A, Hermanns T, Eberli D, Rupp NJ and Burger IA: Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI. Eur J Nucl Med Mol Imaging 49: 3917-3928, 2022.
- Rüschoff JH, Ferraro DA, Muehlematter UJ, Laudicella R, Hermanns T, Rodewald AK, Moch H, Eberli D, Burger IA and Rupp NJ: What's behind ⁶⁸Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns. Eur J Nucl Med Mol Imaging 48: 4042-4053, 2021.
- Wright GL Jr, Haley C, Beckett ML and Schellhammer PF: Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1: 18-28, 1995.
- Silver DA, Pellicer I, Fair WR, Heston WD and Cordon-Cardo C: Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3: 81-85, 1997.
 Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K,
- Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Webb I, Gray GS, Mosher R and Kallakury BV: Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9: 6357-6362, 2003.
- 13. Evangelista L, Maurer T, van der Poel H, Alongi F, Kunikowska J, Laudicella R, Fanti S and Hofman MS: [⁶⁸Ga]Ga-PSMA Versus [¹⁸F]PSMA positron emission tomography/computed tomography in the staging of primary and recurrent prostate cancer. A systematic review of the literature. Eur Urol Oncol 5: 273-282, 2022.
- Koerber SA, Utzinger MT, Kratochwil C, Kesch C, Haefner MF, Katayama S, Mier W, Iagaru AH, Herfarth K, Haberkorn U, *et al:* ⁶⁸Ga-PSMA-11 PET/CT in newly diagnosed carcinoma of the prostate: Correlation of intraprostatic PSMA uptake with several clinical parameters. J Nucl Med 58: 1943-1948, 2017.
 Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R,
- 15. Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, Eisenberger M, Carducci M, Fan H, Dannals RF, *et al*: PSMA-based [(18)F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol 18: 411-419, 2016.
- Rowe SP, Mana-Ay M, Javadi MS, Szabo Z, Leal JP, Pomper MG, Pienta KJ, Ross AE and Gorin MA: PSMA-based detection of prostate cancer bone lesions with ¹⁸F-DCFPyL PET/CT: A sensitive alternative to (99m)Tc-MDP bone scan and Na¹⁸F PET/CT? Clin Genitourin Cancer 14: e115-e118, 2016.
 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC,
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, *et al*: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372: n71, 2021.
- Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA and Bossuyt PM; QUADAS-2 Group: QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155: 529-536, 2011.

- Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM and Zwinderman AH: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58: 982-990, 2005.
- Moses LE, Shapiro D and Littenberg B: Combining independent studies of a diagnostic test into a summary ROC curve: Data-analytic approaches and some additional considerations. Stat Med 12: 1293-1316, 1993.
- 21. DeLong ER, DeLong DM and Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44: 837-845, 1988.
- 22. Hanley JA and McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29-36, 1982.
- 23. Lin M, Li YR, Lan QW, Long LJ, Liu JQ, Chen YW, Cao XJ, Wu GY, Li YP and Guo XG: Evaluation of GeneXpert EV assay for the rapid diagnosis of enteroviral meningitis: A systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 21: 25, 2022.
- 24. Bodar YJL, Jansen BHE, van der Voorn JP, Zwezerijnen GJC, Meijer D, Nieuwenhuijzen JA, Boellaard R, Hendrikse NH, Hoekstra OS, van Moorselaar RJA, *et al*: Detection of prostate cancer with ¹⁸F-DCFPyL PET/CT compared to final histopathology of radical prostatectomy specimens: Is PSMA-targeted biopsy feasible? The DeTeCT trial. World J Urol 39: 2439-2446, 2021.
- 25. Metser U, Ortega C, Perlis N, Lechtman E, Berlin A, Anconina R, Eshet Y, Chan R, Veit-Haibach P, van der Kwast TH, *et al*: Detection of clinically significant prostate cancer with ¹⁸F-DCFPyL PET/multiparametric MR. Eur J Nucl Med Mol Imaging 48: 3702-3711, 2021.
- 26. Zhang T, Yang S, Lin L, Wang S, Xia D, Chen D, Wang G, Zhao K and Su X: Role of ¹⁸F-DCFPyL PET/CT in patients with suspected prostate cancer. Hell J Nucl Med 25: 11-18, 2022.
- Liu Y, Dong Y, Liu J, Zhang X, Lin M and Xu B: Comparison between ¹⁸ F-DCFPyL PET and MRI for the detection of transition zone prostate cancer. Prostate 81: 1329-1336, 2021.
- Parathithasan N, Perry E, Taubman K, Hegarty J, Talwar A, Wong LM and Sutherland T: Combination of MRI prostate and 18F-DCFPyl PSMA PET/CT detects all clinically significant prostate cancers in treatment-naive patients: An international multicentre retrospective study. J Med Imaging Radiat Oncol 66: 927-935, 2022.
- 29. Hoffmann MA, Miederer M, Wieler HJ, Ruf C, Jakobs FM and Schreckenberger M: Diagnostic performance of ⁶⁸Gallium-PSMA-11 PET/CT to detect significant prostate cancer and comparison with ¹⁸FEC PET/CT. Oncotarget 8: 111073-111083, 2017.
- 30. Lopci E, Saita A, Lazzeri M, Lughezzani G, Colombo P, Buffi NM, Hurle R, Marzo K, Peschechera R, Benetti A, *et al*: ⁶⁸Ga-PSMA positron emission tomography/computerized tomography for primary diagnosis of prostate cancer in men with contraindications to or negative multiparametric magnetic resonance imaging: A prospective observational study. J Urol 200: 95-103, 2018.
- Sasikumar A, Joy A, Pillai AMR, Oommen KE, Somarajan S, Raman VK, Thomas R and Dinesh D: Gallium 68-PSMA PET/CT for lesion characterization in suspected cases of prostate carcinoma. Nucl Med Commun 39: 1013-1021, 2018.
- 32. Kumar N, Yadav S, Kumar S, Saurav K, Prasad V and Vasudeva P: Comparison of percentage free PSA, MRI and GaPSMA PET scan for diagnosing cancer prostate in men with PSA between 4 and 20 ng/ml. Indian J Urol 35: 202-207, 2019.

- 33. Zhang J, Shao S, Wu P, Liu D, Yang B, Han D, Li Y, Lin X, Song W, Cao M, *et al*: Diagnostic performance of ⁶⁸Ga-PSMA PET/CT in the detection of prostate cancer prior to initial biopsy: Comparison with cancer-predicting nomograms. Eur J Nucl Med Mol Imaging 46: 908-920, 2019.
- 34. Liu C, Liu T, Zhang Z, Zhang N, Du P, Yang Y, Liu Y, Yu W, Li N, Gorin MA, et al: ⁶⁸Ga-PSMA PET/CT combined with PET/ultrasound-guided prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsy results. J Nucl Med 61: 1314-1319, 2020.
- 35. Lopci E, Lughezzani G, Castello A, Saita A, Colombo P, Hurle R, Peschechera R, Benetti A, Zandegiacomo S, Pasini L, *et al*: Prospective evaluation of ⁶⁸Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography in primary prostate cancer diagnosis. Eur Urol Focus 7: 764-771, 2021.
- 36. Jiao J, Kang F, Zhang J, Quan Z, Wen W, Zhao X, Ma S, Wu P, Yang F, Guo W, *et al*: Establishment and prospective validation of an SUV_{max} cutoff value to discriminate clinically significant prostate cancer from benign prostate diseases in patients with suspected prostate cancer by ⁶⁸Ga-PSMA PET/CT: A real-world study. Theranostics 11: 8396-8411, 2021.
- 37. Cooperberg MR, Broering JM and Carroll PR: Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 28: 1117-1123, 2010.
- Esserman LJ, Thompson IM Jr and Reid B: Overdiagnosis and overtreatment in cancer: An opportunity for improvement. JAMA 310: 797-798, 2013.
- Matoso A and Epstein JI: Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 74: 135-145, 2019.
- Heidenreich A, Rieke M, Mahjoub S and Pfister D: Management of positive lymph nodes following radical prostatectomy. Arch Esp Urol 72: 182-191, 2019.
- 41. Van Kalmthout L, Wondergem M, Jansen B, *et al*: Comparison of 68Ga-PSMA-11 and 18F-DCFPyL in prostate cancer patients with biochemical recurrence after prostatectomy. Eur J Nucl Med Mol Imaging 46: S369, 2019.
- 42. Ferreira G, Iravani A, Hofman MS and Hicks RJ: Intra-individual comparison of ⁶⁸Ga-PSMA-11 and ¹⁸F-DCFPyL normal-organ biodistribution. Cancer Imaging 19: 23, 2019.
- 43. van der Sar ECA, Keusters WR, van Kalmthout LWM, Braat AJAT, de Keizer B, Frederix GWJ, Kooistra A, Lavalaye J, Lam MGEH and van Melick HHE: Cost-effectiveness of the implementation of [⁶⁸Ga]Ga-PSMA-11 PET/CT at initial prostate cancer staging. Insights Imaging 13: 132, 2022.
- cancer staging. Insights Imaging 13: 132, 2022.
 44. Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, Schmidt M, Dietlein F, Zlatopolskiy BD, Krapf P, et al: Comparison of [(18)F]DCFPyL and [(68)Ga] Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol 17: 575-584, 2015.
- 45. Ertûrk SA, Şalk İ, Yücel B, Ulaş Babacan Ö and Hasbek Z: The relationship between the SUVmax value obtained in Ga-68 PSMA PET/CT and lactate dehydrogenase and alkaline phosphatase in prostate cancer. Arch Esp Urol 75: 552-558, 2022.

Copyright © 2024 Jiang et al. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.