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Abstract

The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and
understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing
the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the
common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of
genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the
identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have
developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and
metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model
(HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity,
Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete
proteins. On the two metagenomic blind datasets (Blind A: 51–100 amino acids and Blind B: 30–50 amino acids), it displayed
Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67
and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and
real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of
partial pathogenic proteins predicted from short (100–150 bp) metagenomic reads and also performs exceptionally well on
complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.
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Introduction

The comparisons of completed bacterial genome sequences of

closely related species have revealed significant genome variations

between pathogenic and nonpathogenic bacteria [1]. One of the

major differences between pathogenic and nonpathogenic bacteria

is the presence of virulence-related genes in the former. These

virulence genes could be present on bacterial plasmids or

chromosomes, sometimes as pathogenicity islands, and are absent

in nonpathogenic strains of the same or closely related species [2].

A well-known example is of closely related species belonging to

Shigella and Escherichia genus, where the species belonging to the

former are pathogenic and cause bacillary dysentery, whereas

Escherichia coli (with the exception of some pathogenic strains) are

commensals of the human gut microbiome [2,3]. A recent study

from Chlamydiaceae family indicated that porin proteins were

significantly different in the outer membrane of chlamydial

symbionts and pathogens [4]. Another study indicated that the

differences in the capsular proteins in the pathogenic Cryptococcus

species and environmental species influence their ability to cause

virulence [5]. In eukaryotes, the sequence analysis of the

pathogenic and nonpathogenic Entamoeba histolytica revealed

significant evolutionary divergence and indicated that the patho-

genic isolates are genetically distinct from the nonpathogenic

isolates [6].

The mechanisms underlying pathogenesis are complex, diverse,

species-specific, host-specific, and involve several processes

including virulence, adhesion, invasion, secretion and drug

resistance [7]. Due to this inherent complexity, the pathogenic

species and the implicated proteins show considerable diversity

and often exhibit insignificant similarity with the known proteins.

Thus, it is difficult to predict such proteins by using homology-

based methods such as BLAST [8] which is commonly used to

assign function to a novel protein by alignment against a reference

protein dataset [9,10]. In addition, BLAST is relatively slow which

further limits its usability on large genomic and metagenomic

datasets. In this scenario, composition or profile-based approaches

using Support Vector Machines (SVM) or Hidden Markov Model

(HMM) could provide efficient and reliable alternatives.

There are two publicly available tools, VirulentPred and

VICMpred, which have been developed to predict pathogenic

proteins [9,11]. VirulentPred is a SVM-based tool to predict

virulent proteins in bacterial pathogens [9]. The SVM modules

used in VirulentPred were trained using a combination of

sequence features. A bilayer cascade SVM was developed in

which the results from the first layer were cascaded to train and

generate the second layer of SVM classifier. This bilayer cascade

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e93907

http://metagenomics.iiserb.ac.in/mp3/index.php
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0093907&domain=pdf


SVM provides an accuracy of 81.8%. Another method,

VICMpred, is also developed using SVM-based approach. It

predicts the major functions of Gram-negative bacterial proteins

from their amino acid sequences and categorize them into

virulence factors, information molecules, cellular process, and

metabolism [11]. The features used in this method were calculated

using PSI-BLAST similarity search, amino acid frequency,

dipeptide frequency and tetrapeptide frequency. All these features

were combined to form hybrid modules and it is able to achieve an

overall accuracy of 70.75%. In addition to the above methods, two

more computational methods have been developed to predict

virulence factors in genomes. The first method predicts virulent

proteins by integrating information for protein-protein interaction

using STRING database and the information for biological

pathways using the KEGG database, and then calculates a

KEGG enrichment scores for the prediction [12]. This method

provides a unique approach where KEGG pathways are used to

predict virulence factors. However, the method was demonstrated

only for three species and no publicly available tool is provided by

the authors for using this approach. The second method, Virulent-

GO, looks for informative gene ontology terms as features using a

sequence-based approach for predicting bacterial virulent proteins

[13]. However, no publicly available tool is provided for using this

method. In addition, several databases such as Tox-Prot, VFDB,

TVFac, ARGO, Islander, PRINTS virulence factors and SCOR-

PION are also available which provide information on pathogenic

proteins from both prokaryotes and eukaryotes [14–19]. MvirDB

database has integrated information from several publicly avail-

able databases to construct a single useful resource containing

protein sequences representing known toxins, virulence factors and

antibiotic resistance genes [20]. In addition, it also contains

sequences of pathogenic proteins reported in literature. Therefore,

MvirDB can be used as a comprehensive resource to retrieve the

information and sequences of pathogenic proteins.

Taken together, only a few tools are currently available for the

prediction of pathogenic proteins and provide limited accuracy.

Furthermore, they cannot be used on large-scale genomic or

metagenomic datasets. Therefore, we have developed MP3 tool

using an integrated SVM-HMM approach to provide improved

efficiency and accuracy to predict pathogenic proteins in both

genomic and metagenomic datasets. It is available as standalone

tool as well as a publicly available web server.

Materials and Methods

Construction of Datasets
Positive and Negative Dataset. The performance of

prediction methods primarily depends upon the quality of the

training dataset which should be unambiguous and manually

curated to achieve high accuracy in prediction. Therefore, in this

study, the sequences of known virulence proteins were retrieved

from MvirDB [20] which is a comprehensive microbial database

of virulence factors, protein toxins and antibiotic resistance genes.

Out of the total 64,711 proteins retrieved from MvirDB, 15,103

were selected using CD-HIT [21] such that no two sequences had

90% sequence identity. All the proteins annotated as hypothetical,

putative, probable, possible or predicted were removed. This was

followed by manual curation to remove the proteins with

ambiguous annotations and to select the proteins of bacterial

origin which are directly associated with any of the pathogenesis-

related mechanisms including virulence, adhesion, invasion,

secretion and drug resistance. The resulting positive dataset

contained 1,708 protein sequences. To prepare the negative

dataset, 10,411 protein sequences were retrieved from the

Database of Essential Genes (DEG, version 8.0)[22]. To avoid

overtraining of SVM, only one representative sequence was

selected using CD-HIT among sequences having more than 90%

sequence identity. From the 8,860 representative proteins selected

after CD-HIT, the proteins annotated as hypothetical, putative,

probable, possible, predicted were removed. This was followed by

manual curation to remove the proteins having annotations similar

to the proteins selected for constructing the positive dataset, and to

remove those proteins which are known to play a direct role in

pathogenesis. The proteins of the positive and negative dataset

were further compared using CD-HIT-2D at 50% identity to

check for the presence of any common proteins in the two datasets.

The resulting negative dataset consisted of 5,815 proteins.

Blind Dataset. To assess the unbiased performance of the

prediction method it was tested on blind dataset. The blind dataset

was constructed using 100 negative proteins which were taken

from the negative dataset and 100 positive proteins which were

taken from the positive dataset and including 17 proteins from

VFDB database. The resultant main blind dataset consisted of 200

proteins. The sequences in the blind dataset were never used

before for the training purpose. After removing these proteins, the

remaining positive and negative datasets contained 1,625 and

5,715 protein sequences, respectively, which were merged to

create the main dataset consisting of 7,340 proteins.

Metagenomic Dataset. Two metagenomic sets (A and B)

were constructed from the main dataset by randomly fragmenting

proteins into 51–100 and 30–50 amino acids fragments, respec-

tively, using in-house Perl scripts. The protein fragments of

selected lengths corresponds to approximately 150–300 and 100–

150 nucleotides, respectively, which mimics the lengths of real

metagenomic reads generated from commonly used next-gener-

ation sequencers. Set A and B consisted of 48,715 and 83,761

fragments.

Metagenomic Blind Dataset. Two metagenomic blind

datasets, BlindA (51–100 aa) and BlindB (30–50 aa) were

constructed using the protein sequences of the Blind dataset.

BlindA contained 2,604 protein fragments and BlindB contained

4,400 protein fragments. The fragments were generated using a

similar methodology as described in the previous section.

Independent Genomic Datasets. Three independent sets

were constructed to evaluate the performance of MP3. The first set

consisted of 16 species of known pathogenic and nonpathogenic

bacteria for which complete genome sequences are available at

NCBI [23]. The second set consisted of three groups of proteins

from the Shigella flexineri virulence plasmid as reported by Slogowski

et al. [24]. The first group was composed of 18 proteins which are

translocated by Shigella into host cells. The second group was

composed of 20 proteins that are confined to the bacterium during

infection (non-translocated). The third group was composed of

three candidate translocated proteins based on the low GC

content of their corresponding genes. Out of the total 38 proteins,

12 proteins were further shown to differentially (complete,

intermediate or weak) inhibit yeast growth. In the third set, 200

proteins from a pathogenic Mycobacterium tuberculosis strain,

Mycobacterium tuberculosis Beijing NITR203 (known as Beijing strain),

were selected from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/

Bacteria/). Out of the 200 proteins, 100 are known and confirmed

pathogenic proteins such as drug resistance proteins, MCE-family

proteins and PE-PPE family proteins [25,26]. The remaining 100

proteins are nonpathogenic and include polymerase proteins,

ribosomal proteins and other proteins from essential genes which

are not known to play any role in pathogenesis. MP3 was run on

all the three genomic test datasets.

Prediction of Pathogenic Proteins Using MP3
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Independent Metagenomic Datasets. The performance of

MP3 was also evaluated using real metagenomic datasets. The

human gut microbiome datasets of a healthy European male

individual (MH0050, Age 49) and a diseased European male

individual (O2.UC-18, Age 48) were obtained from (ftp://public.

genomics.org.cn/BGI/gutmeta/High_quality_reads/) [27]. The

forward and reverse paired-end reads were assembled into

11,556,341 and 10,306,137 single reads for healthy and diseased

datasets, respectively, using FLASH [28]. The MetaGeneMark

[29] software was used for predicting ORFs which were analyzed

using MP3 to identify the proportion of pathogenic proteins in the

two datasets.

Five-Fold Cross-Validation and Performance Evaluation
The performance of SVM module was evaluated using five-fold

cross-validation by dividing the main dataset into five approxi-

mately equal parts. For the cross validation, four parts were used

for training and the remaining part was used for testing. The

process was repeated five times such that every part was used once

for testing. The final performance was reported as the average of

the values obtained after the five-fold cross-validation. The

performance of SVM was examined using the following standard

parameters.

Sensitivity~
tp

tpzfn
|100

Specificity~
tn

tnzfp
|100

Accuracy~
tpztn

tpzfnztnzfp
|100

Mathews Correlation Coefficient (MCC)

~
tpð Þ tnð Þ{ fpð Þ fnð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpzfpð Þ tpzfnð Þ tnzfpð Þ tnzfnð Þ

p

Where, tp (true positives) are the proteins which are known

pathogenic and are predicted as pathogenic, and tn (true

negatives) are the proteins which are known nonpathogenic and

are predicted as nonpathogenic. Whereas, fp (false positives) are

the proteins which are known nonpathogenic and are predicted as

pathogenic, and fn (false negatives) are the proteins which are

known pathogenic and are predicted as nonpathogenic.

Calculation of Protein Features
Amino Acid and Dipeptide Composition. Amino acid

composition and dipeptide composition of the protein sequences

were evaluated as features for training SVM. While the amino acid

composition only provides information about the percentage of

each amino acid in the sequence, the dipeptide composition is

more informative as it provides information about the fractions of

amino acids as well as their local order in the form of a fixed-

length vector which is used as the input for training SVM. Higher-

order peptides, such as tripeptides and tetrapeptides, can also be

used which can provide greater depth in the relative order of the

amino acids in a protein but at the same time will increase the

noise and redundancy. In addition, in case of small metagenomic

ORFs, the higher-order peptides would be less informative. Thus,

the AAC and dipeptide frequency have been used to evaluate the

performance of SVM module. The amino acid composition and

dipeptide composition of each protein was calculated using the

formula given below.

AAC(i)~
Total number of amino acid (i)

Total number of amino acid in the protein
|100

where, AAC(i) is the amino acid composition of the amino acid i,

and amino acid (i) is one of the 20 amino acids.

Df(i)~
Total number of dipep ið Þ

Total number of all possible dipeptides
|100

Where, Df(i) is the frequency of dipeptide i, and dipep(i) is one

out of 400 dipeptides.

Support Vector Machines (SVM)
SVM was implemented via SVM_Light package (http://

svmlight.joachims.org/) [30] which provides options to choose a

number of parameters and kernels (e.g. linear, polynomial, radial

basis function and sigmoid) or any user-defined kernels. Among

the available kernels, the polynomial kernel was selected since it

provided better results for both genomic and metagenomic

datasets as compared to other kernels (Figure S1, S5 and S6 in

File S1). Therefore, polynomial kernel was used for all the SVM-

based analysis carried out in this study and for constructing the

SVM module for MP3.

Implementation of Hidden Markov Models (HMM) Using
Pfam Domains

HMM was implemented using HMMER3 software (http://

hmmer.janelia.org/) [31]. The Pfam database (release 27.0)

containing 14,831 families was retrieved (ftp://ftp.sanger.ac.uk/

pub/databases/Pfam) [32].

Construction of MiniPfam Database. To construct a local

database of pathogenic and nonpathogenic domains from the

Pfam database, the protein sequences of the main dataset were

searched against the Pfam database using HMMER at an e-value

of 1e25 (same e-value is used throughout the study for HMMER).

The resulting domains were classified into three categories; (i)

domains present only in pathogenic proteins (exclusive pathogen-

ic), (ii) domains present only in nonpathogenic proteins (exclusive

nonpathogenic) and, (iii) domains occurring in both pathogenic

and nonpathogenic proteins (shared domains) (Figure 1). A total of

2,397 types of domains were found of which 498 domains were

present exclusively in the pathogenic proteins, 1,636 domains were

present exclusively in the nonpathogenic proteins, and 263

domains were present in both the pathogenic and nonpathogenic

proteins. Using all the three types of domains, a local domain

database ‘MiniPfam’ was constructed.

Combined SVM-HMM Approach
The composition of proteins and the presence of functional

domains can provide valuable insights about the function of a

Prediction of Pathogenic Proteins Using MP3
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protein. Therefore, a combined approach using SVM (using

dipeptide composition) and HMM (using Pfam domains) is used

for the development of MP3 tool to achieve higher accuracy and

sensitivity. Using the combined approach, all the protein

sequences in the blind dataset were screened using both SVM

and HMM modules. Among the two methods, SVM can classify a

protein as either pathogenic or nonpathogenic, whereas, HMM

can classify a protein as pathogenic, nonpathogenic or unclassified.

Other Databases. The Non-Redundant (NR) database

(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/, July 2013) was re-

trieved from NCBI [23] for the comparison of MP3 with BLAST.

Results and Discussions

Performance of SVM Modules on Genomic Datasets
The performance of SVM modules for genomic datasets was

evaluated using amino acid composition and dipeptide composi-

tion as input features. The evaluation of the performance was

carried out using five-fold cross validation. After trying all possible

kernels and fine tuning the parameters, it was observed that RBF

kernel (g = 0.01, c = 6) showed best performance for AAC based

modules and polynomial kernel (d = 3, j = 4) showed best

performance for dipeptide composition based modules as evident

from the ROC plot (Figure S1 in File S1). The accuracies and

MCC values of both the modules were almost similar at default

threshold of zero; however, the sensitivity (76.12%) of dipeptide

composition based module (Table 1) was much higher as

compared to the sensitivity (63.20%) of AAC based modules

(Table S1 and Figure S2 in File S1). Therefore, dipeptide

composition with polynomial kernel was chosen as the input to

the SVMs for all the further prediction on genomic datasets.

The performance of SVM module with polynomial kernel and

dipeptide composition as input is shown in Table 1. At the

threshold of zero, the observed Sensitivity, Specificity, Accuracy

and MCC were 76.12%, 90.96%, 87.79% and 0.65, respectively

(Table 1). It is noticeable from Table 1 that the best possible

combination of Sensitivity, Specificity, Accuracy and MCC was

achieved at the threshold of 20.2 which are 82.53%, 86.97%,

86.02% and 0.63, respectively. Hence, 20.2 was selected as the

default threshold for all further predictions by the SVM module.

The performance of SVM module was evaluated using blind

dataset to determine the accuracy of predictions on unknown

query sequences. At default (20.2) threshold, a high accuracy

(88%) of prediction was achieved on the blind dataset (Table 2).

Performance of SVM Modules on Metagenomic Datasets
Using a similar methodology as used above for the genomic

datasets, the best kernel and parameters for SVM were selected for

the two metagenomic datasets (set A and set B). For both the

metagenomic datasets, the performance of SVM modules using

dipeptide composition (Table 3) was better as compared to SVM

modules using AAC (Table S2 in File S1) as the input (Figure S3

and S4 in File S1). Hence, using dipeptide frequency as input,

polynomial kernel (with d = 4, C = 51 for set A and d = 3, C = 3 for

set B), which showed the best performance among all available

kernels (Figure S5 and S6 in File S1), was selected for all further

predictions by SVM on metagenomic datasets. The accuracies of

93.25% for set A and 91.48% for set B were achieved at zero

threshold (Table 3). However, the best combination of Sensitivity,

Specificity, Accuracy and MCC for dataset A and B were achieved

at the default threshold of 20.2 (Table 3). The performance of

SVM module was further evaluated using BlindA and BlindB

datasets and accuracies of 82.49% and 76.5%, respectively, were

achieved (Table 2).

Performance Evaluation of HMM Module
The performance of HMM module was evaluated on the main

dataset by searching each protein against the MiniPfam database

by HMMER using an e-value of 1e25. A protein is classified as

‘pathogenic’ if it contains at least one pathogenic domain

(Figure 1). Similarly, a protein is classified as ‘nonpathogenic’ if

it does not contain any pathogenic domain and contains at least

one nonpathogenic domain. The remaining proteins containing

only shared domains or for which no hits are found are

Figure 1. Steps used by HMM module for the prediction of pathogenic protein.
doi:10.1371/journal.pone.0093907.g001
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categorized in the ‘unclassified’ category. Using this approach on

the main dataset, HMM module could make predictions on 1,167

(1153 correct and 14 incorrect) proteins in the positive dataset and

5,405 (5,375 correct and 30 incorrect) proteins in the negative

dataset with high Sensitivity (98.80%), Specificity (99.44%),

Accuracy (99.33%) and MCC (0.98) (Table S3 in File S1). The

residual 768 proteins remained unclassified. HMM module

showed an accuracy of 98.27% on the Blind dataset (Table 2).

For the positive blind dataset, it correctly predicted 72 proteins out

of 100 proteins with 3 incorrect predictions, and 25 remained as

unclassified (Table S3 in File S1). For the negative blind dataset,

98 out of 100 proteins were predicted correctly and two proteins

remained as unclassified (Table S3 in File S1).

Performance Evaluation of HMM Module on
Metagenomic Dataset

HMM module showed exceptionally high accuracies on the

metagenomic datasets, however, it could classify a limited

proportion of metagenomic protein fragments. A plausible reason

is that a metagenomic read (length 100–400 bp) can originate

Table 1. Performance of SVM module on the main dataset.

Threshold Sensitivity Specificity Accuracy MCC

21 95.08 50.34 59.89 0.38

20.9 93.98 56.12 64.2 0.41

20.8 93.43 61.6 68.39 0.45

20.7 92.24 67.46 72.74 0.49

20.6 89.65 72.71 76.33 0.52

20.5 88.43 76.66 79.17 0.55

20.4 86.56 80.27 81.61 0.58

20.3 84.67 83.88 84.04 0.61

20.2 82.53 86.97 86.02 0.63

20.1 79.22 89.06 86.96 0.64

0 76.12 90.96 87.79 0.65

0.1 72.3 92.61 88.27 0.65

0.2 69.66 93.94 88.75 0.66

0.3 65.58 95.01 88.72 0.65

0.4 61.57 96.02 88.66 0.64

0.5 59.16 96.7 88.68 0.64

0.6 55.65 97.32 88.42 0.63

0.7 52.07 97.89 88.1 0.61

0.8 48.19 98.36 87.65 0.6

0.9 42.59 98.82 86.82 0.56

1 38.42 99.04 86.11 0.54

The point where sensitivity and specificity is roughly equal is highlighted in bold. The point of maximum MCC is highlighted in bold and italics.
doi:10.1371/journal.pone.0093907.t001

Table 2. Performance of SVM, HMM and combined Modules on the Genomic Blind (Blind) and Metagenomic Blind datasets
(BlindA and BlindB).

Method Dataset Sensitivity Specificity Accuracy MCC

SVM Blind 84 92 88 0.76

BlindA 72.86 94.34 82.49 0.68

BlindB 64.14 91.69 76.50 0.57

HMM Blind (86.50%)* 100 97.02 98.27 0.97

BlindA (52.60%)* 99.47 98.11 98.68 0.97

BlindB (35.64%)* 78.17 99.03 89.24 0.80

Combined (MP3) Blind 92 100 96 0.92

BlindA 82.39 97.86 89.32 0.80

BlindB 71.60 94.48 81.86 0.67

*The values in the brackets show the percentage prediction provided by HMM. The default threshold of 20.2 was used for SVM module and default e-value of 1e25
was used for HMM module.
doi:10.1371/journal.pone.0093907.t002
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from any part of a gene and may contain only a partial fragment of

that gene. In many cases small protein fragments of 30–100 amino

acids length may not contain any domain or contain an

insignificant part of the domain, and hence, does not find a

match using the HMM module. For Set A, 60.75% of the protein

fragments could be classified with high Sensitivity (99.25%),

Specificity (99.78%), Accuracy (99.69%) and MCC (0.99).

Similarly, for Set B, HMM module could classify 41.40% protein

fragments as either pathogenic or nonpathogenic with high

Sensitivity (99.68%), Specificity (99.93%), Accuracy (99.89%)

and MCC (0.99). The detailed information is provided in Table

S4 and S5 in File S1.

The performance of HMM module was further evaluated on

the metagenomic blind datasets (BlindA and BlindB). In BlindA

set, 52.6% of the total protein fragments could be classified with an

accuracy of 98.68%. Similarly, 35.64% of the total protein

fragments of BlindB could be classified with an accuracy of

89.24% (Table 2).

Combined SVM-HMM Approach to Develop MP3
To improve the sensitivity and accuracy of the predictions, a

SVM-HMM combined approach was implemented to develop the

MP3 tool. The criteria used to carry out the assignments are

shown in Figure 2. It is to be noted that for the cases where SVM

and HMM modules made different predictions, the predictions of

HMM were considered. The reason for giving preference to

HMM predictions over SVM predictions is because for both

genomic and metagenomic datasets, though the number of

predictions made by HMM was lesser as compared to SVM,

HMM showed higher sensitivity, specificity and accuracy as

compared to SVM. The prediction made by MP3 is assigned with

‘HS’ if the predictions from both HMM and SVM are in

consensus. HS labelled predictions can be considered highly

accurate. ‘H’ or ‘S’ are assigned when the prediction result is based

either on HMM or SVM module, respectively (Figure 2).

Following the above approach, performance of MP3 was tested

on genomic and metagenomic blind datasets. MP3 showed an

accuracy of 96% in case of genomic blind dataset and an accuracy

of 89.32% and 81.86% in case of metagenomic blind datasets

BlindA and BlindB, respectively (Table 2). The detailed compar-

ison of MP3 (integrated SVM-HMM) with SVM and HMM for

the genomic and metagenomic blind datasets is shown in Table S6

in File S1.

Performance of MP3 on Genomic and Metagenomic
Independent Datasets

The performance of MP3 was tested on publicly available

genomic and metagenomic datasets. On the first independent

dataset consisting of 16 pathogenic and nonpathogenic bacterial

genomes, the percentage of pathogenic proteins predicted by MP3

is higher in the pathogenic genomes as compared to the

nonpathogenic genomes (Table 4). MP3 predicted 20.4%,

23.7% and 30.28% of the total proteins as pathogenic in the case

of pathogenic Mycobacterium species, Mycobacterium leprae TN,

Mycobacterium tuberculosis str. Beijing NITR203 and Mycobacterium

tuberculosis H37Rv, respectively. Interestingly, MP3 predicted 224,

447 and 198 unannotated proteins as pathogenic in Mycobacterium

leprae TN and Mycobacterium tuberculosis str. Beijing NITR203 and

Mycobacterium tuberculosis H37Rv, respectively (Text S1 in File S1).

Given the highly accurate performance of MP3 on the test dataset

derived from Mycobacterium tuberculosis str. Beijing NITR203, the

unannotated proteins predicted as pathogenic in the three

pathogenic Mycobacterium species provide new leads for experi-

mental validations to confirm their role in the pathogenesis of

Mycobacterium.

To compare the performance of MP3 with BLAST, the 869

hypothetical proteins from all selected pathogenic Mycobacterium

species which were predicted as pathogenic by MP3 were searched

against the NCBI-NR database using BLASTP. The best hit was

selected using the default e-value of 10. Out of the total 869

hypothetical proteins, functional annotations could be found for

only 43 proteins and 44 proteins were found annotated with only

general functions. To specifically classify these proteins into

pathogenic or non-pathogenic classes, manual efforts are needed

to go through their annotations and interpret their role as

pathogenic or nonpathogenic protein. Therefore, MP3 could serve

as a useful tool to classify the hypothetical proteins as pathogenic

or nonpathogenic. In addition, the performance of MP3 was up to

2000 times faster than BLAST for a sample set containing 2,000

proteins (Table S7 in File S1).

For the nonpathogenic Mycobacterium smegmatis str. MC2 155,

10% of the total proteins were predicted as pathogenic. Though,

Mycobacteirum smegmatis is a nonpathogenic species but its genome

also contains a number of known pathogenic proteins such as PE-

PPE family proteins, MCE family proteins, drug resistance

proteins, and enzymes. Therefore, such proteins were predicted

as pathogenic in M. smegmatis by MP3. However, the total number

of pathogenic proteins in pathogenic species of Mycobacterium, i.e.

Mycobacterium tuberculosis, is much higher as compared to its

nonpathogenic species, i.e. Mycobacterium smegmatis. In addition, a

small proportion of proteins were predicted as pathogenic in other

nonpathogenic genomes. The plausible reason could be that the

mechanisms of pathogenesis involve several proteins which are

either directly or indirectly involved in the process. Therefore, it is

expected that some of the associated pathogenic proteins which

may not be directly involved in pathogenesis, such as enzymes,

Figure 2. Prediction of pathogenic or nonpathogenic proteins
using MP3. HS: predictions from both HMM and SVM are in consensus,
H: prediction is based only on HMM module, S: prediction is based only
on SVM module.
doi:10.1371/journal.pone.0093907.g002
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flagellar proteins, fimbrial proteins, membrane proteins, transport

proteins, or secretory proteins, may be present in both pathogenic

and nonpathogenic genomes. Since such proteins are shared

between the pathogenic and nonpathogenic species, they were

considered in the positive dataset for the training of SVM and

HMM and will be predicted as pathogenic by MP3. However, it is

noticeable that MP3 predicted much higher number of pathogenic

proteins in the pathogenic genomes.

In the case of second independent dataset consisting of genes

present on virulence plasmid of Shigella, 17 out of the 18 proteins

from group I (translocated proteins) and 6 out of 20 proteins from

group II (non-translocated proteins) were predicted as pathogenic

(Table S8 in File S1). These predictions concur with the results

shown in the study by Slogowski et al. where they observed that

the expression of translocated proteins resulted in greater growth

inhibition than non-translocated proteins. It was also shown in the

above study that 12 out of the total 38 proteins could differentially

(complete, intermediate and weak) inhibit yeast growth. MP3 was

able to correctly predict 9 of these 12 as definite virulence proteins

(Table 5). The three misclassified proteins were plasmid segrega-

tion proteins (mvpT and parA) and a protein of unknown function

(OspD3). Among these, mvpT is predicted as nonpathogenic but it

was assigned with ‘H’, i.e, the prediction is based only on the

results of HMM, and the prediction of SVM and HMM were not

in consensus. The protein parA was assigned with ‘HS’ indicating

that it is predicted as nonpathogenic by MP3 with high

confidence. Though mvpT and parA proteins were shown as a

pathogenic protein by Slogowski et al., their function as plasmid

segregation proteins can be considered as a general function which

is present in both pathogenic and nonpathogenic genomes. Thus,

these proteins were classified as nonpathogenic by MP3. The third

protein OspD3 is of unknown function and thus, the possible

reason for its classification as a nonpathogenic protein is not clear.

These results further support the accuracy of MP3.

The performance of combined approach was also tested on

publicly available metagenomic datasets of one healthy and one

diseased European male individual containing paired-end reads

generated by Illumina GA [27]. A total of 8,026,105 and

6,952,195 ORFs (length between 30–50 amino acids) were

predicted in healthy and diseased datasets using MetaGeneMark

[29]. MP3 was run on the ORFs predicted in the two datasets and

it took ,180 CPU hours (Intel Xeon 2.4 GhZ CPU) to carry out

the assignment which is really reasonable considering the size of

input data. MP3 predicted 16.51% and 19.37% proteins as

pathogenic in healthy and diseased individuals, respectively. These

results validate the efficiency and capability of MP3 in predicting

pathogenic proteins in the metagenomic datasets.

Comparison with Other Web Servers
The performance of MP3 was compared with publicly available

VirulentPred web server which can predict virulent proteins in

genomic datasets. On blind dataset constructed in this study, the

Sensitivity (92%), Specificity (100%), Accuracy (96%) and MCC

(0.92) achieved by MP3 is much higher than the Sensitivity

(61.24%), Specificity (70.42%), Accuracy (64.5%) and MCC (0.30)

obtained by VirulentPred (Table S9 in File S1). On the

independent dataset provided by VirulentPred, MP3 exhibited

an accuracy of 90% whereas VirulentPred showed an accuracy of

85%. The higher accuracy shown by MP3 on an independent

dataset used for the evaluation of VirulentPred attests to the

accuracy of MP3 on any unknown dataset. The other publicly

available tool VICMpred can accept only a single sequence at a

time and therefore could not be used for the comparison.

The performance of MP3 was also compared with VirulentPred

on third independent dataset consisting of 200 known pathogenic

and nonpathogenic proteins derived from pathogenic Mycobacteri-

um tuberculosis Beijing NITR203 strain. The Sensitivity (97%),

Specificity (97%), Accuracy (97%) and MCC (0.94) achieved by

MP3 is much higher than the Sensitivity (81%), Specificity (34%),

Accuracy (57.5%) and MCC (0.16) obtained by VirulentPred.

These results indicate that MP3 displays much better performance

than the other available methods.

Table 4. Performance of MP3 on known bacterial genomes.

Genome Type Number of Pathogenic Proteins (%)

Arcobacter nitrofigilis DSM 7299 N 249 (13.2)

Bacillus anthracis str. A0248 P 1,052 (20.8)

Bacillus subtilis subsp. subtilis str. 168 N 778 (18.6)

Escherichia coli O157:H7 str. EC4115 P 1,291(24.3)

Escherichia coli str. K-12 substr. DH10B N 885 (21.5)

Lactobacillus fermentum F-6 N 261 (13.0)

Mycobacterium Tuberculosis H37Rv P 938(30.28)

Mycobacterium leprae TN P 328 (20.4)

Mycobacterium smegmatis str. MC2 155 N 485 (10.9)

Mycobacterium tuberculosis str. Beijing/NITR203 P 973 (23.7)

Neisseria lactamica 020-06 N 310 (15.7)

Neisseria meningitides 053442 P 330 (16.3)

Pseudomonas aeruginosa B136-33 P 1,527 (26.2)

Pseudomonas putida BIRD-1 N 1,153 (23.24)

Shigella flexineri 2a str. 2457T P 759 (18.7)

Vibrio cholerae IEC224 P 474 (18.0)

The threshold of 0.2 was used to achieve high specificity for the above analysis by SVM module.
Type indicates pathogenicity of the bacteria indicated by ‘N’ for nonpathogenic and ‘P’ for pathogenic bacteria.
doi:10.1371/journal.pone.0093907.t004
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Description of Web Server
MP3 web server and standalone program was developed using

the combined SVM-HMM approach. The web server can be used

as an online resource to identify the pathogenic proteins in both

genomic and metagenomic datasets. On the Applications page,

two options, namely ‘Genomic’ and ‘Metagenomic’ are provided

to analyze the complete (genomic) proteins or partial (metage-

nomic) proteins. User can upload a File containing the protein

sequences in FASTA format. Using the ‘Threshold’ option, a

threshold (cut-off used by SVM module) to classify the input

proteins as pathogenic or nonpathogenic can be specified, or a

default threshold will be used in case no threshold value is

provided. For the ‘Metagenomic’ option, the estimated length of

protein sequences should be specified as less than or greater than

50 amino acids to select an appropriate SVM model which will be

used by the SVM module of the MP3 tool. On submission of a

query, a ‘Job ID’ page is displayed showing the link to the ‘Results’

page and an email is sent to the user. The ‘Results’ page displays

the summary of the results and links to download all the results

files. The MP3 web server is freely accessible at http://

metagenomics.iiserb.ac.in/mp3/index.php. The standalone ver-

sion of MP3 and detailed installation instructions are available at

http://metagenomics.iiserb.ac.in/mp3/download.php.

Conclusion

The combined SVM-HMM approach implemented as ‘MP3’

tool can carry out fast, sensitive and accurate prediction of virulent

proteins in both metagenomic and genomic datasets. MP3

specializes in the identification of fragments of virulent proteins

which are common in metagenomic data and can be used to

compare the proportion of pathogenic proteins in a healthy and

diseased sample without the use of time-consuming homology-

based alignment. In addition, it also carries out the prediction of

virulent proteins in complete genomes with greater accuracy,

sensitivity and specificity as compared to other publicly available

methods. At present, to the best of our knowledge, MP3 is the only

program and web server which can predict pathogenic proteins in

metagenomic datasets and in addition, can also predict pathogenic

proteins in genomic datasets with such high accuracy and

sensitivity. The MP3 standalone program and web server will

serve as a valuable tool for biologists in predicting pathogenic

proteins in both genomic and metagenomic datasets.

Supporting Information

File S1 Table S1, Performance of SVM modules on genomic

dataset using Amino acid composition as input (Learning

parameters: t 2 g 0.01 c 6). The point where sensitivity and

specificity is roughly equal is highlighted in bold. The point of

maximum MCC is highlighted in bold and italics. Table S2,

Performance of SVM module on the metagenomic datasets using

amino acid composition as input (parameters for set B: t 2 g 0.002

c 6 and for set A - t 2 g 0.01 c 11). The point of maximum MCC is

highlighted in bold and in Red color for Set A. The point of

maximum MCC is highlighted in bold and in Blue color for Set B.

Table S3, Performance of HMM modules on main and blind

genomic dataset. The detailed data for the predictions made by

HMM module are provided in the above table. Out of 7,340

proteins of the main dataset, HMM module could classify 89.5%

of the proteins with high Sensitivity (98.80%), Specificity (99.44%),

Accuracy (99.33%) and MCC (0.98) values. Similarly, out of 200

proteins of the blind dataset, HMM module could classify 86.5%

of the proteins with an accuracy of 98.26%. Table S4,

Performance of HMM modules on metagenomic Set A. The

detailed data for the predictions made by HMM module is

provided in the above table. Out of 48,715 protein fragments of

the main dataset, HMM module could classify 60.75% of the

proteins with high Sensitivity (99.25%), Specificity (99.78%),

Accuracy (99.69%) and MCC (0.99) values. Similarly, out of 2,604

protein fragments of the blind dataset, HMM module could

classify 52.60% of the protein fragments with an accuracy of

98.68%. Table S5, Performance of HMM modules on metage-

nomic Set B. The detailed data for the predictions made by HMM

module is provided in the above table. Out of 83,761 protein

fragments of the main dataset, HMM module could classify

41.40% of the proteins with high Sensitivity (99.68%), Specificity

(99.93%), Accuracy (99.89%) and MCC (0.99) values. Similarly,

out of 4,400 protein fragments of the blind dataset, HMM module

could classify 35.64% of the protein fragments with an accuracy of

89.24%. Table S6, Comparison of the performance of SVM-

HMM Hybrid approach with HMM and SVM modules. P –

Positive dataset, N - Negative dataset. Default threshold for SVM

Table 5. Performance of MP3 on second independent dataset consisting of proteins from virulence plasmid of Shigella flexineri.

Protein Secreted Translocated Function Inhibition MP3 prediction Tag

icsB Y Y Inhibits autophagy Complete Pathogenic S

IpgGB2 N N G-protein mimic Complete Pathogenic S

IpgD Y y Inositol phosphate phosphatase Complete Pathogenic S

VirA Y Y Microtubule-severing activity Complete Pathogenic S

mvpT N N Toxin- plasmid segregation Complete Non-Pathogenic H

IpaJ N N Unknown Complete Pathogenic S

IpgGB1 Y y G-protein mimic Intermediate Pathogenic S

OspC1 Y N Unknown Intermediate Pathogenic S

OspD3 N N Unknown Intermediate Non-Pathogenic S

OspF Y Y MAPK phosphothreonine Intermediate Pathogenic S

parA N N Plasmid segregation Intermediate Non-Pathogenic HS

OspB Y N Unknown Weak Pathogenic S

Y: refers to Yes; N: refers to No. The complete results for all the 38 proteins are provided in Table S8 in File S1.
doi:10.1371/journal.pone.0093907.t005
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module was 20.2 and default e-value of 1e-5 was used for HMM

module. Since, the generation of number of fragments depends on

the length of the proteins, therefore, there are unequal number of

fragments in the positive and negative datasets for Blind A and B.

In case of HMM, the number of correctly and incorrectly

predicted proteins does not sum up to the total number because

HMM does not make prediction on all the proteins. Table S7,

Comparison of time taken by MP3 and BLAST. Table S8,

Results of MP3 on the three groups of proteins from the Shigella

flexineri virulence plasmid. Table S9, Comparison of MP3 and

VirulentPred on different test datasets. The default threshold of 2

0.2 was used for SVM module and default e-value of 1e-5 was used

for HMM module. Figure S1, Comparison of performance of

different kernels of SVM on genomic dataset shown by ROC plot.

The area under the ROC curve (AUC) for polynomial, RBF and

linear kernel is 0.91, 0.91 and 0.86, respectively. Though, RBF

and polynomial kernel have same AUC, however, the sensitivity

value at zero threshold was higher in the polynomial kernel

(76.12%) as compared to RBF kernel (73.39%). Hence, polyno-

mial kernel was selected for the prediction by SVM modules.

Figure S2, Comparison of performance of SVM modules using

Amino Acid Composition (AAC) and dipeptide frequency as

feature input for genomic dataset shown by ROC plot. The Area

under the ROC for SVM modules with dipeptide composition and

amino acid composition are 0.91 and 0.90, respectively. The Area

under the ROC curve is almost same in both the modules,

however, the sensitivity value of AAC (63.20%) based module was

much lower as compared to dipeptide composition based module

(76.12%). Hence dipeptide composition modules were selected

over AAC based modules. Figure S3, Comparison of perfor-

mance of SVM modules using Amino Acid Composition (AAC)

and dipeptide frequency as feature input for metagenomic dataset

A shown by ROC plot. The performance of dipeptide composition

based module was far much better as compared to AAC

composition based module as apparent from the Figure. The area

under the ROC curve for AAC module and dipeptide composition

based module were 0.83 and 0.97 respectively. Hence, dipeptide

composition was selected as feature input for the SVM modules

constructed for metagenomic dataset A. Figure S4, Performance

comparison of SVM modules using Amino Acid Composition

(AAC) and dipeptide frequency as feature input for metagenomic

dataset B shown by ROC plot. The performance of dipeptide

composition based module was far much better as compared to

AAC composition based module as apparent from the Figure. The

area under the ROC curve for AAC module and dipeptide

composition based module were 0.84 and 0.95 respectively.

Hence, dipeptide composition was selected as feature input for the

SVM modules constructed for metagenomic dataset B. Figure
S5, Performance comparison of different kernels of SVM on

metagenomic dataset A (50 -100 aa) shown by ROC plot. The

area under the ROC curve for polynomial, RBF and linear kernel

is 0.97, 0.97 and 0.80 respectively. In this case, polynomial and

RBF kernels have similar performance for metagenomic dataset A.

However, in all other cases, polynomial kernel showed better

results, therefore, the polynomial kernel was selected as the default

kernel for all the analysis using SVM. Figure S6, Performance

comparison of different kernels of SVM on metagenomic dataset B

(30–50 aa) shown by ROC plot. The area under the ROC curve

for polynomial, RBF and linear kernel is 0.95, 0.91 and 0.75

respectively. As it is clearly seen the polynomial kernel is

performing better then both the other kernels, hence, polynomial

kernel was selected for the SVM modules constructed for

metagenomic dataset B. Text S1, The GI numbers of all the

hypothetical proteins of the three pathogenic strains of Mycobac-

terium which were predicted as pathogenic by MP3 are given

below.
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