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ABSTRACT

IID (Integrated Interactions Database) is the first
database providing tissue-specific protein–protein
interactions (PPIs) for model organisms and human.
IID covers six species (S. cerevisiae (yeast), C. el-
egans (worm), D. melonogaster (fly), R. norvegicus
(rat), M. musculus (mouse) and H. sapiens (human))
and up to 30 tissues per species. Users query IID
by providing a set of proteins or PPIs from any of
these organisms, and specifying species and tissues
where IID should search for interactions. If query pro-
teins are not from the selected species, IID enables
searches across species and tissues automatically
by using their orthologs; for example, retrieving in-
teractions in a given tissue, conserved in human
and mouse. Interaction data in IID comprises three
types of PPI networks: experimentally detected PPIs
from major databases, orthologous PPIs and high-
confidence computationally predicted PPIs. Interac-
tions are assigned to tissues where their proteins
pairs or encoding genes are expressed. IID is a ma-
jor replacement of the I2D interaction database, with
larger PPI networks (a total of 1,566,043 PPIs among
68,831 proteins), tissue annotations for interactions,
and new query, analysis and data visualization capa-
bilities. IID is available at http://ophid.utoronto.ca/iid.

INTRODUCTION

Cellular processes are carried out through protein–protein
interactions (PPIs); identifying these interaction networks
enables a better understanding of the mechanisms behind
different phenotypes. Known PPI networks have proven
valuable for many applications, including prediction of gene
function (1,2), identification of disease genes (3,4) and drug
discovery (5,6).

However, the usefulness of known networks is limited
by several factors: most interactions lack context informa-

tion (e.g. location and time), many interactions are missing
(high false negative rate) and many are false positives. These
limitations are especially acute for model organism interac-
tomes. This is a key problem since the tasks where networks
may be most beneficial, such as drug discovery, are primar-
ily studied in these organisms. Several types of context infor-
mation including tissue, subcellular localization and disease
associations are available for some human PPIs from the
HIPPIE database (7). Tissues for human PPIs are also avail-
able from the TissueNet database (8) and several other stud-
ies (9–11), though the reliability of tissue assignments is un-
clear. The ComPPI database (12) provides subcellular local-
izations for human and model organism PPIs. Missing in-
teractions are an important problem for human and model
organism interactomes. The human interactome, estimated
at up to 650,000 PPIs (13), may be less than one-third com-
plete. Databases of experimentally detected, curated human
PPIs (14–19) report up to approximately 150,000 interac-
tions. Online resources, such as iRefWeb (20), STRING (21)
and ConsensusPathDB (22), integrate these databases to
obtain about 240,000 human PPIs. This number can be fur-
ther extended with predicted PPIs (23–25) but databases
tend to focus on either detected or predicted interactions,
though STRING (21) includes predictions of functional
interactions. Interactions of non-human species are avail-
able in many PPI databases, but these interactomes, with
the exception of yeast, are likely far less complete than hu-
man. The largest number of detected PPIs available for a
non-yeast model organism is about 30,000 for mouse. The
problem of false positives may be easier to assess and ad-
dress than the number of missing interactions. Several PPI
databases have developed confidence scores for interactions,
and benchmarked their scores against gold standard data
sets. However, gold standard data sets, typically comprising
interactions detected by multiple small-scale screens, may
have biases (25), and can be difficult to generate for organ-
isms with few well-studied interactions.

IID aims to reduce the limitations of human and es-
pecially model organism PPI networks, making these net-
works more useful for experimental studies. Typically, ani-
mal models are used to investigate the roles of specific genes
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or proteins in disease, with the assumption that the roles
may be similar in humans. Comparing human and model
organism networks can indicate if this is the case; proteins
under investigation may play similar roles in human dis-
ease if their interactions are largely conserved, and occur
in the same tissues, in the two species. IID provides this in-
formation for human and five model organism networks
(Saccharomyces cerevisiae (yeast), Caenorhabditis elegans
(worm), Drosophila melonogaster (fly), Rattus norvegicus
(rat), Mus musculus (mouse)), and annotates interactions in
each species except yeast with up to 30 tissues. Typical input
to IID comprises a set of protein or gene IDs, and one or
more tissues and species. If input proteins are not from the
selected species, IID automatically includes their orthologs
in the query, unless specified otherwise by the user. It re-
turns interactions of the input proteins and their orthologs
occurring in any of the specified tissues and species. Alter-
natively, users can specify that interactions should be con-
served across tissues, species or both. To reduce the num-
ber of missing interactions, especially for model organisms,
IID includes orthologous interactions, generated by map-
ping experimentally detected PPIs in any of the six species
(human and five model organisms) to orthologous protein
pairs in the remaining five species. IID also includes high-
confidence predicted PPIs from genome-wide prediction
studies (23–26). This reduces the number of missing inter-
actions and can serve a similar role as confidence scores for
detected interactions that have also been predicted by one
or more studies, and thus are likely more reliable. Users can
exclude interactions based on evidence type: experimental
detection, orthology or prediction.

MATERIALS AND METHODS

Data sources

PPIs. Experimentally detected PPIs were downloaded
from seven databases: BioGRID (14) 3.4.125, DIP (19)
2015-01-01, HPRD (17) Release 9, I2D (27) 2.3, InnateDB
(18) 2015-05-23, IntAct (15) 2015-06-13 and MINT (16)
2013-03-26. Four sets of predicted PPIs were obtained: pre-
dictions from Rhodes et al. (26) with a likelihood ratio cut-
off of 381, predictions from Elefsinioti et al. (23) with prob-
abilities greater than 0.7, predictions from Zhang et al., (24)
with likelihood ratio cut-off of 600 and predictions Kotlyar
et al. (25) with a false discovery rate less than 0.6.

Gene expression. Eight gene expression data sets were
downloaded from NCBI GEO (28): GSE10246, GSE1133,
GSE23328, GSE24207, GSE3526, GSE7307, GSE7763 and
GSE9485. All data sets were normalized using the mas5
function in the affy package (29) in R. In each data set,
disease tissues were removed, replicates were averaged and
probeset IDs were mapped to Entrez Gene IDs. If a gene
was represented by multiple probesets, the one with the
highest variance was chosen.

Protein expression. Protein expression data sets were
downloaded from Human Protein Atlas (30) version 13 and
PaxDb (31) version 4.

Orthologs. Orthologs were downloaded from Homolo-
Gene (32) build 68.

Mapping between gene and protein IDs

Mappings between various gene and protein IDs were based
on UniProt (33) release 2015 06.

Assigning interactions to tissues

An interaction was assigned to a tissue if its two proteins
or encoding genes were expressed in the tissue. A gene was
considered expressed in a tissue if its mas5 normalized ex-
pression was above 200, as in Bossi et al., (9). A protein was
considered expressed in a tissue if its level based on Human
Protein Atlas (30) was anything other than ‘Not detected’
or its level based on PaxDb (31) was greater than 0.

Generating orthologous interactions

Orthologous interactions were generated by mapping ex-
perimentally detected PPIs in each of the six IID species, to
pairs of Homologene (32) orthologs in the other five species,
if such orthologs were available.

Counting graphlets

Graphlet counts were calculated using Orca (34).

RESULTS

IID contents

IID has a total of 1,566,043 PPIs and 68,831 proteins for six
species (S. cerevisiae (yeast), C. elegans (worm), D. melono-
gaster (fly), R. norvegicus (rat), M. musculus (mouse) and
H. sapiens (human))––corresponding to a 74% increase in
PPIs and a 10% increase in proteins over I2D version 2.3
(Table 1). Interactions are based on three types of evidence:
experimental detection, orthology and in silico prediction.
Predictions are primarily available for human, and repre-
sent 78% of the human network. Orthologous interactions
are most important for model organisms other than yeast,
representing between 43% and 97% of interactions in these
networks.

For five species other than yeast, IID annotates interac-
tions with up to 30 tissues. Available tissues for each species
are shown in Supplementary Table S1. Most PPIs (46–92%)
are annotated with at least one tissue (Figure 1). These PPIs
are rarely tissue-specific; about two-thirds are annotated to
more than half of the tissues in a species (Figure 2). Surpris-
ingly, the trends are very similar across species. Similarly, all
tissues in a species are associated with over 55% of PPIs in
the species (Figure 3).

Human PPI networks in all 29 tissues are well conserved
in mouse, and to a lesser extent in other model organisms
(Figure 4). Over 85% of human experimentally detected
PPIs in a tissue can be mapped to orthologous protein pairs
in mouse, and over half of these orthologous pairs are an-
notated to the same tissue in mouse.
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Table 1. Numbers of interactions in IID compared with I2D 2.3

Database IID I2D

Species/Prediction Experimental Orthologous Predicted Total Experimental Orthologous Total

Human 204,474 57,829 664,643 850,636 183,524 55,985 228,847
Mouse 29,273 204,305 - 225,247 19,090 190,049 203,114
Rat 5,665 168,137 - 173,802 4,178 116,649 119,527
Fly 59,200 43,037 - 100,316 53,325 45,849 97,967
Worm 13,678 28,567 - 41,544 11,555 39,606 50,486
Yeast 144,526 6,996 61,720 176,351 191,673 12,810 200,587
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Figure 1. Percentages of PPIs annotated with tissues.
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Figure 2. Tissue specificity of PPIs (i.e. are most PPIs annotated to few
or many tissues). The figure considers only PPIs associated with at least 1
tissue, and shows the percentage of these PPIs (y-axis) associated with up
to a given percentage (i.e. ≤ k percent) of tissues (x-axis)
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Figure 3. Tissue distribution of PPIs. Shown are percentages of each
species’ PPIs in given tissues.

Querying IID

Querying by protein or gene IDs. The main page of the IID
website accepts gene or protein IDs and returns their PPIs.
Inputs can be any combination of gene symbols, UniProt
IDs or Entrez IDs separated by spaces, tabs or new lines.
The IDs may be from one or more of the six species in IID.
Checkboxes beside the input window control the types of
evidence that are required for interactions: experimental de-
tection, orthology or computational prediction. The second
section of the page controls which species are considered in
the search. Any combination of species can be selected from
the list. Two checkboxes beside the list control how IID
searches across species. One checkbox determines whether
IID uses orthologs of input proteins in its search, if the pro-
teins are not from the selected species. A second checkbox
controls whether returned interactions can be in any of the
selected species (default) or should be conserved across all
selected species. The third section of the page controls which
tissues will be considered in the search. Any combination
can be selected from a list of 30 tissues, but not all tissues are
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Figure 4. Conservation of human tissue-specific PPI networks in model organisms. IID annotates human PPIs with up to 29 tissues. For each of these
tissues, the figure shows the number of experimentally detected human PPIs annotated with the tissue (black), the numbers of orthologous protein pairs
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Figure 5. Clustering human tissues by graphlet degree distributions.

available in each species––a help symbol beside the tissue list
shows available tissues for each species. Checkboxes beside
the list control how IID searches across tissues: whether in-
teractions can be in any selected tissues (default) or must be
present in all, and whether tissue annotations can be based
on either gene or protein expression, or must be based on
both. If the selected tissue is set to ‘any’, IID does not filter
interactions by tissue.

The last section of the page controls the output from IID.
Search results can be displayed as a table, downloaded to
a text file or viewed as a series of summary figures. A ta-
ble format shows one interaction per row: two protein IDs,
species and evidence. Users can choose to include infor-
mation about the source of the interaction and the tissues
where it is present. A graphical summary of results shows
the percentages of interactions in different species and tis-
sues, and network topology characteristics of each input
protein. Network topology is analysed using graphlets (35)
and displayed as graphlet degree distributions for each in-
put protein. We found that clustering human tissue net-
works by graphlet degree distribution distance (35) iden-
tified expected similarities (e.g., amygdala and hypothala-
mus) and unforeseen ones (e.g., adipose tissue and salivary
gland) (Figure 5).

Querying by interaction. Querying IID with a set of in-
teractions can serve a number of useful functions: anno-
tating interactions with evidence or tissues, filtering by ev-
idence or tissues, mapping to orthologous interactions in
other species, keeping only interactions conserved across
species and many other possibilities. The input, selection,
and output for this query are the same as for single pro-
teins. Input is still a list of gene symbols, UniProt IDs or
Entrez IDs, except IID assumes that every consecutive pair

of IDs is an interaction. Query interactions can be mapped
to other species simply by selecting these species from the
list. Interactions can be filtered by selecting species or tis-
sues; users can specify whether retained interactions should
be in at least one of the selected species or tissues, or in all
of them.

DISCUSSION

IID is the next generation of the I2D database, providing
tissue-specific networks, new query and visualization capa-
bilities and 74% more interactions. Its tissue annotations
are available for human and four model organism networks,
and are based on gene expression and proteomics data; an
interaction is assumed to occur in a tissue if the two pro-
teins or encoding genes are expressed in the tissue. IID al-
lows users to easily find tissue-specific interactions of their
proteins across multiple species––with the option of retain-
ing only interactions conserved across species or tissues.
IID also provides queries by interactions, allowing users to
quickly annotate their network with interaction evidence or
tissues, filter by evidence, tissues, or species, and map their
network to other species. To provide more comprehensive
networks, IID includes PPI predictions from four indepen-
dent studies (23–26), totalling 664,643 interactions.

IID’s method of mapping interactions to tissues, while
commonly used (8–11), does not guarantee that an inter-
action will occur in a tissue. For example, expression of two
genes in a given tissue may not mean that their two pro-
teins will be present as well (36). Even if the two proteins
are present, an interaction may not occur due to numerous
reasons such as inappropriate sub-cellular localizations or
post-translational modifications. Conversely, when an inter-
action is not mapped to a tissue, the interaction may still
occur in the tissue under certain conditions. IID tissue as-
signments only indicate increased or decreased chances of
occurrence.

Despite this uncertainty, tissue annotations still provide
key benefits. For most applications of PPI networks it is es-
sential to separate interactions that are happening in one tis-
sue and not in another; otherwise the network may have lit-
tle relation to the tissues being studied. For example, a car-
diologist would need interactions typically present in heart
tissue, and would need to exclude interactions that only oc-
cur in other tissues. In other cases, for example when test-
ing a drug in a mouse model of human disease, it is more
important to consider interactions that are shared between
organisms and/or tissues. Applications of IID include selec-
tion of animal models, drug target discovery and pathway
redefinition.

IID will be continuously maintained and updated every 6
months. Moreover, a curation of disease related interactions
will be performed to include more specificity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Richard Lu and Mark Abovsky who
maintain I2D.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv1115/-/DC1


Nucleic Acids Research, 2016, Vol. 44, Database issue D541

FUNDING

University of Toronto McLaughlin Centre; Natural Sci-
ences Research Council [NSERC 203475]; Canada Foun-
dation for Innovation [CFI 12301, 203373, 29272, 225404,
30865]; Canada Research Chair Program [CRC 203373,
225404]; Ontario Research Fund [RE-03-020]; Ontario Re-
search Fund [GL2-01-030]; US Army DOD W81XWH-
12-1-0501; IBM and Ian Lawson van Toch Fellowship
Award. Funding for open access charge: Ontario Re-
search Fund [GL2-01-030]; Canada Research Chair Pro-
gram [CRC 203373, 225404].
Conflict of interest statement. None declared.

REFERENCES
1. Warde-Farley,D., Donaldson,S.L., Comes,O., Zuberi,K., Badrawi,R.,

Chao,P., Franz,M., Grouios,C., Kazi,F., Lopes,C.T. et al. (2010) The
GeneMANIA prediction server: biological network integration for
gene prioritization and predicting gene function. Nucleic Acids Res.,
38, W214–W220.

2. Mostafavi,S. and Morris,Q. (2012) Combining many interaction
networks to predict gene function and analyze gene lists. Proteomics,
12, 1687–1696.

3. Navlakha,S. and Kingsford,C. (2010) The power of protein
interaction networks for associating genes with diseases.
Bioinformatics, 26, 1057–1063.

4. Wang,X., Gulbahce,N. and Yu,H. (2011) Network-based methods for
human disease gene prediction. Br. Funct. Genomics, 10, 280–293.

5. Barabasi,A.L., Gulbahce,N. and Loscalzo,J. (2011) Network
medicine: a network-based approach to human disease. Nat. Rev.
Genet., 12, 56–68.

6. De Las Rivas,J. and Prieto,C. (2012) Protein interactions: mapping
interactome networks to support drug target discovery and selection.
Methods Mol. Biol., 910, 279–296.

7. Schaefer,M.H., Lopes,T.J.S., Mah,N., Shoemaker,J.E., Matsuoka,Y.,
Fontaine,J.-F., Louis-Jeune,C., Eisfeld,A.J., Neumann,G.,
Perez-Iratxeta,C. et al. (2013) Adding protein context to the human
protein–protein interaction network to reveal meaningful
interactions. PLoS Comput. Biol., 9, e1002860.

8. Barshir,R., Basha,O., Eluk,A., Smoly,I.Y., Lan,A. and
Yeger-Lotem,E. (2013) The TissueNet database of human tissue
protein–protein interactions. Nucleic Acids Res., 41, D841–D844.

9. Bossi,A. and Lehner,B. (2009) Tissue specificity and the human
protein interaction network. Mol. Syst. Biol., 5, 260.

10. Lopes,T.J.S., Schaefer,M., Shoemaker,J., Matsuoka,Y.,
Fontaine,J.-F., Neumann,G., Andrade-Navarro,M.A., Kawaoka,Y.
and Kitano,H. (2011) Tissue-specific subnetworks and characteristics
of publicly available human protein interaction databases.
Bioinformatics, 27, 2414–2421.

11. Liu,W., Wang,J., Wang,T. and Xie,H. (2014) Construction and
analyses of human large-scale tissue specific networks. PLoS One, 9,
e115074.

12. Veres,D.V., Gyurkó,D.M., Thaler,B., Szalay,K.Z., Fazekas,D.,
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