
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Vladimir Spiegelman,
Penn State Milton S. Hershey Medical
Center, United States

REVIEWED BY

J.F. Deleuze,
Commissariat àl’Energie Atomique et
aux Energies Alternatives (CEA),
France
Serena Bonin,
University of Trieste, Italy
Jinhui Liu,
Nanjing Medical University, China

*CORRESPONDENCE

Yan Han
hanyanhyy10@163.com
Yan Li
527339819@qq.com

SPECIALTY SECTION

This article was submitted to
Skin Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 09 May 2022

ACCEPTED 27 June 2022
PUBLISHED 25 July 2022

CITATION

Xing J, Jia Z, Li Y and Han Y (2022)
Construction of immunotherapy-
related prognostic gene signature and
small molecule drug prediction for
cutaneous melanoma.
Front. Oncol. 12:939385.
doi: 10.3389/fonc.2022.939385

COPYRIGHT

© 2022 Xing, Jia, Li and Han. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 25 July 2022

DOI 10.3389/fonc.2022.939385
Construction of
immunotherapy-related
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Background: Cutaneous melanoma (CM), a kind of skin cancer with a high rate

of advanced mortality, exhibits a wide variety of driver and transmitter gene

alterations in the immunological tumor microenvironment (TME) associated

with tumor cell survival and proliferation.

Methods: We analyzed the immunological infiltration of TME cells in normal and

malignant tissues using 469 CM and 556 normal skin samples. We used a single

sample gene set enrichment assay (ssGSEA) to quantify the relative abundance of

28 cells, then used the LASSO COX regression model to develop a riskScore

prognostic model, followed by a small molecule drug screening and molecular

docking validation, which was then validated using qRT-PCR and IHC.

Results: We developed a prognosis model around seven essential protective

genes for the first time, dramatically elevated in tumor tissues, as did immune

cell infiltration. Multivariate Cox regression results indicated that riskScore is an

independent and robust prognostic indicator, and its predictive value in

immunotherapy was verified. Additionally, we identified Gabapentin as a

possible small molecule therapeutic for CM.

Conclusions: A riskScore model was developed in this work to analyze patient

prognosis, TME cell infiltration features, and treatment responsiveness. The

development of this model not only aids in predicting patient response to

immunotherapy but also has significant implications for the development of novel

immunotherapeutic agents and the promotion of tailored treatment regimens.
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Introduction

The incidence of cutaneous melanoma (CM), a malignant tumor

of the skin andmucousmembranes, has been increasing globally over

the past few decades. There were more than 100,000 cases of CM

recorded in the United States in 2021 (1). Although CM accounts for

only5%of all skin cancers, it is responsible forup to80%of skin cancer

mortality (2). The incidence of CM is rising by 3% to 7% annually,

posing a serious threat to human life and health (3). Overall 10-year

survival statistics for patients with early-stage CM (stages I and II)

remain favorable, ranging between 75%and94% (4). In general, early-

stage CMhas a high cure rate after complete resection. In contrast, the

mortality rate of patientswith advancedCM(stages III and IV) is up to

70%, and the 5-year survival rate is less than 16% (5). CM comprises a

small proportion of all skin tumors; compared to other skin tumors. It

has clinical features such as high malignancy, high recurrence rate,

facile metastasis, high late mortality, and high therapeutic resistance

(6–8). Despite increased clinical attention, CM’s clinical efficacy and

patient prognosis have not met expectations due to its complicated

genetic and molecular mechanisms (9).

With the advent of BRAF inhibitors, the therapy and

management of CM changed dramatically; since then, an

increasing number of immune checkpoint inhibitors (ICIs) have

been employed in the treatment of CM (10, 11). In a minority of

CM patients with lasting responses, immunotherapies such as ICIs

(anti-PD-1/L1 antibodies and anti-CTLA-4 antibodies) have a

favorable prognosis. However, most patients do not have a

favorable prognosis from them. This difference in clinical

response rates across tumors of the same and different types

indicates that tumor tissue has innate and acquired

immunological resistance to immune checkpoints (12–14). Many

researchers currently believe that the tumor microenvironment

(TME) is a network of tumor cells and stromal cells (fibroblasts,

vascular cells, and inflammatory immune cells) that play an

important role in immune evasion and immunotherapy resistance

(15). In recent years, an increasing number of studies have focused

on TME to construct prognostic models with excellent performance

and clinical application by comprehensively portraying the immune

infiltration landscape (16–19). Therefore, this study employed

immune-related gene sets in combination with clinical data from

multiple databases to construct a prediction model with TME

immune cell infiltration features at its core. In addition, this study

employed highly expressed tumor-protective genes as the core of

the model for the first time, as well as small molecule therapeutic

screening and molecular docking validation.
Material and method

Gene expression profiles of CM and
normal skin tissue

We first downloaded the TCGA TARGET GTEx dataset from

the UCSC database (https://xena.ucsc.edu/). We extracted the
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normal group in TCGA and the normal skin data in GTEx as

the control group. Correspondingly, we used TCGA-SKCM as the

tumor group. What’s more, we utilized GSE54467 as a validation

group. Our study included 1025 CM expression profile cohorts,

including the TCGA and GTEx. Using the R package

TCGAbiolinks, we obtained the COUNT gene expression values

from public genomic data (20). Our inclusion criteria were: (i) CM

diagnosed by histopathological examination in accordance with

the International Classification of Diseases, Oncology, Third

Edition (ICD-O-3-8772/3,8773/3,8774/3) classification. (ii)

Melanoma whose primary site is located in the skin (melanoma

of the skin in the World Health Organization 2008 site code, the

corresponding primary site code is C49.0-49.6). Exclusion criteria

were: (i) Cases with incomplete clinical information, such as race,

American Joint Committee on Cancer (AJCC) stage, TNM stage,

site, tumor thickness, and whether ulceration was unknown were

excluded. (ii) Patient reports were limited to autopsy and death

certificates. (iii) The cause of death was not known. This study

included a total of 469 CM samples and 556 normal samples. We

utilized the R package Combat algorithm to correct for batch

effects due to abiotic bias. In addition, we downloaded immune-

related genes from the immport (https://www.immp ort.orgc)

database for subsequent analysis.
Screening of immune-related
differentially expressed genes (DEGs)

To identify key molecules associated with patients’ prognosis

and TME cellular immune infiltration characteristics, we

identified differentially expressed genes (DEGs) in CM and

normal skin tissue using the empirical Bayes method in the R

language limma-voom package. We used |logFC|≥2 and a false

discovery rate adjust p-value<0.01 as a cut-off criterion to screen

significantly DEGs. In addition, we utilized the R package

ClusterProfiler for gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis to

investigate further the potential biological processes related to

immune-related DEGs (20).
Identification of key molecules

First, we submitted all DEGs to the STRING database to

generate network maps of their protein-to-protein interactions

(PPI). Then, we identify significant sub-network modules from

the PPI network using the MCODE plugin for Cytoscape. We

established the cutoff criterion as follows: degree cutoff=10, node

score cutoff=0.2, k-core=2, max.depth=100. We will choose

genes with high connection and significant predictive value

(P<0.01) among significant subnetwork modules as important

molecules (21). Finally, we chose CD86, CXCL9, FCGR3A,

GZMB, PRF1, STAT1, and TLR7 as our key molecules. We
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utilized TCGA mutation data to show key molecules’ mutation

frequencies and mutation types in CM patients. A total of 467

CM patients with complete clinical annotation were available for

CM survival analysis. We utilized the R package survminer to

determine appropriate cut-off points, classified patients into

high- and low-risk groups and compared the protein

expression of key molecules in CM and normal skin tissue

using the Human Protein Atlas (https://www.prote inatlas.org/).
Extrapolation of TME infiltrating cells

We utilized single sample gene set enrichment analysis

(ssGSEA) to estimate the infiltration abundance of each TME

cell based on the Cibersort gene set (22). To control the bias

induced by tumor purity, we employed the ESTIMATE

algorithm to accommodate the enrichment scores for each

TME cell subtype (23). We employed 28 human TME cell

subtypes and expressed the abundance of each TME-

infiltrating cell by the adjusted enrichment scores determined

using ssGSEA.
Construction of a key molecules-based
prognostic model

We constructed riskScore models based on the involvement

of these seven critical genes in the course of CM to analyze the

relevance of these molecules in patient prognosis, TME immune

cell infiltration, and immunotherapy responsiveness. We created

prognostic models for fitting the overall survival (OS) of CM

patients using least absolute shrinkage and selection operator

(LASSO) Cox regression analysis. In order to construct the

optimal prognostic model, we utilized the R language’s glmnet

package to select and reduce the variables so that some of the

regression coefficients were strictly equal to 0. In addition, we

employ 10 cross-validations to establish the penalty parameter

(l) of the prognostic model and adhere to the minimum

criterion (the value of l corresponds to the lowest likelihood

deviation) (24). The riskScore is defined as riskScore =

on
i=1Coefficient � Expression. The coefficient is defined as the

LASSO COX regression coefficient, and Expression is defined as

the expression of key genes. Furthermore, we utilized GSE54467

as a validation group to verify the performance of our riskScore.
Access to immunotherapy cohort and
clinical information

We included the IMvigor210 immunotherapy group from

previous studies with complete clinical and transcriptome data

in our analysis (25). The IMvigor210 cohort focuses on the
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efficacy of an anti-PD-L1 antibody (pembrolizumab) in patients

with advanced uroepithelial carcinoma. IMvigor210 cohort has

been widely used in lung adenocarcinoma (26), colon cancer

(27), breast cancer (28), hepatocellular carcinoma (29), and head

and neck squamous cell carcinoma (30) as a high-quality and

comprehensive immunotherapy cohort to evaluate the

predictive effect of immunotherapy in different types of tumor

prediction models. We downloaded the complete transcriptomic

data and detailed clinical information from the relevant URL

(http://research-pub.gene.com/IMvigor210CoreBiologies/).

Afterward, using the R package DEseq2, we normalized the data

and transformed the count values to TPM values.
Chemotherapy drug sensitivity analysis,
small molecule drug screening and
molecular docking validation

First, we utilized the R package pRRophetic to examine the

half-maximal inhibitory concentrations (IC50) of common

chemotherapeutic agents and targeted medicines to quantify

our riskScore model’s prediction power for CM treatment.

Following that, we calculated medications with significantly

negative correlations with seven highly elevated genes using the

Cmap (Connectivity Map) database and then selected the top 10

drugs (31). Furthermore, we obtained the SDF 2D structure files

of the 10 drug candidates from the Pubchem database,

transformed the small molecules into 3D structure files using

Autodock MGLTools, performed energy optimization, and then

exported the files in PDBQT format. We downloaded

seven highly up-regulated genes from the PDB database to

determine crystal structures. However, CXCL9 and PRF1

were excluded from the subsequent molecular docking

investigation because they lacked crystal structure information.

The receptor crystal structures were processed in bulk using

the prepare_recpetor4.py script in Autodock MGLTools and

then docked to small molecules and receptor proteins using

Autodock Vina (version 1.1.2). In addition, Pymol was

employed to map the small molecule-protein binding and

visualize molecular docking results (32). Finally, the

ComplexHeatmap R package was employed to generate the

docking scoring heat map.
Validation of key molecules in cells and
tissues

We utilized the A375 human melanoma cell line, SK-MEL-28

human melanoma cell line, human immortalized keratin-forming

cell line (Hacat), and human melanocyte cell line (PIG1) to verify

important genes in CM and normal skin tissues. All cells were

grown in RPMI-1640 media supplemented with 10% fetal bovine

serum in a 37°C, 5% CO2 atmosphere.
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Then, we obtained 20 fresh frozen CM tumor tissue and normal

skin tissue specimens for self-matching and separated them into the

tumor and normal groups. The specimens and patients were in one-

to-one correspondence. The Human Research Ethics Committee of

the Chinese PLA General Hospital authorized all experimental

components, and patients signed informed permission forms. We

utilized qRT-PCR to detect the relative expression of seven key

genes in fresh frozen specimens. Using Trizol reagent, we extracted

total RNA from the four cell lines and tissues listed above. RNA

concentrat ion was determined using a NanoDrop

spectrophotometer. We synthesized cDNA using PrimerScript

5×RT Master Mix (BioRad), and mRNA expression levels were

quantified using a 2×SYBR Green PCR Kit based on fresh frozen

specimens. GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

was utilized as an internal reference to normalize the mRNA

expression levels of each gene. Utilizing the 2-DDCt approach, we

quantified the real-time PCR analysis and determined the relative

expression of essential genes individually in cells and human

specimen tissues. Beijing Huada Corporation produced all

primers. We presented the primer sequences and patient

specimens’ information in Supplemental Tables 1, 2. In addition,

we downloaded immunohistochemical (IHC) images of key genes’

CM and normal skin tissue from the Human Protein Atlas

database. We selected a suitable field of view in each IHC image

of normal skin tissues and CM for semi-quantitative analysis of

protein expression levels using Image Pro Plus 6.0.
Statistical analysis

We utilized the Wilcoxon test to analyze the differences

between the two groups in this study. The Kruskal-Wallis test

and one-way ANOVAwere used to determine the significance of

differences between three or more groups. Spearman’s analysis

was used for correlation testing. Moreover, we utilized univariate

Cox regression models to construct hazard ratios (HR) and 95

percent confidence intervals (95%CI). We also employed

multivariate Cox model models to investigate the predictive

potential of riskScore as an independent prognostic biomarker

for assessing patient prognosis. All statistical P values in this

investigation were two-tailed, and P<0.05 was considered

statistically significant.
Results

Genomic mapping differences between
normal and CM

The flowchart of the study is depicted in Supplementary

Figure 1. Using cluster analysis and principal component analysis

(PCA), we first demonstrated the genetic differences between

normal skin tissues and CM (Figures 1A, B). By comparing 469
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CM and 556 normal skin tissues, we discovered that the expression

of 4555 genes was significantly altered in tumor tissues against

normal tissues (P<0.01, |logFC|≥2), with 2296 genes considerably

up-regulated and 2259 genes significantly down-regulated

(Figure 1C). The GO enrichment analysis shows that CM genetic

variants are involved in TME immune components and matrix-

related biological processes such as cytokine-mediated signaling, cell

chemotaxis, and positive regulation of response to external

stimulation (Figures 1D–G). According to the KEGG pathway,

these genes also participate in immune-related signaling pathways

such as cytokine-cytokine receptor interaction, viral protein

interaction with the cytokine-cytokine receptor, viral protein

interaction with cytokine and cytokine receptor, and natural killer

cell-mediated cytotoxicity (Figure 1H).The heatmap results also

imply that immunological and matrix-related pathways play a

significant role in the CM genome (Figure 1I). The PPI network

reveals a close interaction between CM-related genes at the protein

level (Figure 2A). CD86, CXCL9, FCGR3A, GZMB, PRF1, STAT1,

and TLR7 were identified as key molecules with strong connectivity

in a sub-network module with solid predictive value. We also

investigated the protein correlation between these key molecules

(Figures 2B, C). We also discovered that the expression of key

molecules in CM samples is substantially higher than in normal

samples (Figure 2D).We performed dimensionality reduction using

PCA to determine if these critical molecules can distinguish CM

samples from normal samples. We discovered two completely

disjoint populations, indicating that the expression patterns of

critical molecules in normal and CM samples are distinct

(Figure 2E). In addition, we demonstrated the interaction of

numerous immune molecules in the CM TME, the signaling

cascade and transmission, and the distinct regulation patterns

between molecules (Figure 2F).
Identify key molecules, mutation and
survival analysis

We obtained immunohistochemistry results from the HPA

database for seven critical molecules and qualitatively identified

protein-level expression variations between normal tissues and

CM samples (Figures 3A, B). In order to validate the differential

and substantial expression of key molecules in CM tissues, we

examined the expression of these crucial molecules in cell lines

and 20 pairs of tumors and surrounding normal tissues.

Spearman correlation analysis identified a significant positive

correlation between important molecules and a strong

interaction between these molecules (Figure 3C). The

mutations of CM’s essential molecules were then studied.

Among the 467 patients with complete clinical annotation

information, 72 patients (15.42%) had mutations in at least

one gene locus. CD86 exhibited the highest frequency of

mutations in CM samples, followed by TLR7, and all essential

molecules were revealed to have gene mutations (Figure 3D).
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FIGURE 1

Difference of genomic landscape between normal and cutaneous melanoma. (A) Hierarchical clustering of differentially expressed genes
between normal and cutaneous melanoma samples. Red represents up-regulated and blue represents down-regulated. (B) PCA visualization of
differentially expressed genes. (C) Volcano plot of differentially expressed genes. (D) Biological processes enrichment of gene ontology
functional enrichment. (E) Molecular function enrichment of gene ontology functional enrichment. (F) Chord plot of gene ontology functional
enrichment. The left half-circle indicates that the genes are sorted by |logFC| and the right half-circle indicates that the gene ontology
enrichment analysis term is sorted by strong and weak variation. Red represents up-regulation and blue represents down-regulation, and color
shades represent fold change. (G) Cellular component enrichment of gene ontology functional enrichment. (H) KEGG pathway enrichment
analyses for differentially expressed genes. All enriched pathways were significant and the color depth represented enriched adjusted P value. (I)
Heatmap of differentially expressed genes between normal and cutaneous melanoma samples. Different colors represent different interaction
strength relationships.
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The expression and mutation of these essential molecules may

play a crucial role in the growth and metastasis of CM, as

deduced by our findings. In addition, we probed into the

predictive value of key molecules based on an independent
Frontiers in Oncology 06
CM cohort from the TCGA database using survival analysis.

The CM cohort in TCGA also demonstrated variations in the

expression of essential molecules between normal and tumor

samples. For survival analysis, 467 CM patients with complete
A B

D E

F

C

FIGURE 2

Identification of key molecules in cutaneous melanoma. (A) Construction of protein-protein interaction (PPI) network among differentially
expressed genes. (B) Volcano plot constructed with the cut-off criterion P<0.05 and |logFC|≥1. (C) The relationship among the seven key
molecules at the protein level, each gene is closely linked to each other at the protein level. (D) The seven key molecules expressed in the
normal skin and cutaneous melanoma (****P <0.0001). (E) Principal component analysis for the key molecules revealed. This result shows that
seven key molecules can distinguish very well between normal skin and cutaneous melanoma. (F) Effect of immune and stromal cells on
cutaneous melanoma.
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clinical annotation were available. Patients with high expression

of CD86, CXCL9, FCGR3A, GZMB, PRF1, STAT1, and TLR7

had a significant survival benefit over those with low expression

(Figures 4A–G). Seven critical molecules displayed significantly

greater expression levels in CM, and all seven key molecules as

protective molecules significantly increased CM patient survival.
Frontiers in Oncology 07
Evaluation of immune cell infiltration
characteristics of tumor
microenvironment

To further investigate the role of identified critical molecules

in TME immune cell infiltration in CM patients, we analyzed the
A

B

D

C

FIGURE 3

Multi-omics analysis of identified seven key molecules. (A, B) The immunohistochemical staining results revealed significant differences of key
molecules (CD86, CXCL9, FCRG3A, GZMB, PRF1, STAT1, TLR7) at the protein expression between normal skin and cutaneous melanoma
obtained at the Human Proteins Atlas. (C) The correlation between the seven key molecules using spearman analysis. The color area represents
the magnitude of correlation intensity, red represents positive correlation and blue represents negative correlation. The key molecules in the
figure show very good correlation with each other. (D) Mutation landscape of seven key molecules in 467 samples of TCGA cohort. Different
color modules represent different molecular mutation frequencies.
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infiltration of 28 types of TME cells in normal and tumor tissues

(Figure 5A). T helper cells (type 1 and 2), activated B cells, CD4+

T cells, CD8+ T cells, immature B cells, regulatory T cells, natural

killer cell, activated dendritic cell, plasmacytoid dendritic cell,

MDSC, monocyte, memory B cell, macrophage, gamma delta T

cell, effector memory CD4+ T cells, CD56 dim natural killer cell,

immature dendritic cell, eosinophil, and CD8+ T cells were all

highly plentiful in tumor tissue. However, other cell subsets were

notably abundant in normal tissue. Afterward, using the PCA

algorithm, we compared the infiltration patterns of TME cells in

normal and tumor tissues to determine if there were any

differences. After dimensionality reduction, the results

demonstrated the existence of two distinct populations of

TME cells (Figure 5B). We then measured immunological and

mesenchymal activity in the CM microenvironment using the

ESTIMATE algorithm. It was revealed that immunological and

mesenchymal activities were substantially greater in tumor

tissues than in normal skin tissues (Figures 5C, D). To

examine the link between critical molecules and immune cells

in the TME, we correlated key molecules with cellular fractions

in the TME. Spearman correlation analysis demonstrated that

these molecules were highly positively associated with the

majority of TME cellular fractions, except for T helper cells,

CD56 bright natural killer cells, and neutrophil cell infiltration

(Figure 5E). In addition, the expression of seven essential

molecules demonstrated a significant positive association with

PD-L2 and PD-L1 and a negative correlation with CTLA4
Frontiers in Oncology 08
(Figure 5F). CTLA4 had the most significant connection with

STAT1 and TLR7 (Figures 5G, H).
Correlation model construction for
prognosis and immunotherapy based on
key molecules

We incorporated patient prognostic information and TME

immune cell infiltration status to build the riskScore model, and

we integrated the role of these essential molecules using LASSO

Cox regression. RiskScore was determined by the expression of

the four most representative important molecules, according to

the findings (Figures 6A, B). We classified the patients into high-

risk and low-risk groups based on the critical value of -7.07

(Figure 6C) calculated using the MaxStat R package. We

observed that the low-risk group had a considerable survival

advantage over the high-risk group (Figure 6D). In addition, the

expression of these essential molecules is significantly higher in

low-risk tumors than in high-risk tumors, implying that these

essential molecules have a protective role in the low-risk group,

which is consistent with the findings of our previous study

(Figures 6E, F). With rising risk, patient mortality might climb

significantly (Figures 6G, H). Our examination of multivariate

COX regression models incorporating basic clinical and

pathological information about the patients demonstrated that

riskScore could be an independent and robust predictive
A B D

E F G

C

FIGURE 4

Seven Kaplan-Meier curves are based on samples from the GTEX and TCGA databases, extracting data from these seven genes and combining
them with survival times. Specific information on the number of people is shown in the figure. (A-G) Survival analysis for seven key molecules.
Seven key molecules which includes STAT1, CXCL9, CD86, FCGR3A, TLR7, PRF1, GZMB.
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biomarker to evaluate CM patients (Figure 7A). Additionally, we

developed a nomogram that combines the riskScore with

independent clinical prognostic indicators to estimate the

likelihood of patient mortality (Figure 7B). The calibration

plots demonstrated that the generated nomogram had a

superior prediction ability (Figure 7C). We displayed ROC
Frontiers in Oncology 09
curves based on TCGA data with AUC of 0.757, 0.675, and

0.657 for 1, 3, and 5 years. Then we use GSE54467 as a validation

set to show the performance of our riskScore, with AUC of

0.820, 0.769, and 0.702 for 1, 3, and 5 years, indicating the

riskScore’s predictive performance is acceptable and can provide

a reference for clinical decision-making (Figures 7D–I).
A

B D

E

F G H

C

FIGURE 5

Evaluation of 28 TME immune cell infiltration characterization. (A) Differences in 28 TME infiltration cells between normal skin and cutaneous
melanoma (**P <0.01, ****P <0.0001). The results showed that all immune cells were significantly different between the two types of samples.
(B) Principal component analysis. The results demonstrated that the two separate taxa, suggesting there existed significantly differences in the
landscape of 28 TME immune cell infiltration between normal skin and cutaneous melanoma. (C) Difference in StromalScore between normal
and tumor tissues using ESTIMATE algorithm. (D) Difference in ImmuneScore between normal and tumor tissues using ESTIMATE algorithm. (E)
The correlation between seven key molecule and each TME infiltration cell type. The results showed a strong correlation between them, red
represents positive and blue represents negative. (*P<0.05, **P <0.01) (F) The correlation between the seven key molecules and four immune
checkpoint molecules. The results demonstrated a strong correlation between them. (**P <0.01) (G) The correlation between STAT1 expression
and CTLA4 expression. (H) The correlation between TLR7 expression and CTLA4 expression.
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We utilized gene set enrichment analysis (GSEA) to

investigate the activated biological pathways in the low-risk

and high-risk groups. Compared to the low-risk group,

cancer-related pathways such as P53, PI3K-AKT-mTOR,

NOTCH, and WNT were considerably activated in the high-

risk group (Figures 7J–Q). Then we analyzed the difference in

TME cell infiltration between the low-risk and high-risk groups,

and we discovered that all immune infiltrating cells, except for

CD56 dim natural killer cells and CD56 bright natural killer

cells, were significantly higher in the low-risk group than in the

high-risk group (Figure 8A). We observed that riskScore values

were strongly and positively related to the majority of TME cell

infiltrating rates using correlation analysis (Figure 8B). We also

discovered a significant and positive correlation between

riskScore values and the expression of immune checkpoint

molecules, indicating the potential predictive role of riskScore

in predicting clinical response to immunotherapy and providing

a foundation for developing novel immunotherapies

(Figure 8C). As immune checkpoint blockade (ICB) has made

advances in the treatment of CM over the past few years, we

verified riskScore’s ability to predict the clinical response of

patients to ICB therapy. Low-risk patients in the IMvigor210

cohort who received anti-PD-L1 treatment experienced

significant clinical benefits and prolonged survival

(Supplementary Figure 2A). The patients with complete

remission (CR) or stable disease (SD) had a lower risk

(Supplementary Figure 2B). Moreover, we noticed that low-

risk individuals responded significantly better to PD-L1 blocking

therapy than high-risk patients (Supplementary Figure 2C).
Chemotherapy drug sensitivity analysis,
small molecule drug screening and
molecular docking validation

We analyzed 20 common chemotherapeutic and targeted

medications and discovered significant differences in IC50 values

between the high-risk and low-risk groups (Supplementary

Figure 3). The results indicate that our riskScore signature can

uncover prospective biomarkers of chemotherapy and targeted

medication sensitivity. Then, we calculated the connection

between medication-treated expression profiles and highly up-

regulated expression profiles of seven key genes using the Cmap

database. We then identified the top ten pharmaceuticals with

negative correlations as potential treatment candidates (Table 1).

Supplementary Figures 4A–J shows the chemical structures of these

ten compounds. AGI-6780 and Zofenopril-calcium bind well to

GZMB, indicating that these two small compounds can be

employed as possible target medicines to target GZMB. In

addition, we utilized Pymol to generate a heatmap of CD86,

FCGR3A, STAT1, TLR7, and GZMB protein binding to the most

strongly bound small molecules or the top twomost strongly bound

small molecules (Figure 9). The results demonstrated that the small
Frontiers in Oncology 10
molecules of CD86 bound to Baricitinib formed hydrogen bonds

with THR-69, SER-67, and GLN-16. The binding of FCGR3A to

Zofenopril-calcium formed hydrogen bonds with HIS-111 and

ARG-109. GZMB binding to Zofenopril-calcium formed

hydrogen bonds with LYS-113 and ARG-87, while AGI-6780

binding formed no hydrogen bonds. Small molecules in the

binding of STAT1 to Calcipotriol formed hydrogen bonds with

GLU-353 and GLN-271, and small molecules in the binding of

TLR7 to Zofenopril-calcium formed hydrogen bonds mainly with

LYS-464. The majority of receptor and ligand binding energies are

less than -7 kcal.mol-1, indicating that the target protein and active

ingredient can bind spontaneously with high affinity and stable

conformation, and thus small molecule medicines are likely to act

on these targets. To illustrate the molecular interactions, we chose

the small molecule medication with the lowest binding energy to

dock the target for docking visualization (Supplementary

Figures 5A–H).
Expression validation of key molecules

We utilized semi-quantitative analysis to validate the differential

expression of these proteins in normal skin tissues and CM after

selecting one appropriate field of view (the first column of Figure 10).

qRT-PCR was subsequently utilized to confirm the differential

expression of these seven essential genes in cell lines and human

specimens. The mRNA expression of seven essential genes was

significantly higher in the A375 and SK-Mel-14 cell lines than in

the Hacat and PIG1 cell lines (the second column of Figure 10).

Similarly, we found that the mRNA expression of seven key genes in

patients wasmuch higher in CM than in normal skin tissue (the third

column of Figure 10). Using experimental validation at the mRNA

and protein levels, we determined that CD86, CXCL9, FCGR3A,

GZMB, PRF1, STAT1, and TLR7 were differentially expressed in

normal skin tissues and CM and inferred that these key molecules

could be potentially critical targets for the treatment of CM.
Discussion

In recent years, chemotherapy, immunotherapy, and

targeted therapies have been utilized to treat patients with

advanced CM. Nonetheless, there are still issues such as high

drug resistance, low drug sensitivity, and poor prognosis. Recent

advancements in sequencing technology have opened up new

avenues for methodically deciphering key genes and epigenetic

alterations in various types of CM. In this study, we combined

immune-related gene sets and other datasets to explore the

complex integrative roles of multiple key molecules on TME

infiltration and heterogeneity. We not only revealed the

potential mechanisms of TME anti-tumor immune response

but also screened potential biological therapeutic targets and

performed small molecular drug prediction.
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Numerous CM prognostic models created based on different

aspects have shown distinct therapeutic applicability in recent

years. However, few CMmodels are available for immune genes,

immunotherapy, and small molecule drug prediction. Zhang’s

study established a five-mRNA prognostic signature to predict

CM prognosis and immunotherapy response (33). Liu’s study

constructed a ten ferroptosis-related prognostic DEGs signature

to predict the prognosis of CM (34). Shi’s study established an

epithelial-mesenchymal transition (EMT)-related gene pairs
Frontiers in Oncology 11
(ERGPs) signature that could be potentially used in a clinical

setting as a genetic biomarker for risk stratification of CM

patients (35). Liu’s study constructed an Fc Receptor-like

(FCRL) prognostic signature, which could act as a biomarker

to predict the prognosis of CM patients (36). Yang’s study

established a comprehensive glycolysis and immune (CIGI)

model, which could be served as an independent prognostic

factor for CM patients (37). Wu’s study constructed an m1 A-,

m5 C- and m6 A-related signature, which may be a promising
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FIGURE 6

Construction of riskScore signature in cutaneous melanoma. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of
the seven key molecules. Horizontal axis represents log of independent variable l. Vertical axis represents coefficient of independent variable.
(B) Tenfold cross-validation of tuning parameters in LASSO model. (C) The optimal cut-off point to dichotomize riskScore into low and high
groups was determined by MaxStat R package. The optimal cutoff point was -7.07. (D) Survival analyses for low (79 samples) and high (171
samples) riskScore groups using Kaplan-Meier curves. (E) The seven key molecules expressed in the low and high risk groups (****P <0.0001).
The results showed that a strongly significant difference was exhibited between the groups. (F) The median value and distribution of the risk
score. (G) The distribution of overall survival (OS) status. (H) Hierarchical clustering of seven key genes between low and high risk groups. Red
represents up-regulated and blue represents down-regulated.
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biomarker for future CM research (38). All the above models

have been constructed from different perspectives of CM and

can provide valuable references for clinical decision-making.

The AUC values of our model are better than the above models,

indicating that our model is better in predictive performance and
Frontiers in Oncology 12
has some potential for clinical application. We also compared

other recent CM prognostic signatures constructed from

different perspectives (39–41), and we found that the

prognostic signature in this study showed better clinical

predictive performance in comparison.
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FIGURE 7

Prognostic value of the riskScore gene signature in cutaneous melanoma. (A) Forest plot. The results demonstrated that the riskScore and N
were independent prognostic biomarkers using multivariate analyses. (B) The nomogram, including clinical features and the risk score, for
predicting outcomes in patients. (C) The calibration curve analysis showed that the actual and the predicted 1-, 3-, 5-year survival times were
consistent compared with the reference line (the 45-degree line). (D) The receiver operating characteristic curve (ROC) analysis of risk scores
based on 1-, 3-, and 5-year OS in TCGA. (E) The median value and distribution of the risk score in TCGA. (F) The distribution of OS status in
TCGA. (G) The ROC analysis of risk scores based on 1-, 3-, and 5-year OS in GSE54467. (H) The median value and distribution of the risk score
in GSE54467. (I) The distribution of OS status in GSE54467. (J–Q) The GSEA enrichment reveal several significant signaling pathways. (J) HALLMARK P53
pathway. (K) HALLMARK PI3K AKT MTOR signaling pathway. (L) HALLMARK NOTCH signaling pathway. (M) HALLMARK IL-6 JAK STAT3 signaling
pathway. (N) KEGG P53 pathway. (O) KEGG pathway in cancer. (P) KEGG WNT signaling pathway. (Q) KEGG NOTCH signaling pathway.
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In the present study, we evaluated the key molecules

influencing patient prognosis utilizing 469 CM samples and

556 normal skin samples from multiple database gene sets. We

observed significant differences in immune-related pathways by

examining the genetic changes between normal skin tissues and

CM tissues. We employed seven key molecules with high

interaction as the foundation of the prediction model. The

expression of these seven essential genes was dramatically

elevated in tumor tissue as protective genes and was highly
Frontiers in Oncology 13
correlated with a significantly more extended survival period.

Through immune-related analysis, we determined that CM had

much higher immune cell infiltration levels than normal skin

and significantly higher total immunological and mesenchymal

activity, which altered the TME’s infiltration pattern. We used

the LASSO COX regression model to develop the riskScore

signature. We discovered that low-risk patients had more

significant TME immune cell infiltration and a longer survival

time. We also discovered that riskScore could be utilized as an
A

B C

FIGURE 8

The role of riskScore signature in the TME cell infiltration and immunotherapeutic responses. (A) Differences in 28 TME infiltration cells between
low and high risk groups ns, not significant, *P<0.05, ****P <0.0001. The results demonstrated that most TME cells (26 types) exist significant
differences. (B) The correlation between riskScore signature and 28 TME cell infiltration. Color shades represent the strength of the association,
blue represents negative correlation and red represents positive correlation. (C) The correlation between riskScore signature and immune
checkpoint molecules. Blue represents negative correlation and red represents positive correlation. ns, not significant.
TABLE 1 Results of Cmap analysis.

Cmap name N Celline Enrichment FDR_Q_nlog10

Gabapentin 2 YAPC -0.94 15.65

Baricitinib 3 HBL1 -0.92 15.65

DPN 3 A549 -0.91 15.65

AGI-6780 2 PC3 -0.9 15.65

Fusaric-acid 3 SKB -0.9 15.65

Ru-24969 3 MCF7 -0.89 15.65

Calcipotriol 2 HCC515 -0.89 15.65

Fenoterol 2 YAPC 0.89 15.65

Zofenopril-calcium 2 JURKAT -0.89 15.65

RS-102895 3 A549 -0.89 15.65
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independent biomarker to assess patient prognosis by

multivariate COX regression. We integrated riskScore and

independent clinical prognostic markers to generate

nomogram plots that displayed excellent predictive

performance. In the IMvigor210 group receiving anti-PD-L1

therapy, we observed a significant therapeutic benefit with

increased survival time and enhanced clinical response in low-

risk patients compared to those at high risk, which demonstrates

the good predictive performance of our riskScore signature.

Moreover, using small molecule drug screening and molecular

docking, Gabapentin and Baricitinib were discovered as

prospective small-molecule medicines to treat CM. Finally,

IHC and qRT-PCR were performed to confirm the expression

of important molecules.

CM is considered one of the most immunogenic tumors due to

its highmutational load, andmany immune cells infiltrate. Immune

cell infiltration is an essential protective mechanism of the organism

and forms the basis for overt cellular therapies and cellular vaccines

to treat cancer. All seven genes in our riskScore signature are

mutated in CM patients, with CD86 having the highest frequency of

mutations. Studies have shown that CD86 gene polymorphisms in
Frontiers in Oncology 14
miRNA are associated with the risk of malignancies such as

pancreatic, cervical, and colon cancers. Therefore, we hypothesize

that CD86 might be one of the potential targets for CM therapy

(42). The riskScore signature consists of seven keymolecules, CD86,

CXCL9, FCGR3A, GZMB, PRF1, STAT1, and TLR7, all of which

are expressed up-regulated in CM as protective molecules. CD86

(cluster of differentiation 86), a member of the immunoglobulin

superfamily, interacts with the inducer CD28 and the inhibitor

CTLA4 and functions as a crucial cofactor in the stimulation of T-

lymphocyte proliferation and IL-2 production (43). CTLA4, an

immunological checkpoint molecule, can influence the TME of CM

by binding to B7 (CD80/CD86) molecules on melanoma antigen-

presenting cells to down-regulate T cell activation (44). The

chemokine CXCL9 (C-X-C motif chemokine ligand 9) correlates

positively with CD8+T cell infiltration in solid malignancies (45, 46).

CXCL9 is abundantly expressed in several solid tumors, including

CM, and it stimulates the infiltration of CD4+T and CD8+T

lymphocytes into tumor cell regions, hence boosting the response

of cytotoxic T lymphocytes and destroying tumor cells (47, 48).

FCGR3A (Fc fragment of IgG receptor IIIa) encodes the receptor

for the Fc region of immunoglobulin G. FCGR3A interacts with
FIGURE 9

Heat map of the lowest binding energy for molecular docking.
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FCGR1A in numerous pathophysiological processes and is

substantially related with overall survival (OS) in CM, renal clear

cell carcinoma, and other malignancies (49). Granzyme B (GZMB)

is an exogenous serine protease generated from granules released by
Frontiers in Oncology 15
cytotoxic lymphocytes (CTLs) and natural killer cells (NK) (50).

GZMB has been discovered to be related with NK cell treatment in

individuals with CM. By evaluating NK cells in the blood of CM

patients, it was discovered that NK cells entering metastatic
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FIGURE 10

Validation of the mRNA and protein expression of seven key genes. The results of the first column represent the semiquantitative analysis results
obtained from the IHC results downloaded from the human protein atlas (see Figure 3 for a complete view of the immunohistochemistry
images). The results of the second column represent the qRT-PCR results from four cell lines (Hacat, PIG1, A375 and SK-MEL 14). The results of
the third column represent the qRT-PCR results of tissue specimens from 20 patients, which were taken from normal skin and cutaneous
melanoma. (A–G) Results of semiquantitative analysis of IHC, qRT-PCR of cell lines, qRT-PCR of human specimens for seven key genes,
including CD86, CXCL9, FCGR3A, GZMB, PRF1, STAT1, TLR7 (ns, not significant, *P<0.05, **P <0.01, ***P <0.001).
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melanoma tissue have a diminished cytotoxic capacity due to

decreased expression of GZMB and perforin (51). PRF1 (perforin

1) encodes a protein structurally similar to complement C9, which

plays a crucial function in immunity (52). According to research,

tumors from CM patients treated with the anti-PD1 medication

nivolumab had significantly greater levels of PRF1, CD8, and

GZMA, as well as an improved TBX21/GATA3 ratio. This

suggests that PRF1 mediates tumor-infiltrating T lymphocytes

(TIL) oligoclonal amplification-enhanced Th1 (helper T cell type

I)-skewed cellular immunity during nivolumab treatment (53).

STAT1 (signal transducers and activators of transcription 1) is a

family of cytosolic proteins that, upon activation, can translocate to

the nucleus and bind DNA, which has dual signal transduction and

transcriptional control functions (54, 55). Hypermethylation in the

promoter region of the SOCS3 gene was discovered to reduce

SOCS3 protein expression in some CM patients. The greater the

sensitivity of melanoma cells to IFN-g, the lower the expression of

SOCS3, and the lowering of SOCS3 expression in melanoma cells

by IFN-gmay significantly stimulate the production of STAT1 (56).

TLR7 (toll-like receptors 7) is an endosomal pattern recognition

receptor, when activated, causes type I interferons and

inflammatory reactions (57). TLR7 plays a crucial role in

activating both natural and acquired immune responses and has

an activating effect on virtually all cells engaged in the tumor

immune response (58). Chemically coupling ibrutinib with TLR7

receptor agonists to produce novel immune-targeting complexes

termed GY161 increased CD8+T cell levels in spleen and tumor in

vivo. GY161 inhibited the growth of B16 melanoma cell-derived

tumors and prolonged the survival time of mice (59).

The significance of the TME in tumor development is critical.

Several studies have shown that various immune cells can serve as

tumor promoters or tumor antagonists in various malignancies

(60, 61). Therefore, further investigation on immune infiltration

in TME is required to better understand the link between

immunological components and tumor progression. After

constructing a riskScore model to divide the high- and low-risk

groups, we discovered that the expression of seven protective key

molecules was significantly lower in the high-risk group. In

contrast, immune cell infiltration was significantly lower in the

high-risk group compared to the low-risk group. We found that

the low-risk group had higher levels of CD4+ and CD8+ T cells.

CD8+ T cells eliminate tumor cells based on cell differentiation

and invasion. They can differentiate into effector and cytotoxic T

cells to perform anti-tumor actions in the tumor-infiltrating

microenvironment (62). In secondary lymphoid organs, CD4+ T

cells can inhibit or stimulate the activity of anti-tumor cytotoxic T

cells, hence modulating tumor cells. Tumor infiltration

lymphocytes (TILs) in CM are a potential immunotherapy

target in the future (63). Inflammation also plays a vital role in

TME and tumor formation. Since Virchow proposed in 1863 that

tumor formation originates from chronic inflammation,

numerous studies have confirmed that some tumors are closely

associated with chronic inflammation.We discovered significantly
Frontiers in Oncology 16
higher inflammation-associated immune cell infiltration in CM

than in normal skin, indicating that inflammation in the TME has

a pro-tumor effect. It can assist the proliferation and survival of

cancer cells as well as promote angiogenesis and metastasis (64).

Our riskScore signature demonstrated significantly higher

inflammation-associated immune cell infiltration in the low-risk

group compared to the high-risk group. The low-risk group had

higher MDSCs, TILs (CD4+ T cells and CD8+ T cells), TAMs,

dendritic cells, neutrophils, and mast cells. MDSCs are immature

bone marrow cells that suppress natural and adaptive immunity

and evade immune surveillance (65). TAMs can promote tumor

development while also increases vascular growth and invasive

metastasis (66). Neutrophils and TILs can play a role in killing

tumor cells. B lymphocytes and mast cells also play an essential

role in immune-mediated tumor growth. Additionally,

macrophages and dendritic cells play antigen presentation and

T-cell activation roles, as well as immunosuppressive functions in

tumors (67).

The innovative usage of traditional drugs has now become

an important strategy for antineoplastic drug development. The

discovery of potential mechanisms of conventional drugs can

save time and money while improving drug administration

security. According to the CMAP database, gabapentin and

baricitinib are promising treatments for CM. Gabapentin,

whose mechanism of action is currently unknown, is

commonly believed to modify the GABA metabolic pathway

in patients with circumscribed seizures that are not adequately

controlled or tolerated by traditional antiepileptic medicines.

Several investigations have verified the anticancer effects of

Gabapentin in recent years. Gabapentin may achieve anti-

melanoma effects in mice by reducing cell proliferation, CCL2

production, and calcium influx (68). In recent years, it has been

demonstrated that thiamine-dependent enzymes (TDEs) are

frequently tumor-related targets due to their control of

metabolic pathways that are frequently altered in cancer.

Gabapentin can impede the growth of TDEs, resulting in a

tumor-killing mechanism of toxicity (69). We found that

Gabapentin most likely acts through STAT1 and TLR7 to

achieve anti-tumor effects by altering the immune infiltration

content of TILs such as CD8+ T cells in TME to inhibit the

proliferation and invasion of CM cells using molecular docking

analysis and a summary of key molecules mentioned above.

There are some limitations to this study. First, the

clinical parameters integrated with this study may not be

comprehensive due to the limited clinical information in the

public dataset, leading to potential bias in our construction

of the riskScore signature. Second, the plasticity of immune

cells or other disease-induced cellular changes may bias the

analysis results. Moreover, we constructed the riskScore

signature mainly based on the TCGA database. Given the

differences in database compatibility, we should take caution

while employing this study’s riskScore signature for testing

in other databases.
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In conclusion, the riskScore signature developed in this

study can be utilized as an independent and reliable biomarker

to predict the prognosis of individuals with CM. In addition, we

screened and predicted small-molecule pharmaceuticals. This

study not only provides the riskScore signature that can predict

patient prognosis and assess the heterogeneity and complexity of

TME cell infiltration but also contributes to the development

and guidance of novel immune combination therapy strategies

and the promotion of the development of personalized tumor

immunotherapy and precision medicine.
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SUPPLEMENTARY FIGURE 1

the flowchart of this study.

SUPPLEMENTARY FIGURE 2

(A) Survival analyses for high and low risk score groups in anti-PD-L1
immunotherapy cohort using Kaplan-Meier curves. (B) The difference of

riskScore in different anti-PD-L1 clinical response groups. CR, complete
response. PD, progressive disease. PR, partial response. SD, stable disease.

(C) The proportion of patients with response to PD-L1 blockade therapy in

high or low riskScore groups.

SUPPLEMENTARY FIGURE 3

The riskScore signature is associated with chemotherapy and targeted

therapy sensitivity. (A) Axitinib. (B) Bexarotene. (C) Bicalutamide.
(D) Bleomycin. (E) Camptothecin. (F) Cytarabine. (G) Dasatinib.

(H) Doxorubicin. ( I ) Elesclomol. (J) Erlot inib. (K) Gefit inib.

(L) Imatinib. (M) Lapatinib. (N) Metformin. (O) Midostaurin. (P) Nilotinib.
(Q) Pazopanib. (R) Sorafenib. (S) Sunitinib. (T) Tipifarnib.

SUPPLEMENTARY FIGURE 4

Chemical structure depiction of the top ten most significant drugs. (A)
AGI-6780. (B) Baricitinib. (C) Calcipotriol. (D) DPN. (E) Fenoterol. (F)
Fusaric acid. (G) Gabapentin. (H) RS-102895. (I) Zofenopril calcium. (J)
Ru-24969.

SUPPLEMENTARY FIGURE 5

Docking diagram of small molecular drugs with targets. (A) CD86-
Baricitinib. (B) FCGR3A-Zofenopril calcium. (C) GZMB-Zofenopril

calcium. (D) GZMB-AGI 6780. (E) STAT1-Gabaoentin. (F) TLR7-
Gabaoentin. (G) STAT1-Calcipotriol. (H) TLR7-Zofenopril calcium.
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