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Plasticity theory aims at describing the yield loci and work hard-
ening of a material under general deformation states. Most of its
complexity arises from the nontrivial dependence of the yield loci
on the complete strain history of a material and its microstruc-
ture. This motivated 3 ingenious simplifications that underpinned
a century of developments in this field: 1) yield criteria describ-
ing yield loci location; 2) associative or nonassociative flow rules
defining the direction of plastic flow; and 3) effective stress–strain
laws consistent with the plastic work equivalence principle. How-
ever, 2 key complications arise from these simplifications. First,
finding equations that describe these 3 assumptions for mate-
rials with complex microstructures is not trivial. Second, yield
surface evolution needs to be traced iteratively, i.e., through a
return mapping algorithm. Here, we show that these assumptions
are not needed in the context of sequence learning when using
recurrent neural networks, diverting the above-mentioned com-
plications. This work offers an alternative to currently established
plasticity formulations by providing the foundations for find-
ing history- and microstructure-dependent constitutive models
through deep learning.
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H istory-dependent phenomena are common in natural and
social systems (1). For example, the process of writing a new

text starts by choosing the first word from all possible words,
but then the words that follow depend on the past choices
of words and their sequence. Plastic deformation of materials
also depends on the history or path of deformation. If a bar
is plastically deformed, the permanent strains that arise affect
the subsequent deformation because the local stiffness changes.
Therefore, predicting plastic behavior is nontrivial. We pro-
pose to address this challenge by using deep learning to find
history- and microstructure-dependent plasticity models when
abundant data of material behavior is available. This inverts the
logic of continuum plasticity modeling where the goal is to pre-
dict inelastic deformation using minimal data from experimental
testing. Deep-learning plasticity laws are shown to be compu-
tationally efficient and accurate, even when describing complex
phenomena such as distortional hardening.

The remarkable success of continuum plasticity stems from
reducing complex 3-dimensional (3D) inelastic phenomena to
phenomenological laws defined by 1) a yield criterion, 2) a plastic
flow normal to a plastic potential, and 3) an effective stress–strain
law often defined from simple experiments (e.g., uniaxial ten-
sion). This achievement of describing plasticity for general stress
states based on information from a limited amount of experi-
ments should not be understated. The archetypal example is the
von Mises model (2) with isotropic hardening, where metal plas-
ticity is fully characterized (both yield surface and hardening) by
a single uniaxial tensile test of the material. However, complexity
of computational plasticity models tends to substantially grow as
material behavior and plastic effects become more intricate when
addressing phenomena such as the Bauschinger effect (3, 4),
ratcheting (5, 6), anisotropy (7, 8), viscoplasticity (9), permanent
softening (10, 11), and distortional hardening (12–14). These
and other phenomena continue to be intensely investigated. For
example, the past decade has introduced a shift from solutions

based on the Armstrong–Frederick-type hardening (3) to models
based on multiple yield surfaces (11) and distortional hardening
(14). Still, the fundamental principle of reducing hardening of all
6 stress components to effective laws remains a central tenet to
minimizing experimental testing, and the computational expense
of finding iterative solutions for the plasticity equations remains
an issue.

Modeling plasticity via machine learning requires a differ-
ent perspective. Similarly to other fields where, for example,
machine learning is helping to design new materials (15, 16) and
to predict protein behavior (17), the key to learning constitutive
models of materials is to generate data about material behav-
ior. This has been achieved for nonlinear elastic constitutive laws
where data are created by finite element analysis (FEA) of repre-
sentative volume elements (RVEs) (18, 19) and, more recently,
to determine property maps obtained from plasticity and fracture
simulations of RVEs (19). As detailed in ref. 19, finding mate-
rial models by machine learning is possible if the computational
analyses of RVEs have high fidelity and sufficient efficiency to
generate “enough” data for the supervised learning tasks. The
required amount of data are problem-dependent, and gener-
ally more data are needed as the functional relation between
the quantities of interest and the variables becomes more com-
plex. Nevertheless, learning-plasticity behavior requires going
one step further by considering sequence learning, a branch of
deep learning, to incorporate history dependence and efficiently
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merge high-dimensional “temporal” strain paths and nontem-
poral geometry descriptors. Note that “temporal” strain paths
here refer to snapshots of deformation, not rate dependency. We
elaborate on this later.

Theoretical Approach
Finding plasticity models can then follow the recently proposed
3-module data-driven framework (19) that integrates: 1) design
of experiments to sample the input space; 2) computational anal-
yses to create a database of outputs corresponding to each input
configuration; and 3) machine learning to find the constitutive
law that links inputs and outputs. As mentioned, here we focus on
considering sequence learning for the third component, specif-
ically recurrent neural networks (RNNs). Appropriate method-
ologies for design of experiments and computational analyses are
also briefly described.

In general, finding constitutive laws by analyzing RVEs
requires the definition of an input space with 3 types of variables:
microstructural descriptors (e.g., volume fraction, inclusion
geometries, etc.), material properties for each microstructural
phase (e.g., elastic moduli, yield behavior, etc.), and load-
ing conditions (e.g., average deformation, temperature, etc.).
Past investigations and references therein (19) have shown that
these temporally-fixed features are effectively sampled by Sobol
sequence or Latin hypercube sampling when no prior knowledge
is assumed (20). Sampling temporally varying features such as
deformation path is more intricate as it involves generating a
sequence of points (rather than a single point) for each sample
path (Fig. 1A). To address this issue, we assume that any dynamic
feature evolves to its end state in nts steps of size ∆t . From these
steps, we then choose ncp equally spaced ones as control points
and assign them random deformations which are uniformly
drawn from the feature’s range. Finally, we realize a deformation
path by connecting the strain component values of these control
points via an interpolator (2 different examples in Fig. 1B). We
have considered 2 different interpolators: Gaussian process (GP)
and polynomial regression, see Fig. 1B. For multidimensional
features such as strain, we generate paths along each dimension
independently.

Following design of experiments, we analyze the resulting
input database by implicit static FEA of heterogeneous RVEs
under periodic boundary conditions (Materials and Methods).
Therefore, finding the constitutive behavior of a heterogeneous
material is possible by converting the average deformation
applied to the RVE into a periodic boundary value problem
and subsequently homogenizing the quantities of interest of that
RVE (stresses and plastic energy) to save them in a database
(19). Once the input space is sampled and the correspond-
ing output database is created, an RNN is fitted to learn the
plasticity-constitutive law by relating stresses and plastic energy

to microstructure descriptors and loading conditions. RNNs
describe plasticity as a map including the dependence on the
sequence of deformation steps:

σ̄t = f (ē1:t , m, p, t), [1]

where m and p describe the microstructure descriptors and the
properties of the phases, respectively, ē1:t is the history of spa-
tially averaged strains applied to the RVEs from the first to
the current (t) deformation increment, and σ̄t is the spatially
averaged stress at the current deformation increment. Note that
t could also represent “time” instead of “deformation” incre-
ments, i.e., it is a label for different snapshots. If we were
interested in viscoplasticity, for example, then t would represent
“time steps” or “frequency steps.”

RNNs are an extension of neural networks designed to handle
sequential data, i.e., they can learn events happening along dif-
ferent time sequences (or deformation sequences, in this case)
that can be captured with a different number of snapshots. RNNs
use history-dependent hidden states st (xt , st−1) to compute
the outputs ot(xt , st). This enables them to carry information
from previous inputs onto future predictions, where xt is the
input feature at increment t . This unique feature of RNNs
combined with the flexibility of their model architecture has
proven to be greatly beneficial on tasks such as machine transla-
tion, natural language processing, and voice recognition, among
others (21). Early formulations of RNNs suffer from a phe-
nomenon known as vanishing/exploding gradients, first noticed
in ref. 22, which hinders the backpropagation-based training
process of the networks for long sequences. Long Short-Term
Memory (LSTM) (23) was proposed to avoid vanishing gradi-
ents by using multiple data-gate mechanisms that control the
flow of storing or forgetting information in hidden states and
outputs. Gated Recurrent Unit (GRU) (24) uses a similar con-
cept as LSTM while using a simplified formulation. Although
LSTMs and GRUs have shown to have close performance in
many cases (25), GRU’s formulation is less prone to overfitting
and allows faster training due to the smaller number of trainable
parameters.

A major challenge in predicting plasticity-constitutive laws for
material systems is that the model should effectively correlate
history-dependent (“temporal”) loading inputs with nontempo-
ral RVE design features (e.g., volume fraction, fiber radius, or
elastic moduli). Three variations of RNN architecture are con-
sidered to address this challenge, as depicted in Fig. 2 A–C. SI
Appendix contains a comparative analysis between the 3 RNN
architectures considered, where we demonstrate why we recom-
mend the one shown in Fig. 2C for learning plasticity-constitutive
models. In this architecture, a GRU formulation with a sec-
ondary hidden state is proposed to carry nontemporal inputs

Fig. 1. Sampling the temporally varying loads. (A) Three end states are marked in the strain space spanned by e11 and e22 (e12 = 0 for clarity). For each
end state, 2 deformation paths that connect it to the origin are illustrated. The gray area indicates the range of each strain component. (B) Two examples
indicating the temporal evolution of the 3 strain components that, collectively, determine the deformation path to an end state. The markers on each path
indicate the control points used in interpolation. Here, nts = 100, ncp = 6, and the interpolator is a zero-mean GP with power exponential kernel. Paths in B
are not related to A.
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Fig. 2. Variation of RNN architecture to encapsulate temporal and non-
temporal inputs: postmixing nontemporal data through a dense network
(A), configuring nontemporal data as initial hidden-state value through a
dense network (B), or establishing a secondary nontemporal hidden state in
GRU formulation (C).

through the GRU cells, allowing nonlinear correlations between
temporal and nontemporal input features while providing each
GRU cell direct access to temporal inputs, nontemporal inputs,
and history-dependent hidden states (Fig. 2C). Using this vari-
ation of GRU-formulation nontemporal features are protected
from corruption by rt , the reset gate. Although this approach
adds additional weights and biases to the GRU, increasing model
complexity and training time, it enables GRU cells to cap-
ture intricate interactions between input features throughout the
entire temporal states. The altered formulation of a GRU unit
(24) used in this work to combine temporal and nontemporal
feature is as follows:

rt = sig (Wr · [ht−1, xt , hf ] + br ), [2]

zt = sig (Wz · [ht−1, xt , hf ] + bz ), [3]

ĥt = tanh (W · [rt × ht−1, xt , hf ] + b), [4]

ot = ht = (1− zt)× ht−1 + zt × ĥt , [5]

where sig is the sigmoid function. The reset gate (rt ) determines
the combination of inputs (xt ), previous hidden states (ht−1),

and the secondary hidden state (hf ) to build a candidate hidden
state (ĥt ). The update gate (zt ) controls the influence of the can-
didate hidden state to the unit output (ot ), which is also used as
the new hidden state (ht ). Stacking multiple RNN units enables
the model to predict higher-level nonlinearities and interactions
between features.

Based on the architecture shown in Fig. 2C, we consider
2 examples to illustrate the capabilities of sequence learning
in finding plasticity-constitutive laws. The first example focuses
on a single RVE where there is significant distortional hard-
ening. The second example considers a class of RVEs with
different microstructures undergoing plasticity, demonstrating
that our approach systematically incorporates microstructural
information in plasticity-constitutive laws.

Results
Case 1: RVE with Distortional Hardening. An illustrative exam-
ple is devised by considering a periodic microstructure of a
material composed of distorted elliptical fillers as shown in
Fig. 3A. Without loss of generality, consider the matrix mate-
rial to be an aluminum alloy (AA6061) described by a von Mises
isotropic-hardening model, and the rubber fillers described by an
Arruda–Boyce hyperelastic constitutive model (26). The mate-
rial properties of the models and details of FEA are included
in SI Appendix, Table S3. The combination of a ductile matrix
and a hyperelastic filler with nonsymmetric geometry results in
a compound elastoplastic behavior where the matrix deforms
plastically while the fillers can store a significant amount of
elastic energy. Although the constituents are isotropic, the
filler geometry induces significant anisotropic behavior and dis-
torts the yield surface obtained for the macroscopic hetero-
geneous material as it undergoes different deformation paths.
The macroscopic constitutive behavior of the heterogeneous
material results from relating the applied average strain com-
ponents e11(t), e22(t), and e12(t) at deformation step t to the
average stresses σ11(t), σ22(t), and σ12(t) and plastic energy
Up(t). Note that each stress state of the RVE depends on the
deformation path.

Once the RVE in Fig. 3A is simulated via FEA under 15,000
different deformation paths, a database with the average stresses
and plastic energy for each deformation path is generated (100
deformation states per deformation path). Using this dataset
(created in 2 wk using 48 cores), we train an RNN with an
architecture illustrated in Fig. 2C whose parameters are trained
on 80% of the database. We assess the predictive power and
data sufficiency by the unseen 20% portion of data. We use
a scaled mean absolute error (SMAE) metric to evaluate the
results of the model and a second metric for the plastic energy,
called scaled mean plastic energy decrease (SMPED), to quan-
tify a possible decrease in plastic energy (the second law of

Fig. 3. Undeformed configuration of RVE with curved ellipse (A) and von Mises stress contour of the deformed periodic RVE (B) in megapascals for
illustrative case 1.
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Fig. 4. Evaluation results for the trained model in case 1. The top row demonstrates the applied average strains (A), the predicted and database average
stresses (B), and the predicted and database plastic energies (C) for a test-set sample (unseen in the training process). The bottom row depicts the average
strains (D), average stresses (E), and plastic energies (F) for the unidirectional loading test. Note the Poisson effect shown in E since σ22 6= 0.

thermodynamics does not permit a decrease). The designed
model consists of 3 stacked layers of 500 RNN units followed by a
single time-distributed dense layer, which corresponds to around
3 million trainable parameters. Finally, a leaky rectified linear
unit (27) activation function is used to impose nonlinearity into
the RNN. We trained the model for 200 epochs, which resulted
in an SMAE of 0.00281 and 0.00355 for the training and test sets,
respectively, and an SMPED of 0.000181 and 0.000186.

Fig. 4 presents results for 2 different validation deformation
paths: one deformation path of the test set that was not used
in training (Fig. 4 A–C); and a linear unidirectional loading
and unloading deformation path for validation purposes that
is not present in either the test or training sets (Fig. 4 D–F).
As observed in Fig. 4 B and C, the RNN is predictive along
deformation paths of the test set (unseen data) for both quan-
tities of interest. Fig. 3D shows an unseen linear unidirectional
strain path that stretches the RVE in the e11 direction to 0.1
engineering strain and then in the opposite direction to −0.1
engineering strain, while e22 and e12 are kept at zero. Note that
the training set does not include any linear strain path because
it is constructed via Gaussian process regression of fluctuating
paths, but Fig. 4 E and F demonstrates that our RNN model is
still able to predict these average stress states and plastic energy.
Fig. 4E also demonstrates that the RNN model predicts the
Poisson effect (σ22 6= 0), even though we did not impose this con-
straint in the strain paths because a valid material constitutive
law needs to predict stresses for any given combination of the
3 strain components. SI Appendix provides details on the RNN
architecture analysis (SI Appendix, Figs. S3, S4, and S5) with the
corresponding error metrics used to assess the predictions.

We further explore the predictive capabilities of our model by
evaluating the yield-surface evolution as the RVE experiences
different loading conditions. Fig. 5 shows the yield surface at the
onset of plasticity in purple, and the yield surface obtained at
the end of 3 deformation paths. We define plastic deformation
to start when the plastic energy increases by the threshold of
1 mJ. Alternatively, the average equivalent plastic strain of the
matrix could be used. We construct the yield surface by loading
the RVE from its current stress state to 40 deformation paths in

different directions (SI Appendix, Fig. S6). The principal stresses
of the RVE are calculated when the RVE is plastically deformed
above the mentioned threshold and the stress state is stored in
order to reconstruct the yield surface (details in SI Appendix).
Each of the 4 yield surfaces shown in Fig. 5 includes the result
obtained directly from FEA in dotted lines, the prediction from
RNN in solid lines, and the applied deformation before yield sur-
face construction with respective colors. The yield surface at the
onset of plasticity (purple) resembles the elliptical shape of the
von Mises yield surface, which is in-line with the matrix behav-
ior. However, as seen at the end of the 3 deformation paths, the
yield surface is distorted, shrinks/expands, and rotates for differ-
ent deformation histories. Remarkably, the RNN can track the

Fig. 5. Yield-surface evolution under different deformation conditions and
paths. FEA-based and RNN predicted yield surfaces are demonstrated in dot-
ted lines and solid lines, respectively, at the end of 3 different deformation
paths as compared to the original yield surface (purple).
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complete yielding behavior accurately, including the anisotropic
and distortional yield behavior. Therefore, using sequence learn-
ing for finding plasticity laws of general RVEs is demonstrated
to be possible, laying the foundations for a modeling route for
plasticity that learns the compound correlation of yield sur-
face and hardening laws without any explicit guide or definition
of classical plasticity terms, such as effective plastic strain and
effective stress.

Case 2: Learning Plasticity for a Class of Composite RVEs. A second
case where a class of materials with periodic microstructure com-
posed of different distributions of circular fibers is considered
(Fig. 6), where each sample in the database varies in terms of
their fiber volume (area) fraction v , fiber radius r , and distance
between fibers c. We consider an epoxy matrix with combined
isotropic and kinematic hardening, and carbon fibers with elas-
tic behavior. Details of material properties are provided in SI
Appendix, Table S4. We considered deformation paths with max-
imum strain of 8% in this case to explore the flexibility of the
framework. These design choices give us a compound elastoplas-
tic behavior for the RVE as the matrix deforms plastically while
fibers can store a significant amount of elastic energy, whereas
the behavior of the first case was mostly dominated by plastic
deformation.

The inputs to the RNN model are the nontemporal
microstructure descriptors, as well as the temporal deformation
paths, and the outputs are temporal stresses and plastic energy
over 100 increments for each RVE. Similar to the previous case,
2 validation tests are presented, and neither of which is used in
the training process. A database with 8,000 samples is used in
this case, 80% of which used for training. A model with architec-
ture shown in Fig. 2C and similar configuration as the previous
case is trained for 500 epochs resulting in 0.00132 and 0.00194
SMAE on the training set and test set correspondingly, while the
model errors for the SMPED metric are 0.00179 and 0.00184,
respectively. Fig. 7 A–C demonstrate the comparison of our
model prediction with the ground truth FEA for a polynomial
deformation path outside of the training samples. The results
indicate that the model can accurately predict both stress and
energy responses of the RVE. The results of linear unidirectional
loading test (depicted in Fig. 7 D–F) show that the model is accu-
rately predictive for stress and most regions of plastic energy.
The small noise in the plastic-energy prediction is caused by the
sharp change in deformation path. This was not observed when
the deformation paths were sampled with GP regression due to
its smoothness.

Discussion
Recent progress in high-performance computing and reduced-
order modeling are enabling fast and accurate predictions of

the behavior of heterogeneous materials. This creates an ever-
increasing number of large databases of material behavior
that are suitable for analysis with machine learning. Here, we
show that deep learning, and in particular sequence learning,
becomes essential when dealing with history-dependent proper-
ties and constitutive behavior. We show that finding plasticity-
constitutive laws of general materials and material classes is
possible with unprecedented accuracy and efficiency. Our results
indicate that the trained model can comfortably reach under
0.5% SMAE error, while being fast to evaluate (a fraction of a
second, as discussed in SI Appendix) because there is no need for
iterative-solution schemes such as Newton–Raphson, typical in
classical plasticity. However, we note that deep learning strongly
depends on the quality and quantity of the training data. For
example, training data may be insufficient if the RVEs are com-
putationally expensive or the RVEs may not accurately predict
the behavior of real materials due to inaccurate local constitu-
tive laws (19) and different sources of uncertainty (28). In such
cases, the value of this approach deteriorates. Also note that data
could be experimental, instead of computational. In that case,
high-throughput experiments or open datasets that collect data
from different sources should be considered, in order to have
enough data.

We strongly believe that this is just the beginning of an excit-
ing field in computational plasticity, as well as other fields in
applied physics and engineering. Here, we focused on open-
ing avenues for multiscale simulations where the macroscopic
constitutive behavior reflects location-dependent heterogeneity
of the microstructure. Yet, the approach is general and appli-
cable to different time-dependent and history-dependent data.
Future developments in reduced-order models enabling high-
fidelity and high-throughput computational predictions of mate-
rial behavior, together with the growing field of deep learning,
will certainly create unprecedented conditions for discovering
new materials and designing new structures undergoing extreme
performance well beyond elastic limits.

Materials and Methods
Design of (Computational) Experiments. We build an RVE database using a
variant of the descriptor-based approach (29) as it establishes physically
interpretable links between microstructural descriptors and material prop-
erties. First, we identify key microstructural descriptors that characterize the
RVE and conduct design of experiments (DOE) on them. Then, we recon-
struct the RVEs corresponding to the DOE points. Finally, we postprocess
the generated RVEs to extract more microstructural descriptors that are not
used in stage one. Since the material system in the second example is a
fibrous composite where the fibers of an RVE are equally sized and ran-
domly dispersed within the matrix, we choose the following 3 descriptors
to characterize the morphology: fiber volume (or area) fraction (v), fiber
radius (r), and minimum-allowable center-to-center distance between any 2
fibers (c). The first 2 descriptors are known to affect the material properties
in fiber composites (19). The third descriptor is used to set a minimum

Fig. 6. Undeformed configuration (A) and von Mises stress contour of a deformed sample of periodic RVE with distributed circular fillers (B) in megapascals
for illustrative case 2.
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Fig. 7. Evaluation results for the trained model in case 2 for 2 different RVEs under different loading conditions. The top row (A–C) corresponds to an RVE
from the test set (unseen in the training process) that has a microstructure characterized by [v, r, c]≡ [15%, 6 µm, 9 µm], shown in SI Appendix, Fig. S2
(RVE A). The bottom row (D–F) corresponds to a different RVE with microstructure characterized by [v, r, c]≡ [6%, 7 µm, 6 µm], shown in SI Appendix,
Fig. S2 (RVE B) and subjected to a unidirectional loading. The first column (A and D) shows the corresponding applied average strains; the second column
(B and E) shows the average stresses predicted by the RNN model (solid line) compared to finite element analyses (dashed line); and the third column (C and
F) shows the plastic energies predicted by RNN (solid line) and FEA (dashed line).

distance between any 2 fibers to avoid overlaps, facilitate FEA, and par-
tially control the spatial distribution of fibers within the matrix. Given the
3D input space of [v, r, c], we generate a DOE of size 8, 000 where the
range of each parameter is selected sufficiently large (SI Appendix, Table S1).
For details about the reconstruction of a wide range of RVEs (case 2),
see SI Appendix.

Computational Analyses. We simulate the behavior of the constructed RVEs
under complex loading conditions using high-fidelity FEA. A MATLAB
code developed by Bessa et al. (19) creates the scripts that interact with
the finite element software ABAQUS to preprocess, execute, and post-
process all of the RVE simulations automatically using an implicit static
solver. The analysis begins with generating the material and boundary
condition files. The MATLAB script parses the geometry descriptors for
each RVE in the database and generates python scripts, which create the
geometry, mesh it with a predetermined mesh size (1.5 µm), and assign
materials. The periodic boundary value problem follows by converting
the applied average-strain components e11(t), e22(t), and e12(t) to dis-
placement boundary conditions on edges of the RVEs. Next, the MATLAB
script generates simulation files and executes ABAQUS to create the out-
put simulations. Then, a final script executes the homogenization of the
quantities of interest assuming separation of length scales (19), obtaining
the average RVE stresses σ11(t), σ22(t), and σ12(t) as well as plastic energy
Up(t). Note that the entire procedure is automatic and without human
intervention.

RNNs. The proposed neural networks model based on the architecture
demonstrated in Fig. 2C is developed using the Keras library (30). The model
includes RNN cells to detect history-dependent features and combines
with one or more time-distributed dense layers (30) to transform high-

dimensional outputs of RNN cells into the desired 4 outputs (3 engineering
stresses and plastic energy) of the RVEs over deformation increments. A
cost function of the mean absolute error between the output values in the
developed database and the predictions are defined and the training pro-
cess is performed using Adam optimization method (31). The inputs (i.e.,
microstructure descriptors and deformation paths) and outputs (i.e., stresses
and energies) of the database are normalized to a range between 0 and
1 to expedite the training process by reducing narrow valleys in trainable
parameter space.

We use the SMAE metric to evaluate the results of the model, which
is a fair error measure with the same dimensions as the original outputs.
Although the plastic energy should not decrease over time according to
the second law of thermodynamics, small decreases in the plastic energy
can be seen even in the FEA results. To quantify if the plastic energy is
predicted with an acceptable range of error, we define a second metric
as the accumulated plastic-energy deviation averaged over test-set sam-
ples, which is named as SMPED. The developed model is trained on 80%
of the database, while the rest is used as test set for validation. The train set
SMAE decreases consistently as we increase the number of RNN layers, RNN
units, or time-distributed layers due to the computational complexity of the
models. However, using excessively complex configurations or adding extra
time-distributed layers can adversely affect the accuracy of the model due
to overfitting. SI Appendix contains further details.
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