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Abstract: Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. The
pathogenesis of NAFLD is complex; available data reveal that genetics and ascribed interactions
with environmental factors may play an important role in the development of this morbid condition.
The purpose of this investigation was to assess genetic and non-genetic determinants putatively
involved in the onset and progression of NAFLD after a 6-month weight loss nutritional treatment.
A group of 86 overweight/obese subjects with NAFLD from the Fatty Liver in Obesity (FLiO)
study were enrolled and metabolically evaluated at baseline and after 6 months. A pre-designed
panel of 95 genetic variants related to obesity and weight loss was applied and analyzed. Three
genetic risk scores (GRS) concerning the improvement on hepatic health evaluated by minimally
invasive methods such as the fatty liver index (FLI) (GRSFLI), lipidomic-OWLiver®-test (GRSOWL)
and magnetic resonance imaging (MRI) (GRSMRI), were derived by adding the risk alleles genotypes.
Body composition, liver injury-related markers and dietary intake were also monitored. Overall,
23 SNPs were independently associated with the change in FLI, 16 SNPs with OWLiver®-test and
8 SNPs with MRI, which were specific for every diagnosis tool. After adjusting for gender, age and
other related predictors (insulin resistance, inflammatory biomarkers and dietary intake at baseline)
the calculated GRSFLI, GRSOWL and GRSMRI were major contributors of the improvement in hepatic
status. Thus, fitted linear regression models showed a variance of 53% (adj. R2 = 0.53) in hepatic
functionality (FLI), 16% (adj. R2 = 0.16) in lipidomic metabolism (OWLiver®-test) and 34% (adj.
R2 = 0.34) in liver fat content (MRI). These results demonstrate that three different genetic scores can
be useful for the personalized management of NAFLD, whose treatment must rely on specific dietary
recommendations guided by the measurement of specific genetic biomarkers.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease in
high-income countries, affecting more than 25% of the population [1]. NAFLD includes
a spectrum of liver disease conditions ranging from simple steatosis to non-alcoholic
steatohepatitis (NASH) with variable degrees of fibrosis and cirrhosis [2,3], and it has
become one of the most common causes of chronic liver diseases [3].

The NAFLD etiology is multifactorial and yet incompletely understood, but ultimately
appears as determined by the combination of environmental factors, such as excessive adi-
posity or the presence of type 2 diabetes (T2D) as well as the accumulation of intrahepatic
lipids, alterations of energy metabolism, insulin resistance and inflammatory processes,
where the genetic make-up may emerge [1,4]. Other factors such as obesity and a seden-
tary lifestyle, together with metabolic syndrome features and ethnicity, influence the risk
of NAFLD [5].

The gold standard for the diagnosis of NAFLD is liver biopsy [6]. However, the
decision about when to perform this screening remains controversial [2], being necessary
the search for less invasive methods for screening patients suspected of this disease [6–9].
To date, ultrasonography is recommended as the first-line diagnostic method in assessing
steatosis [6]. Moreover, magnetic resonance imaging (MRI) has also shown a high accuracy
for diagnosing liver fat content [10], as well as advances in the analysis of big data from
lipidomic have provided novel insights [11]. Furthermore, non-invasive biomarkers and
some validated algorithms such as the fatty liver index (FLI) have also become a useful
tool for the diagnosis of simple steatosis and hepatic functionality [12,13].

Heritability and family history have a clinically relevant impact on fatty liver disease
onset and progression [1,5,14]. In particular, the genetic variants in the genes PNPLA3
(rs738409), TM6SF2 (rs58542926), GCKR (rs1260326) and MBOAT7 (rs641738) have been
associated with the risk of NAFLD [15–17]. Not only these genes, but also other genetic
variants related with obesity traits and loci have been associated with a higher risk of
developing a severe stage of NAFLD [14,18].

Although these polymorphisms explain only a small fraction of the total heritabil-
ity of NAFLD, it is possible that the combination of specific single nucleotide polymor-
phisms (SNPs) into a genetic risk score (GRS) could increase the detection and evolution
of NAFLD [5,10,19]. Hence, some models have investigated the impact of the genetic
predisposition to accumulate liver fat on NAFLD. In this context, some researchers have
demonstrated an association between the combination of SNP in a GRS with de novo
hepatocellular carcinoma (HCC) [16,20], but also with higher hepatic fat content, total
cholesterol, steatosis degree and alanine aminotransferase (ALT) levels [5,15,17]. In this
sense, an independent regulation of fat distribution from total adiposity has been suggested,
where genes near loci regulating total body mass are enriched for expression in the Central
Nervous System, while genes for fat distribution are enriched in adipose tissue itself [21].

Concerning treatment, there are no specific medications that directly treat NAFLD [22,23],
being lifestyle modifications and weight control the most fundamental steps in the man-
agement of NAFLD [10]. In this context, the European Association for the Study of the
Liver (EASL) recommends diet and physical activity as the best treatment for steato-
sis [24–26]. However, increasing evidence suggests that interindividual variability in
weight loss also depends on interactions between genetic and environmental factors, in-
cluding lifestyle [27–29]. Besides, the well and precise characterization of each gene and
its different related pathways is essential in order to devise new therapies [6]. Indeed, a
personalized treatment taking into account genetics, lifestyle and specific macronutrient
recommendations is needed [26,30,31].
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In this sense, the aim of the present study is to assess genetic and non-genetic factors
putatively involved in the improvement of the hepatic health after a 6-month hypocaloric
nutritional treatment. To test this hypothesis, we combined 47 obesity-related genetic
variants associated with different NAFLD non-invasive methods based on the change of
hepatic functionality (FLI), lipid metabolism (OWLiver®-test) and liver fat content (by
MRI) into three differences scores, where the role of baseline status was assessed to predict
outcomes from precise nutrition management.

2. Materials and Methods
2.1. Study Design

The current randomized controlled trial was designed to compare the effectiveness of
two weight loss dietary strategies with different nutritional features, anthropometric mea-
surements, body composition and biochemical markers on hepatic health in overweight or
obese subjects with ultrasonography-proven liver steatosis, as described elsewhere [32,33].
The intervention had a duration of 24 months and the participants were randomly assigned
to the American Heart Association (AHA) or the Fatty Liver in Obesity (FLiO) group [34].
However, the present study was performed concerning the results after 6 months of follow-
up. The study was approved by the Research Ethics Committee of the University of
Navarra, Spain on 24 April 2015 (ref. 54/2015) and accessed on www.clinicaltrials.gov
(FLiO: Fatty Liver in Obesity study; NCT03183193). Each subject gave written informed
consent prior to enrollment in the study. All the procedures were performed in accordance
with the Declaration of Helsinki and the study was conducted following the CONSORT
2010 guidelines.

2.2. Study Participants

A total of 98 men and women with overweight or obesity (body mass index (BMI)
≥ 27.5 kg/m2 to < 40 kg/m2) between 40–80 years old and with hepatic steatosis con-
firmed by abdominal ultrasonography fulfilled the selection criteria and were enrolled
in the study [35]. After 6 months, a total of 70 participants completed the evaluation.
Exclusion criteria included the presence of known liver disease other than NAFLD, ≥3
kg of body weight loss in the last 3 months, excessive alcohol consumption (>21 standard
drinks per week in men and >14 standard drinks per week for women) [36], endocrine
disorders (hyperthyroidism or uncontrolled hypothyroidism), pharmacological treatments
(immunosuppressants, cytotoxic agents, systemic corticosteroids or other drugs that could
potentially cause hepatic steatosis or altering liver tests) [37], active autoimmune diseases
or requiring pharmacological treatment, the use of weight modifiers and severe psychi-
atric disorders and the lack of autonomy or an inability to follow the diet, as well as
the use of weight modifiers, severe psychiatric disorders and difficulties in following the
scheduled visits.

2.3. Dietary and Lifestyle Intervention

Two energy-restricted diets, AHA (n = 41) and FLiO (n = 45), were prescribed [33].
Both diets applied an energy restriction of 30% of the total energy requirements of each par-
ticipant in order to achieve a loss of at least 3–5% of the initial body weight, in accordance
with the recommendations of the American Association for the Study of Liver Diseases
guidelines (AASLD) [37]. After 6 months of nutritional treatment, both AHA and FLiO
groups (n = 34 and 36, respectively) achieved comparable results in the evaluated main
variables and no significant differences in the changes between the intervention groups
were found [33]. Therefore, participants were merged and compared together. The habitual
dietary intake was registered with a validated semi-quantitative food frequency question-
naire (FFQ) of 137 items, both at baseline and after the 6-month intervention [38,39]. The
composition of the food items was derived from accepted Spanish food composition tables
as previously described [4,40]. The adherence to the Mediterranean Diet was assessed
with a validated 17-point score questionnaire [41,42]. A physical activity prescription of

www.clinicaltrials.gov
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10,000 steps/day was given to the participants [43,44]. The physical activity level was
evaluated using the validated Spanish version of the Minnesota Leisure-Time Physical
Activity Questionnaire [44]. The volume of activity was indicated in metabolic equivalent
of the task (METs), as described elsewhere [43].

2.4. Anthropometric, Body Composition and Biochemical Assessments

Anthropometric variables (body weight, height and waist circumference) and body
composition (Lunar iDXA, Encore 14.5, Madison, WI, USA) were assessed in fasting
conditions at the Metabolic Unit of the University of Navarra following standardized proce-
dures [45]. BMI was calculated as the body weight divided by the squared height (kg/m2).
Blood samples were properly collected after overnight fasting of 8–10 h and processed
at the Laboratory of Biochemistry of the University of Navarra Clinic (CUN, Pamplona,
Spain). Blood glucose, triglycerides (TG), aspartate aminotransferase (AST), alanine amino-
transferase (ALT) and gamma-glutamyltransferase (GGT) concentrations were determined
on a Cobas 8000 autoanalyzer with specific commercial kits and following the instructions
of the company (Roche Diagnostics, Basel, Switzerland). Insulin, fibroblast growth factor
21 (FGF-21), leptin and adiponectin concentrations were quantified with specific ELISA kits
(Demeditec; Kiel-Wellsee, Germany) in a Triturus autoanalyzer (Grifols, Barcelona, Spain).
Insulin resistance was estimated using the Homeostasis Model Assessment Index (HOMA-
IR), which was computed as HOMA-IR = (insulin (µU/mL) × glucose (mmol/L))/22.5 [4].
The Triglycerides/Glucose index (TyG) (ln[triglycerides (mg/dL) × glucose(mg/dL)/2)])
was also calculated as a surrogate of glucose tolerance [46].

2.5. Imaging Techniques for the Assessment of Liver Status

The whole liver evaluation was performed under fasting conditions at the University
of Navarra Clinic. Liver steatosis was determined by ultrasonography (Siemens ACUSON
S2000 and S3000, Erlangen, Germany) in accordance with previously described method-
ology [47]. The clinical classification was established according to a 4-point scale: less
than 5% (grade 0), 5–33% (grade 1), 33–66% (grade 2) and greater than 66% (grade 3), as
described elsewhere [48]. Finally, magnetic resonance imaging (Siemens Aera 1.5 T) was
used to determine the hepatic volume and the fat content of the liver (Dixon technique) as
reported by the manufacturer [32].

Fatty liver index (FLI) was calculated using serum triglycerides, BMI, waist circumfer-
ence and GGT concentrations using the formula described elsewhere [12].

2.6. Metabolomics

The metabolomic test OWLiver® (One Way Liver S.L., Bilbao, Spain) is a fasting blood
probe able to measure the degree of NAFLD development [32]. The test score is based on
a prospective study, where subjects had previously been diagnosed by liver biopsy [49].
The methodology of this test consisted of the measure of a panel of biomarkers that belong
to the family of triacylglycerols (TGs), which are a reflection of the amount of fat and
inflammation of the liver [32]. The final OWLiver® score is generated by the relative
metabolite concentrations, which are analyzed together in a specific algorithm that gives
the probabilities of normal liver, steatosis or NASH.

2.7. SNP Selection and Genotyping

A total of 86 oral epithelium samples were collected with a liquid-based kit (ORAcollect-
DNA, OCR-100, DNA Genotek Inc, Ottawa, Canada). Genomic DNA was isolated using the
Maxwell® 16 Buccal Swab LEV DNA Purification Kit (Promega Corp, Madison, WI, USA).
The quality characterization was carried out by dsDNA quantification (Qubit, Thermo
Fisher, Waltham, MA, USA). A pre-designed panel of 95 genetic variants related to obe-
sity and weight loss was applied and analyzed [10,50–52]. More information about these
obesity-related SNPs can be found in a previous report [28]. Genotyping was performed
by targeted next generation sequencing on Ion Torrent PGM equipment (Thermo Fisher
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Scientific Inc., Waltham, MA, USA) [53], as previously published [50,54]. Overall, the
amplicon mean size was 185 bp. As quality control of the sequencing process, the number
of readings per amplifier and per sample were doubly checked, to make sure there are
more than 50× (in fact, it is above about 400× even the worst). Library construction
was carried out using a custom-designed panel and the Ion 198 AmpliSeq Library Kit 2.0
(Thermo Fisher Scientific) as per the manufacturer’s protocol. The raw data were processed
with the Ion Torrent Suite Server Version 5.0.4 (Thermo Fisher Scientific Inc, Waltham,
MA, USA) using Homo sapiens (genome assembly Hg 19) as the reference genome for the
alignment. A custom-designed Bed file was used to locate the SNPs of interest. Genetic
variants were identified with the Torrent Variant Caller 5.0 (Thermo Fisher Scientific) with
a minimum coverage value of 20. Hardy–Weinberg equilibrium, linkage disequilibrium
and haplotype inferences were estimated using the Convert program (Version 1.31) and
the Arlequin software (Version 3.0). Hardy–Weinberg equilibrium was calculated with a
statistical test (Chi-square).

2.8. Genetic Risk Score (GRS)

Three individual GRS based on the pre-designed panel of 95 SNPs were calculated
for the change of each non-invasive diagnostic method (FLI, MRI and OWLiver®-test)
(Figure 1) according to the following steps. Firstly, Kruskal–Wallis tests were performed to
identify SNPs statistically or marginally associated with the change in FLI, liver fat content
by MRI and metabolomics assessed by OWLiver®-test (absence of allele, presence of one
allele or presence of two alleles) in our samples, obtaining a total of 47 SNPs with a p-value
lower than 0.20. Secondly, post-hoc tests (Mann–Whitney U-test pairwise) were run to
define differences between genotypes in order to be differentially coded as risk and non-risk
groups with these 47 SNPs. A risk genotype was defined as the one that was associated
with a lower change of FLI, liver fat content (MRI) and OWLiver®-test. Genotypes with
similar effects were clustered in a single category. In a third step, Mann–Whitney U-test was
applied to confirm statistical differences between the categorized genotype groups (risk
vs. non-risk), selecting those SNPs showing at least a marginal statistical trend (p < 0.10)
and excluding those with a low sample (<10%) in either category or due to collinearity. To
evaluate the combined effects of the previously selected SNPs on the change of FLI, fat
liver content and OWLiver®-test, the three individual GRS were calculated by summing
the number of risk alleles at each locus [55,56].

2.9. Statistical Analysis

The primary outcome of the study was the weight loss, according to the current
recommendations of the AASLD to ameliorate NAFLD features [37]. The sample size was
estimated assuming a mean difference of weight loss of 1.0 (1.5 kg) between both dietary
groups (AHA vs. FLiO) with a 95% confidence interval (α = 0.05) and a statistical power
of 80% (β = 0.80). Considering a dropout rate of 20–30%, 50 subjects were included in
each group of the study, even though two subjects were excluded from the AHA group
due to the presence of important biochemical alterations in the initial assessment. This
trial started with 98 participants but only 86 epithelium buccal cells from volunteers were
available. Moreover, after 6 months, a total of 70 participants had complete information
and epithelium buccal cells to carry out the study.

Results with normal distribution were expressed as means ± standard deviations (SD),
whereas continuous skewed variables were presented as medians and interquartile ranges
(IQR). Moreover, qualitative variables were expressed as number (n) and percentages (%).
The normality of the distribution was checked through Shapiro–Wilk and Kolmogorov–
Smirnov tests. Statistical differences for continuous variables at baseline (between men
and women and according to age) and after the 6-month dietary intervention were es-
timated using Student’s t-tests of independent samples and Wilcoxon–Mann–Whitney
(for non-normally distributed variables). Categorical variables were compared using a
Chi-squared test.
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Figure 1. Design and flow chart of participants in the Fatty Liver in Obesity (FLiO) study. AHA, American Heart Association;
FLI, fatty liver index; FLiO, Fatty Liver in Obesity; GRS, genetic risk score; GRSFLI, genetic risk score for FLI; GRSMRI,
genetic risk score for magnetic resonance imaging; GRSOWL, genetic risk score for OWLiver®-test; MRI, magnetic resonance
imaging; SNPs, Single Nucleotide Polymorphisms.

Diagnostic tests of the regression assumption for linearity and equal variance of resid-
uals, and the variance inflation factor (VIF) for testing collinearity between independent
variables, were conducted. Multiple linear regression models were used to predict FLI,
liver fat content (by MRI) and OWLiver®-test changes. All the designed GRS were used
as continuous variables in the multiple linear regression models. In addition to genetic
variants, other conventional factors of personalization were evaluated, including age, sex
and the following variables at baseline: insulin (U/mL), FGF-21 (pg/mL) and protein
(%), as well as potential interaction introducing the corresponding interaction terms to
the models.

All p-values presented are two-tailed and were considered statistically significant
at p < 0.05. Analyses were carried out using Stata version 12.1 software (StataCorp 2011,
College Station, TX, USA).

3. Results

Baseline characteristics of the participants, including body composition, biochemical
and nutritional characteristics, are reported separated by sex and age (Table 1). Overall,
57% (n = 49) of subjects were men. The average values of weight and waist circumference
followed expected trends depending on sex. Triglycerides and insulin resistance-related
variables (HOMA-IR and TyG) showed statistical differences between genders, being
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higher in men as compared to women. However, leptin concentration was significantly
lower in males (20.1 ng/mL vs. 46.0 ng/mL in females). Analyzing variables associated
with liver injury, statistical differences were observed in the fatty liver index (76.0 vs. 89.6)
and in liver fat content measured by MRI (4.5% vs. 6.5%), showing worst hepatic health
values in men in both measures. On the other hand, lipidomic analysis (OWLiver®-test) did
not show significant differences. Concerning results according to age significant differences
were only observed on weight, glucose and adiponectin concentrations and MedDiet Score.
Regarding diet, the nutritional pattern of the study population was characterized by a
relatively high consumption of energy derived from fat (37.4%), a concomitant low intake
of carbohydrates (42.8%) and an average protein intake of 16.8%. Moreover, significant
improvements in body composition, biochemical parameters, hepatic health variables,
dietary intake and lifestyle factors were observed after the 6-month nutritional intervention,
following the expected trends.

To study the genetic risk association with NAFLD, of a total of 95 SNPs related to
obesity, 47 genetic variants were chosen because they were statistically or marginally
associated with the amelioration of the hepatic health measured by non-invasive NAFLD
diagnostic methods (FLI, MRI and OWLiver®-test). Of those, 1 SNP was common among
all methods: rs2959272 (PPARG). On the other hand, 30 SNPs were exclusively related
to a specific method—17 for FLI rs1801133 (MTHFR), rs1055144 (NFE2L3), rs17817449
(FTO), rs8050136 (FTO), rs3751812 (FTO), rs9939609 (FTO), rs2075577 (UCP3), rs324420
(FAAH), rs1121980 (FTO), rs2419621 (ACSL5), rs1558902 (FTO), rs3123554 (CNR2/FUCA1),
rs6567160 (MC4R), rs660339 (UCP2), rs2605100 (LYPLAL1), rs1800629 (TNFAPROMOTOR),
rs4994 (ADRB3); 3 for MRI: rs6861681 (CPEB4), rs1440581 (PPM1K), rs1799883 (FABP2);
and 10 for OWLiver® test: rs1175544 (PPARG), rs1797912 (PPARG), rs1386835 (PPARG),
rs709158 (PPARG), rs1175540 (PPARG), rs1801260 (CLOCK), rs12502572 (UCP1), rs8179183
(LEPR), rs894160 (PLIN1), rs4731426 (LEP). In our population, we used the SNP associated
with each non-invasive method for calculating the GRS (Figure S1).

The GRS, calculated as the number of risk alleles carried by each subject, was normally
distributed. The sample was stratified, by the median, into a “low genetic risk group”
(those with a GRSFLI ≤ 9, GRSOWL ≤ 10 and GRSMRI ≤ 4 risk alleles) and a “high genetic
risk group” (those with a GRSFLI > 9, GRSOWL > 10 and GRSMRI > 4 risk alleles). The results
for the effect of each GRS on the change of different outcomes after the nutritional treatment
are shown in Table 2. All groups exhibited a significant body weight loss, which was higher
when the genetic risk was lower. Moreover, body composition variables including weight,
BMI and waist circumference showed statistical differences when comparing GRSFLI and
GRSMRI medians. Furthermore, general improvements in biochemical parameters were
found. However, the amelioration was only statistically significant in TG, TyG and leptin
concentrations, and TG and FGF-21 concentrations, when comparing GRSFLI and GRSMRI
medians, respectively. On the other hand, no significant changes were found for dietary
intake and lifestyle factors.

In order to evaluate the improvement of hepatic health depending on genetic and non-
genetic risk factors, linear regression models were constructed (Table 3). These models were
adjusted for sex, age, baseline protein intake, baseline FGF-21 and insulin concentration and
the change in MedDiet Score. All the GRS included in the models showed an important
association with the improvement on hepatic health. Moreover, a higher decrease in FLI
was significantly associated with baseline insulin and protein and with the change in
MedDietScore, showing an improvement in hepatic functionality. A high intake of protein
at baseline also seemed to be important in the improvement of lipid metabolism, assessed
by OWLiver®-test. Parallelly, the regression model established for the change in liver fat
content (MRI) showed a significant interaction between the GRSMRI and protein intake at
baseline (p-value: 0.001). However, no statistically significant interactions between GRSFLI
and GRSOWL were found. Overall, the change of FLI, OWLiver®-test and MRI variabilities
were explained in approximately 52% (adj. R2 = 0.53), 16% (adj. R2 = 0.16) and 34% (adj.
R2 = 0.34), respectively.
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Table 1. Baseline characteristics and after 6 months of dietary intervention and according to sex and age.

Baseline

All Participants Women Men ≤50 y >50 y 6 Months ª

n 86 37 49 43 43 70

Body composition

Weight (kg) 95.0 (13.9) 88.1 (13.0) 100.3 (12.3) *** 98.5 (13.8) 91.6 (13.3) * 84.4 (75.1; 92.1) ***
BMI (kg/m2) 32.8 (30.6; 35.8) 32.9 (30.0; 36.2) 32.5 (30.9; 35.8) 33.8 (30.9; 36.6) 32.2 (30.2; 34.6) 28.7 (27.6; 32.6) ***
WC (cm) 109.0 (9.1) 103.8 (7.4) 112.9 (8.3) *** 109.2 (8.7) 108.7 (9.6) 99.9 (9.5) ***
DXA VAT (kg) 2.3 (1.6; 3.1) 2.2 (1.5; 3.1) 2.3 (1.7; 3.1) 2.3 (1.7; 3.2) 2.3 (1.6; 3.0) 1.5 (0.7) ***

Biochemical parameters

TG (mg/dL) 121.0 (80.0; 155.0) 92.0 (72.0; 133.0) 127.0 (96.0; 170.0) ** 126.0 (80.0; 167.0) 113.0 (72.0; 148.0) 83.0 (56.0; 114.0) ***
Glucose (mg/dL) 101.5 (91; 108) 97.0 (92.0; 105.0) 103.0 (91.0; 115.0) 97.0 (91.0; 104.0) 104.0 (95.0; 112.0) * 92.0 (87.0; 98.0) ***
Insulin (U/mL) 16.6 (7.9) 15.3 (7.8) 17.7 (7.9) 15.4 (7.1) 17.9 (8.5) 8.6 (6.5; 13.5) ***
HOMA-IR 4.1 (2.8; 5.7) 3.5 (2.2; 5.1) 4.4 (3.1; 6.0) * 3.9 (2.6; 5.1) 4.4 (2.9; 6.5) 1.9 (1.4; 3.3) ***
TyG index 8.6 (0.5) 8.4 (0.4) 8.8 (0.4) *** 8.6 (0.4) 8.6 (0.5) 8.2 (7.8; 8.6) ***
Adiponectin (µg/mL) 6.3 (5.0; 8.3) 6.6 (5.2; 8.3) 5.9 (5.0; 7.5) 5.8 (4.5; 7.9) 6.6 (5.7; 9.7) 8.0 (6.1; 9.9) ***
Leptin (ng/mL) 29.8 (17.6; 44.8) 46.0 (37.7; 69.3) 20.1 (14.0; 26.4) *** 32.1 (17.6; 46.09) 26.4 (15.9; 39.3) * 16.7 (7.5; 33.0) ***
FGF21 (pg/mL) 211.5 (108.0; 352.0) 190.0 (89.1; 387.0) 215.0 (124.0; 328.0) 182.0 (87.7; 302.0) 244.0 (130.0; 416.0) 187.5 (111.0; 355.0)

Liver injury

FLI 83.1 (73.7; 92.3) 76.0 (60.7; 83.0) 89.6 (79.8; 94.1) *** 84.4 (74.2; 93.3) 79.8 (70.5; 91.7) 51.11 (23.6) ***
MRI Liver fat—Dixon (%) 5.6 (3.2; 9.6) 4.5 (2.9; 8.7) 6.5 (4.3; 10.1) * 5.9 (3.5; 12.4) 5.0 (3.0; 8.9) 2.0 (1.3; 3.8) ***

Lipidomic (OWLiver®-test) n (%)

No NAFLD 17 (20.0) 7 (18.9) 10 (20.8) 7 (16.2) 10 (23.8) 23 (32.8)
Hepatic Steatosis 20 (23.5) 10 (27.0) 10 (20.8) 7 (16.2) 13 (30.9) 21 (30.0) *
NASH 48 (56.4) 20 (54.0) 28 (58.3) 29 (67.4) 19 (45.2) 26 (37.1)

Dietary intake per day

Total energy (kcal/day) 2550 (1958; 2925) 2548 (2031; 3133) 2554 (1897; 2902) 2551 (2042; 3066) 2464 (1833; 2864) 2004 (576) ***
Carbohydrates (%E) 42.8 (37.6; 47.8) 43.0 (35.9; 48.4) 42.5 (39.2; 47.5) 40.8 (36.2; 46.8) 43.0 (39.9; 48.0) 42.3 (7.7)
Proteins (%E) 16.8 (15.1; 19.1) 16.9 (15.2; 20.9) 16.7 (15.1; 19.0) 16.7 (15.3; 18.8) 16.9 (14.6; 19.3) 19.4 (17.1; 22.8) ***
Fats (%E) 37.4 (6.8) 38.1 (7.5) 36.8 (6.2) 38.3 (6.8) 36.5 (6.7) 35.4 (7.8)

Lifestyle factors

MedDiet Score 5.9 (1.9) 5.9 (2.3) 5.9 (1.6) 5.4 (1.7) 6.4 (2.0) * 12.0 (10.0; 14.0) ***
PA (METs-min/week) 2240 (1665; 4307) 2240 (1710; 4307) 2280 (1100; 4365) 2322 (1705; 4365) 2216 (1392; 4200) 3720 (2442; 5115) ***

Variables re shown as mean (SD) or as median (IQR) according to its distribution. Categorical variables are presented as absolute (n). Paired t-tests and Wilcoxon-matched-pairs signed ranks were carried out to
compare baseline and 6 months participants characteristics. Independent samples t-tests and Wilcoxon–Mann–Whitney were carried out to compare changes between sex and age groups. Age was categorized
according to the median. * p < 0.05; ** p < 0.01; *** p < 0.001. ª Comparison within dietary groups (baseline and after 6 months). BMI, body mass index; DXA, dual-energy X-ray absorptiometry; %E, percentage of
energy; FGF-21, fibroblast growth factor 21; FLI, fatty liver index; HOMA-IR, homeostasis model assessment insulin resistance; MRI, magnetic resonance imaging; OWL®; OWLiver®-test; PA, physical activity;
TG, triglycerides; TyG index, triglycerides and glucose index; VAT, visceral adipose tissue; WC, waist circumference.
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Table 2. Change in body composition, biochemical, dietary and lifestyle factors according to different genetic risk scores.

GRSFLI GRSOWL GRSMRI

<9 ≥9 <10 ≥10 <4 ≥4

n 30 40 29 41 31 39

Body composition

Mean 6.0 (1.6) 9.6 (3.9) 7.0 (1.5) 11.7 (1.4) 2.0 (0.8) 4.9 (1.0)
∆Weight (kg) −10.6 (−15.8; −6.9) −8.4 (−10.7; −5.0) * −9.5 (−12.4; −6.4) −8.6 (−12; −6.4) −9.6 (−16.9; −8.2) −7.6 (−11.2; −4.9) *
∆BMI (kg/m2) −3.6 (−5.1; −2.4) −2.9 (−3.7; −1.6) * −3.3 (−4.7; −2.2) −3.2 (−4.1; −2.2) −3.5 (−5.6; −2.9) −2.8 (−3.8; −1.6) *
∆WC (cm) −11.7 (6.5) −7.6 (5.6) ** −9.1 (6.4) −9.5 (6.3) −11.0 (5.2) −8.0 (6.8) *
∆DXA VAT (kg) −0.8 (−1.2; −0.4) −0.9 (−1.5; −0.4) −1.0 (−1.5; −0.4) −0.8 (−1.5; −3.2) −1.0 (−1.5; −0.6) −0.7 (−1.67; −0.2)

Biochemical parameters

∆TG (mg/dL) −42.0 (−100.0; −18.0) −15.0 (−56.0; 4.0) * −32.0 (−68; 0) −22.5 (−58.5; −0.5) −46.0 (−102.0; −5.0) −18.0 (−45.0; 1.0) *
∆Glucose (mg/dL) −8.6 (11.0) −10.2 (12.4) −9.8 (13.6) −9.3 (10.4) −9.2 (11.0) −9.8 (12.5)
∆Insulin (U/mL) −7.4 (7.1) −4.9 (8.0) −6.2 (8.7) −5.9 (7.0) −6.7 (7.4) −5.4 (8.0)
∆HOMA-IR −2.0 (−3.2; −0.2) −1.6 (−3.3; −0.2) −1.9 (−3.2; −0.2) −1.8 (−3.2; −0.6) −2.3 (−3.2; −1.0) −1.5 (−3.2; −0.1)
∆TyG index −0.6 (0.4) −0.2 (0.4) ** −0.4 (0.3) −0.4 (0.5) −0.5 (0.5) −0.3 (0.3)
∆Adiponectin (µg/mL) 1.5 (0.1; 4.7) 1.2 (−0.9; 3.2) −0.1 (−0.6; 2.2) 1.8 (0.1; 3.4) 1.0 (−0.6; 3.4) 1.3 (−0.2; 4.1)
∆Leptin (ng/mL) −11.1 (−21.6; −7.2) −7.5 (−14.5; −2.9) * −9.5 (−15.8; −7.0) −7.5 (−20.0; −3.0) −9.1 (−15.8; −6.7) −9.1 (−20.0; −3.0)
∆FGF21 (pg/mL) −9.1 (−123.0; 80.0) −40.5 (−146.5; 95.5) −41.7 (−132; 50) −0.8 (−123; 88) −55.4 (−217; 45) 12.0 (−64.2; 97) *

∆FLI (%) −54.5 (19.7) −22.6 (17.9) *** −33.7 (21.8) −38.4 (26.2) −41.1 (25.3) −32.9 (23.5)
∆MRI Liver fat—Dixon (%) −2.7 (−6.8; −0.7) −2.7 (−6.8; −1.2) −4.3 (−8; −0.8) −3.4 (−6.8; −1.2) −4.5 (−7.8; −2.5) −1.6 (−4.2; −0.2) ***

∆Lipidomic (OWLiver®-test) n (%)

OWL® maintenance 19 (63.3) 28 (71.7) 13 (44.8) 34 (85.0) *** 17 (56.6) 30 (76.9)
OWL® reduction 11 (36.6) 11 (28.2) 16 (55.1) 6 (15.0) 13 (43.3) 9 (23.0)

Dietary intake per day

∆Total energy (kcal) −882 (−1261; −88) −523 (−1099; −101) −589 (−987; −132) −603 (−1175; 44) −881 (−1257; −308) −479 (−1009; 66)
∆Carbohydrates (%) −1.3 (10.0) −0.7 (8.7) −1.9 (8.2) −0.3 (9.9) −2.0 (9.4) −0.3 (9.1)
∆Proteins (%) 3.6 (4.3) 1.9 (5.7) 2.5 (3.5) 2.7 (6.1) 2.9 (6.0) 2.4 (4.6)
∆Fats (%) −0.7 (−6.2; 4.5) −2.1 (−9.1; 5.1) −0.2 (−5.2; 5.2) −1.8 (−10.1; 4.8) −2.6 (−8.3; 4.1) −1.4 (−9.8; 5.8)

Lifestyle factors

∆MedDiet Score 6.3 (3.1) 5.7 (3.4) 5.7 (3.2) 6.1 (3.4) 6.5 (3.3) 5.5 (3.3)
∆PA (METs min/week) 758 (−217; 2405) 1215 (−120; 2798) 896 (73; 2798) 1111 (−753; 2405) 984 (−65; 2357) 1046 (−557; 2817)

Variables are shown as mean (SD) or as median (IQR) according to its distribution. Categorical variables are presented as absolute (n). Independent samples t-tests and Wilcoxon–Mann–Whitney were carried out
to compare variables changes according to the median of GRSFLI < 9 and GRSFLI ≥ 9, GRSMRI < 4 and GRSMRI ≥ 4 and GRSOWL < 10 and GRSOWL ≥ 10. * p < 0.05; ** p < 0.01; *** p < 0.001. BMI, body mass index;
DXA, dual-energy X-ray absorptiometry; %E, percentage of energy; FGF-21, fibroblast growth factor 21; FLI, fatty liver index; HOMA-IR, homeostasis model assessment insulin resistance; MRI, magnetic
resonance imaging; OWL®; OWLiver®-test; PA, physical activity; TG, triglycerides; TyG index, triglycerides and glucose index; VAT, visceral adipose tissue; WC, waist circumference.
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Table 3. Linear regression analyses of changes in fatty liver index, OWLiver®-test and liver fat content (MRI).

β p-Value Adjusted R2 p-Model

% Change in Fatty Liver Index (FLI)

Model 1 GRSFLI 3.75 <0.001 0.37 <0.001

Model 2 GRSFLI 3.37 <0.001 0.39 <0.001
Baseline protein 1.27 0.044

Model 3 GRSFLI 3.03 <0.001 0.45 <0.001
Baseline protein 1.55 0.011
Baseline insulin 0.80 0.005

Model 4 GRSFLI 3.10 <0.001 0.53 <0.001
Baseline protein 1.49 0.009
Baseline insulin 0.76 0.005
Change MedDiet Score −1.99 0.002

Change in OWLiver®-test

Model 5 GRSOWL 0.08 0.001 0.12 0.009

Model 6 GRSOWL 0.07 0.011 0.16 0.005
Baseline protein 0.04 0.022

Change in liver fat content (MRI)

Model 7 GRSMRI 1.13 <0.001 0.23 <0.001

Model 8 GRSMRI 1.28 <0.001 0.24 <0.001
Baseline protein 0.04 0.741

Model 9 GRSMRI 1.17 <0.001 0.28 <0.001
Baseline protein 0.09 0.448
Baseline FGF21 −0.004 0.051

Model 10 GRSMRI#baselineprotein 0.180 0.017 0.34 <0.001
Baseline FGF21 −0.004 0.040

All models were adjusted by age and sex. GRSFLI, genetic risk score for FLI; GRSMRI, genetic risk score for magnetic resonance imaging;
GRSOWL, genetic risk score for OWLiver®-test; MRI, magnetic resonance imaging.

In addition, Figure 2A–C plot simple linear regression analyses of statistically signifi-
cant predictors of FLI, OWLiver®-test and liver fat content (MRI) decrease by diet. A lower
change in FLI and OWLiver®-test was associated with a higher baseline protein intake
(p-value: 0.009 and 0.022, respectively). Moreover, this association became more important
when the genetic risk was higher (Figure 2A,B). Figure 2C shows that a higher baseline
protein was associated with a lower change of liver fat content (by MRI) becoming the
effect more evident when the genetic risk was higher (p interaction: 0.017).
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4. Discussion

NALFD has reached pandemic levels, being recognized as an important health burden
with an urgent need for early diagnosis [57]. Genetic predisposition for NAFLD has been
reported [18,20]. With this in mind, the objective of this research was to assess the impact
of the interaction between genetic and non-genetic factors concerning the improvement
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of the hepatic health using different diagnosis tools (FLI, MRI and OWLiver®-test) after a
6-month energy-restricted nutritional treatment for a more personalized management of
this liver disease.

The high prevalence of NAFLD could be related to its strong link with obesity,
which seems to play a role in both the initial simple steatosis and in its progression
to NASH [11,58]. In this context, various genes and less frequent variants have been
associated with the regulation of energy metabolism [18,59]. Moreover, the increasing of
knowledge of the genetic component of NAFLD has promoted the development of noninva-
sive diagnosis methods based on Genome Wide Associations Studies (GWAS) [11,16,57,60],
but few of them have examined the contribution of obesity-related variants linked to the
evolution of this hepatic disease [37,61].

In order to better understand the contribution of genetics in the context of NAFLD,
three different GRS were constructed based on the improvement of hepatic health after
an energy-restricted treatment measured by three non-invasive diagnostic methods (FLI,
magnetic resonance imaging and OWLiver®-test). On the one hand, fatty liver index has
been highly correlated with measures of fatty liver disease showing an area under the
curve of 0.84, predicting most cases of NAFLD [62]. Moreover, a recent study reported that
the FLI joint to the waist circumference-to-height ratio could be one of the most accurate
algorithms for the noninvasive diagnosis of NAFLD in both lean and overweight/obese
population [63]. On the other hand, MRI can be considered the gold standard for steatosis
measurement, being highly accurate and reproducible and superior in detecting and
quantifying fat accumulation [61,64]. However, these two methods have limitations in
detecting inflammation, ballooning and cellular injury, which are key components in
NASH diagnosis [65]. Thus, in some cases, models based on “omics” sciences, such as the
OWLiver®-test, could be of interest adding knowledge about diverse factors influencing
weight loss variability among individuals. Due to the differences between methods in
outcome measures, distinct genes and so pathways may be expected to be connected.

Therefore, a total of 47 polymorphisms were independently associated with differential
responses to hepatic functionality (FLI), fat liver content (MRI) and lipid metabolism
(OWLiver®-test). It is important to emphasize that each non-invasive diagnostic method
has its specific SNPs. Only the rs2959272 (PPARG) genetic variant was the common element
on the three GRS. In this sense, an intervention study indicated that the PPARG genotype
was associated with success in body weight reduction [66]. Indeed, two common elements
were also observed between GRSFLI and GRSMRI, SNPs were located in genes related to
bile secretion (ABCB11) and the regulation of energy balance and body weight (SH2B1).
Meanwhile, SNPs in genes implicated in weight loss (SH2B1 and STK33) influenced both
GRSOWL and GRSMRI. Instead, three common elements mapped to genes involved in
endocrine/enzymatic regulation of lipid metabolism affecting macronutrient (GNAS) food
intake and energy expenditure (MC4R) and thermogenesis (UCP1) were observed in GRSFLI
and GRSOWL.

In this study, a greater change in most of the NAFLD-related variables was reported
when the genetic risk was lower. According to these findings, it has been extensively
debated the identification of the physiological pathways that control energy metabolism
and body weight regulation [31,67]. A Genetic Investigation of ANtropometric Traits
consortium (GIANT) metanalysis identified 97 loci for BMI where genes near these specific
loci showed expression enrichment in the central nervous system, suggesting that BMI is
mainly regulated by processes such as hypothalamic control of energy intake [68]. Similar
results have been found in a recent study in a pediatric population, where the application
of a GRS to established clinical risk factors significantly improved the discriminatory
capability of the prediction of NAFLD risk [5]. Indeed, different genetic variants and
interactions with environmental factors have been shown to modulate the differential
individual responses to moderately high-protein and low-fat dietary interventions in a
Caucasian population [55]. In this sense, genetic information could help to determine the
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most appropriate dietary intervention for the prevention and treatment of NAFLD, as well
as the development of associated comorbidities [69].

Moreover, for the purpose of explaining the variability on the improvement in hepatic
functionality (FLI), liver fat content (by MRI) and lipidomic (OWLiver®-test), linear regres-
sion models were performed. The predictive accuracy of all models substantially improved
when combining each of the previously mentioned SNPs in the multiple linear regression
models, which is in line with previous studies [70]. In order to ameliorate these results, each
regression model was fitted by sex, age and NAFLD-related variables such as inflammatory
biomarkers or dietary compounds. Other variables such as the nutritional group of the par-
ticipants was also considered, even though no significant differences were found. Factors
related with proinflammatory and profibrogenetic pathways such as leptin, adiponectin or
FGF-21, which appears to be elevated in patients with NAFLD, are therefore a promising
target for the treatment [71,72]. Thus, GRSFLI, GRSMRI and GRSOWL were major predictors
of the change in FLI, liver fat content (MRI) and OWLiver®-test, respectively.

To the best of our knowledge, there are few studies showing the combined effects
of GRS built from SNPs related weight and adiposity regulation in response to different
energy-restricted diets [50]. Moreover, it has been reported that genetic background is
an important factor explaining metabolically health and unhealthy phenotypes related to
obesity, in addition to lifestyle variables [54].

In this sense, dietary factors seem to be of key importance and have been associated
with weight gain, obesity and NAFLD development [73,74]. Interestingly, in this research,
higher baseline protein was associated with worst hepatic health improvement measured
by FLI and OWLiver®-test. Furthermore, an interaction between the liver fat content
assessed by MRI and baseline protein was found. In the same line were the results obtained
from the Nurse´s Health Study and the Health Professionals Follow-up Study, where an
increased intake of sugar-sweetened beverages was found to amplify the association of
a 32-SNP genetic risk score with BMI [75]. These findings suggest that not only genetic
and dietary factor should be considered but also the interaction of both of them [76,77].
Hence, a combined analysis over 16,000 children and adolescent showed the FTO rs9939609
variant that confers a predisposition to higher BMI is associated with higher total energy
intake and that lower dietary protein intake attenuates the association [78]. Among the
macronutrient categories, protein is the main one that contributes to the satiety, therefore
contributing to weight loss [79,80]. However, the effect of the high protein diet in patients
with NAFLD remains controversial. On the one hand, it has been suggested that the
consumption of specific dietary amino acids might negatively impact liver status and, to a
lesser extent, glucose metabolism in subjects with overweight/obesity and NAFLD [81].
Moreover, high protein intake derived mainly from dairy products has been associated
with higher risk to develop diabetes and also with NAFLD [82]. A recent study has also
suggested that following a lower protein diet, particularly in genetically predisposed
individuals, might be an effective approach for addressing cardiometabolic diseases among
Southeast Asian women [83]. On the other hand, high protein diet has been reported to
be a valid therapeutic approach to revert NAFLD, being of special importance the protein
source and the functional status of the liver [84]. In addition, BCAA supplementation
has been demonstrated to ameliorate liver fibrosis and suppress tumor growth in a rat
model of HCC with liver cirrhosis, as well as alleviate hepatic steatosis and liver injury in
NASH mice [85,86].

There are some drawbacks of this research. Firstly, liver biopsy results were not
available to corroborate the precise diagnosis of patients [57]. Nonetheless, in this research,
we carried out a complete evaluation of the liver status by means of validated and widely
used techniques as well as blood biomarkers and hepatic indexes, which are affordable and
practical methods to use in health assessment. Second, the sample size and the enrollment
of subjects are not very large. For this reason, these models may be further validated in
different populations to establish whether they might represent a reliable and accurate,
“non-invasive alternative” to liver biopsy. In addition, the role of new SNPs associated
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with excessive adiposity and accompanying metabolic alterations through a GRS approach
needs to be re-explored, but our contribution re-states the value of the genetic make-up
when prescribing personalized diets. Thirdly, type I and type II errors cannot be completely
ruled out, especially those related to the selection of SNPs to be introduced into the GRS.
However, due to the use of less stringent p-value thresholds compared to association studies
of single variants, genomic profile risk scoring analyses can tolerate, at balance, some of
these biases, as previously reviewed [87]. Fourthly, dietary intake was evaluated using self-
reported information of the participants, which may produce some bias on the evaluation
of the results. Lastly the constructions of the GRS using specific obesity-related SNP it is
also an important limitation. However, the inclusion of these SNP on the evaluation of
the genetic influence on NAFLD could be also considered an important strength of this
investigation, as well as the use of different multiple linear regression models to test the
contribution of genetics, baseline protein and inflammatory factors on the management of
NAFLD. Finally, the study is a randomized controlled trial where each volunteer had an
individual follow-up promoting the adoption of behavioral changes and a healthy lifestyle.

Overall, this experiment was designed as a proof of concept in order to evaluate if the
genetic background linked to NAFLD-related factors may influence hepatic amelioration.
In addition, examining new causes of disease and the underlying mechanism or alteration
in specific pathways and clinical outcomes may be of interest.

5. Conclusions

Predicting the individual risk of NAFLD and determining the probability of disease
progression is the basis for a precise diagnosis and treatment. These results demonstrate
that three different genetic scores can be useful for the personalized management of
NAFLD, whose treatment must rely on specific dietary recommendations guided by the
measurement of specific genetic biomarkers.
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