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Abstract
Copy number variation (CNV) is a form of structural alteration in the mammalian DNA

sequence, which are associated with many complex neurological diseases as well as can-

cer. The development of next generation sequencing (NGS) technology provides us a new

dimension towards detection of genomic locations with copy number variations. Here we

develop an algorithm for detecting CNVs, which is based on depth of coverage data gener-

ated by NGS technology. In this work, we have used a novel way to represent the read

count data as a two dimensional geometrical point. A key aspect of detecting the regions

with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic

locations having a significant difference in read count data. We have designed a new seg-

mentation approach in this context, using convex hull algorithm on the geometrical repre-

sentation of read count data. To our knowledge, most algorithms have used a single

distribution model of read count data, but here in our approach, we have considered the

read count data to follow two different distribution models independently, which adds to the

robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multi-

ple sample analysis approach resulting in a low false discovery rate with high precision.

Introduction
Copy number variation is a type of genomic structural alteration, which is caused by either
duplication (or insertion) of a large genomic segment multiple times, or may be characterized
by the deletion of a large DNA segment. The size of the region getting duplicated, deleted or
inserted ranges from kilobases (kb) to megabases (mb) [1]. These copy number variations can
be found in human as well as other mammals [2]. The human genome is composed of more
than 25000 genes, and it was known earlier that a gene is always present in copies of two. But
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recent studies have proven that a gene can be present in one, two, three or more numbers of
copies or it may happen that the whole gene is deleted. This happens due to insertion or dele-
tion of large chunks of DNA segment, which may encompass genes causing changes in their
copy number, and thereby leading to dosage imbalance. CNVs can have a vital impact on
human health. It is associated with some complex diseases related to neurological disorders,
including autism spectrum disorder (ASD) [3], schizophrenia [4], and also associated with
some cancers [5]. Duplications of many oncogenes and deletions of tumor suppressor genes
may lead to the onset of a cancer [6]. However, the presence of this form of structural varia-
tions (CNVs) does not always relate to diseases, rather it may also be present in some healthy
individuals. Hence, the detection of CNV regions is an important task.

In earlier days, fluorescence in situ hybridization (FISH) [7] and array comparative genomic
hybridization (aCGH) [8] based techniques were used to detect CNVs. These techniques suf-
fered from low resolution and noise due to hybridization, and detection of CNV breakpoints
(starting and ending position) was also not very precise [9]. The demand for low cost sequenc-
ing has led to the development of next generation sequencing (NGS) technology that paralle-
lizes the sequencing process by generating millions of short reads, involving low cost and time
[10]. NGS provides us a new dimension towards detection of CNVs with high coverage, high
resolution, and a platform for efficiently detecting novel and rare CNVs. These NGS based
algorithms use DNA sequence reads, and map them against a reference genome sequence to
detect any kind of variations.

NGS based CNV detection methods are mainly divided into two categories: paired end
mapping (PEM) based approaches [11] and depth of coverage (DOC) based approaches [12].
PEM based methods use paired end reads. The pair ends of the sample genome are mapped
against the reference genome, and the distance between the paired ends of the sample and that
of reference is calculated. If the two distances vary significantly, then the presence of deletion
or insertion is there in the sample. PEM based methods have limitations of finding insertions,
deletions of larger sizes [11]. These methods also have limitations in detecting regions having
segmental duplications. DOC methods are more commonly used in CNV detections. These
methods first track the alignment of short reads to non overlapping windows (bins) or sliding
windows of the reference sequence, resulting in read count or read depth data. Unlike PEM
based methods, DOC based algorithms can detect CNVs of larger sizes, detect CNVs in the
complex genomic region, and can also estimate the exact copy number of genomic regions.

Some of the read depth based approaches include EWT (Event-wise Testing) introduced by
Yoon [13], which uses the high throughput sequence data and filters out reads of low quality.
Reads mapping to 100 bp window are counted and then GC-corrected normalized read count
information is taken into account. The modified read count information is converted to z-
scores and uses a probabilistic model to combine windows to maximize the score. JointSLM
[14] extends the idea of EWT, and uses a multiple sample analysis, based on a statistical analy-
sis using hidden Markov model. CNVeM [15] uses a probabilistic model and uses expectation
maximization algorithm to detect CNV of individual samples. CNVeM identifies breakpoints
with high resolution as it detects CNVs at the nucleotide level. cnMOPS [9] detects CNVs
across multiple samples using a mixture of Poisson model. Another multiple sample analysis
method is correlation matrix diagonal segmentation (CMDs) [16]. CMDs is based on a
between-chromosomal site correlation analysis and is used to detect recurrent copy number
aberrations (RCNA). As the input, it takes the copy numbers or CN data of genomic regions,
and based on correlation coefficients, diagonal transformation is performed [17].

As multiple sample analysis improves performance and causes low false discovery rate [9]
with high precision, we are motivated to work on multi sample analysis approach. In our work,
we have detected human genomic locations with copy number variations by using a cross
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sample analysis approach. Our algorithm, CNV-CH, works on NGS data where millions of
short reads are generated in parallel, from the DNA sequence of a particular chromosome.
CNV-CH is based on the depth of coverage data where the transformation of read count infor-
mation into geometrical points is done based on some statistical measures. To our knowledge,
most of the existing algorithms assume the read count data to follow a particular statistical dis-
tribution, whereas we have considered the distribution of read count data to follow two differ-
ent distributions independently. It adds robustness against the error which may arise from
incorrect assumption of a particular statistical distribution model. In addition, as there exists
variability in read count data, an appropriate smoothing technique at each and every base pair
or locus across the genome, is required as a part of data preprocessing. The variability in read
count data occurs due to mappability bias and a certain level of non-uniform read generation
in NGS technology. The present method CNV-CH has considered this issue by using an expo-
nential smoothing approach, where the mappability score has been used to determine the
exponential factor.

Another important aspect of CNV-CH is the deployment of a new segmentation algorithm
to segment genomic regions depicting copy number changes. The segmentation algorithm is
based on the notion of a convex hull algorithm applied over two dimensional geometric points,
where each point represents two statistical measures. Based on the area of the convex hull, we
are able to detect genomic regions having copy number variations. The method performs better
compared to some other single sample analysis approaches, since it detects CNVs with high
precision and low false positive rate. Moreover, the present algorithm detects CNV breakpoints
with high computational efficiency. In this work we performed simulations considering all pos-
sible experimental conditions, where each condition is a combination of values corresponding
to the coverage, variant length, copy number and number of test samples. As a result of which
360 experimental conditions were generated, and under each of these conditions, we conducted
100 trials, as described in the Results section. CNV-CH has also analyzed the real sequencing
data of chromosome 20 of multiple human individuals. These human genome sequences are
based on deep coverage whole genome sequencing data. Each detected region was validated
with the variants listed in the Database of Genomic Variants (DGV) (http://www.dgv.org). The
CNV regions detected by our method (CNV-CH), were mostly larger than 10 kbp of length.
Moreover, our algorithm has also detected variants as small as 0.6 kbps.

Results
We demonstrate the effectiveness of our algorithm on both simulated and real data along with
its superior performance over four publicly available methods in detecting CNVs. These pub-
licly available methods are EWT [13], cnMOPS [9], CMDs [16] and CNV-TV [18].

As CNV-CH involves a cross sample analytical tool for NGS data, it needs high computa-
tional resource in terms of memory. We implemented our algorithm using a 64 bit machine
with 16 GB memory. The complexity of the algorithm was found to be O(nklogk) where k is
the total number of samples and n is the number of 100bp bins. As cross sample analysis has
been found to produce effective results with 6–10 samples, hence the complexity O(nklogk) has
almost become equal to O(n) as klogk can be approximated as a constant term, where, 6�
k� 10.

Real Datasets considered in the present study
In our study, we considered chromosome 20 of human genome sequence data, which were
based on deep coverage whole genome DNA sequencing on two family trios in the CEPH Utah
and HapMap sample collections (http://www.1000genomes.org). All sequence reads were
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mapped against the NCBI build 36.3 human genome reference sequence. These reads were
present in a compressed binary alignment file, i.e., as a “.bam” file obtained from (ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/) or (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/). The
files can also be obtained from (http://www.1000genomes.org/data). The samples were CEU
trio female of European ancestry (NA12878, NA12892), and YRI females (NA19240,
NA19238), and a CEU trio male of European ancestry (NA12891), and an YRI male
(NA19239). We also worked on low coverage sequencing data. The samples included were
CEU trio female of European ancestry (NA12878, NA12751, NA07037, NA12763, NA12813,
NA12718, NA12828), YRI males (NA18501, NA18910), CEU trio male (NA12272, NA12286)
and a CHB Han Chinese female (NA18565). Each of these samples was sequenced as a part of
the pilot project of the 1000 genomes Project (http://www.1000genomes.org) under the
sequencing platform of Illumina. We have validated the CNV’s detected by CNV-CH with the
CNV’s listed in the database of genomic variants(DGV) (http://www.dgv.org).

In the simulation study, we considered a human reference sequence of chromosome 20
obtained from the site (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/) or it
can also be obtained from (http://hgdownload.cse.ucsc.edu/downloads.html). The simulated
data generation is described in Analysis of simulated data section.

Analysis of simulated data
In this study, we took a human DNA sequence of chromosome 20 and processed it as follows.
All the N’s (unknown base) was first removed from this sequence, reducing the file size from
61.3MB to 57.8MB. We also removed all regions which are already listed in DGV (http://dgv.
tcag.ca/dgv/app/home) as known variants. From this sequence, we randomly chose 10 disjoint
segments of size 2MB each. Now, out of these 10 segments, 1 random segment was selected in
each trial, acting as the reference genome, and another random segment was selected for simu-
lating deletion event as described later.

This simulation study was performed by manipulating the following experimental
conditions:

a. Coverage (C), representing the average number of times a given base has been sequenced,
by independent reads, where C was chosen from 2X, 10X, 15X or 30X;

b. Variant length (V), being the length (in bp) of the genomic subsequence that was duplicated
or deleted reflecting copy alterations, where V was chosen from 1kb, 2kb, 3kb, 4kb, 5kb or
6kb;

c. Copy number (Z), denoting the number of times a subsequence of length V has been dupli-
cated or deleted, where the value of Z was chosen from 0, 1, 3, 4 or 5;

d. Number of test samples (n), selected from 10, 20 or 50; and

e. Position (P), representing the genomic coordinate where a copy variation has been
introduced.

We considered all possible experimental conditions, where each condition is a combination of
values corresponding to the coverage, variant length, copy number and number of test samples,
as a result of which 360 experimental conditions were generated. Under each of these condi-
tions, we conducted 100 trials, and in each trial the following was done.

In order to simulate a diploid genome, the control genome was generated from the reference
genome, and was concatenated with its copy. Thus the size of the control genome became
4MB. Now, n test samples were also generated from the diploid control genome, wherein each
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individual test sample, we introduced copy number variation in a randomly selected position
P. According to the experimental condition corresponding to a trial, a subsequence from posi-
tion P to P + V was duplicated Z − 2 times, when Z> 2 (copy gain). A deletion event, when
Z< 2, was simulated by choosing a subsequence from P to P + V from the second 2MB seg-
ment and inserting it into the reference genome at the same position P. As this subsequence
would be present in the reference genome, but absent in test sample, it would simulate a dele-
tion event (copy number 0) in that position. In the case of deletion with copy number 1, the
above subsequence was inserted in the reference genome (at position P) as well as in the test
genome at either position P or P + 2MB. We also introduced mutation of 1bp randomly at an
interval of 300bp in each test sample. The decision to implant a copy number variation by the
above process in a test sample, was made by a coin tossing event.

Reads were generated from each of the test samples, where the length of each read was set to
36bp, to keep parity with the size of short reads generated by Illumina technology. The read
generation process was done by sampling reads with a probability r, which reflects GC-content
of the read. The values of r, used in read sampling process, were determined from a unimodal
[19] probability distribution function, obtained using the median GC-count of all possible
36-mers of chromosome 20 sequence (human reference hg19). Thus, it introduces GC-bias in
short read generation process. This sampling of read was repeated till a desired level of cover-
age C was achieved. Now, reads were aligned to 100bp non-overlapping bins of the reference
sequence. Since, the reads being originated from a repeat rich region of the test genome, might
have more than one possible optimal alignment in the reference, hence, aligning them accord-
ing to our method will introduce mappability bias in read count data. This mappability bias
was corrected by the process discussed in Materials and Methods section. Finally, for each of
these 20972 bins of a test sample, we obtained the corresponding adjusted read count data.

The outcome of the simulations, performed under a fixed single copy length and fixed num-
ber of samples with varying coverage level and copy number, is depicted using box plots, as
represented in Fig 1. Each outcome is the single copy length of the detected region, having vari-
ation in copy number with respect to the reference sample. Each experimental condition was
set by altering the coverage (C) and copy number (Z), and with a fixed single-copy variant
length of 1kbp, 3Kbp and 6Kbp as depicted in Fig 1(a)–1(c) respectively. Trials under each
experimental condition, represented by Fig 1, were performed with 10 samples (i.e., n = 10).
Thus, each of the figures show 20 benchmark (experimental) conditions, where the outcome of
100 trials, performed under each such condition, is represented by a box in the figure. For
instance, the rightmost box of Fig 1(a) shows the range of variant length detected by CNV-CH
in 100 simulated trials, at 30X read coverage and copy number 5. It is observed that the median
value of the detected variant lengths of each box (corresponding to a set of 100 trials performed
under one of the 20 conditions) is very close to the actual implanted single copy variant length
of 1Kbp. In addition, it is also observed that the lower edge of the box, i.e., the lower quartile q1
(25 percentile) and the upper edge of the box, i.e., the upper quartile q3 (75 percentile) are also
between 0.98kbp and 1.02kbp, except at 10X coverage with copy number 1 (deletion), the value
of q1 is around 0.96Kbp. Similarly, in Fig 1(b) and 1(c), it is observed that the median value in
each box (corresponding to trials conducted under one of the 20 conditions) is very close to the
actual implanted single-copy variant length of 3Kbp and 6Kbp. Fig 1(b) reflects that the lower
quartile q1 and the upper quartile q3 were bound between 2.95 and 3.05, whereas in Fig 1(c),
the quartiles were between 5.89 and 6.04.

The outcome of the trials under each condition was treated as outliers (‘+’mark), if they
were larger than q3 + 1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1), where the factor 1.5 corre-
sponds to ±2.7σ (σ being the standard deviation of the outcome) and 99.3 coverage approxi-
mately, under an assumption that the outcomes of the trials conducted under a particular
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condition are normally distributed. It is observed in Fig 1(a) that no outlier exists among any
outcome of trials, conducted under 10 different conditions for 1Kbp single-copy variant length,
while only one outlier is observed, in each set of outcomes under the other 5 conditions. On the
other hand, trials under the remaining 5 conditions, revealed at most 5 outliers, where the max-
imum number of outliers occurred under 10X coverage, with copy number 4. Fig 1(b) shows
no outlier corresponding to 14 different conditions under 3Kbp single copy variant length.
Only one or two outliers was/were equally observed in trials conducted under the remaining 6
conditions. Fig 1(c) also revealed the presence of no outlier under 11 conditions with fixed sin-
gle-copy variant length of 6Kbp.

Fig 2(a)–2(c) depict the outcome of trials conducted at each coverage level (C), with all pos-
sible copy number variations (Z) and at a fixed single-copy variant length of 1Kbp, 3Kbp and
6Kbp respectively, on 10 samples. Here, each outcome represents the single copy length of the
region detected by CNV-CH, having any variation in copy number (with respect to the refer-
ence sample). Each box in the figure represents the range of outcomes obtained from a set of
500 trials, with a fixed single-copy length and coverage level. It is observed that there exist no
outliers at low coverage level of 2X, with all possible copy numbers Z and at single-copy variant
length of 3Kbp, while only one outlier was found with copy length of 1Kbp, as shown in Fig 2
(a) and 2(b). But at 2X coverage with single-copy variant length of 6Kbp, about 7 outliers exist,
as shown in Fig 2(c). At 10X coverage level, we observed presence of only 2 outliers at each sin-
gle-copy variant length of 1Kbp and 3Kbp, for all possible copy numbers Z, as represented in

Fig 1. The box plot based analysis of the detected length of variations, obtained from simulation results on the implanted CNV length of 1kbp,
3kbp and 6kbp with 10 samples. (a) represents the length (kbp) of the regions with variations, detected by CNV-CH in a set of 100 trials, for all
combinations of coverage (C) and copy number (Z), and at fixed implanted variant length of 1kbp. The horizontal solid line within a box indicates the median
variant length detected with a set of 100 trials, and the +’s indicate the outliers. (b) represents the length (kbp) of the regions with variations, detected by
CNV-CH in a set of 100 trials, for all combinations of coverage (C) and copy number (Z), and at fixed implanted variant length of 3kbp, whereas in (c), the
implanted variant length is 6kbp.

doi:10.1371/journal.pone.0135895.g001
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Fig 2(a) and 2(b). At coverage levels of 15X and 30X, with single-copy variant length of 1Kbp,
3Kbp and 6Kbp, we observed 4–14 outliers as seen in Fig 1(a)–1(c) respectively.

Fig 3(a) and 3(b) depict an instance of GC-corrected read depth of 2 samples in the region
1240000bp–1280000bp, taken from one of the trials at a coverage level of 15X. A CNV using
single-copy variant length of 6Kbp was introduced, by performing duplication of the genomic
coordinate 1257695bp–1263695bp, to obtain copy number 3. Fig 3(a) shows the read count
data (after removing GC-bias) of one of the samples where this variation was introduced. Fig 3
(b) shows the GC-corrected read count data of the other sample in the same instance of trial,
where this variation was not introduced, based on an unbiased coin toss event as mentioned
earlier. These GC-corrected read count data of the two samples were suffering from mappabil-
ity bias, as observed in the figure. To remove this mappability bias, we applied a new technique,
using exponential smoothing and mappability score, as discussed in Materials and Methods
section. This mappability score of the reference sequence of a trial instance is represented in
Fig 4(a). It is also observed that the mappability score varies widely in [0, 1], corresponding to
high to low repeat rich region in the genome, respectively. Fig 4(b) and 4(c) depict the
smoothed read count signal obtained after removing the mappability bias from the GC-
corrected read count data. Fig 5 represents the difference in area, i.e., the value of4 (in Eq 5)
obtained by our algorithm, where the threshold value was considered as 1.0. It is observed that
bin 12578 was having a very high value of4. Thus, it was considered as a starting boundary
(break point) of an abnormal genomic region. Again bin 12637 was also having an increase in
the value of4, thereby, this bin was considered as the end boundary. Thus, the region with
genomic coordinate 1257701bp–1263700bp, was detected by CNV-CH as a region having copy
number variations in one of the trial instances.

Fig 2. The box plot based analysis of detected length of variations, obtained from simulation conducted at each coverage level (C) (2X, 10X, 15X or
20X), with all possible copy number variations (Z) (0, 1, 3, 4 or 5) and at a fixed single-copy variant length of 1Kbp, 3Kbp and 6Kbp as depicted in
(a), (b) and (c) respectively, with 10 samples.

doi:10.1371/journal.pone.0135895.g002
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Analysis of real data
CNV-CH analyzed the real sequencing data of chromosome 20 of multiple individuals. Each
detected region was validated with the variants listed in the Database of Genomic Variants
(DGV). The performance of CNV-CH on real sequencing data was analyzed on different com-
binations of high coverage and low coverage real data of chromosome 20. In one of the execu-
tion instances, we considered 4 high coverage data samples and two low coverage samples. In
this instance, among 6 high coverage samples NA12878 and NA19240 were excluded, which
are the offsprings of CEO pair—NA12891 and NA12892, and YRI pair—NA19238 and
NA19239 respectively. Thus, 4 parent samples were combined with 2 low coverage samples,
NA07037 and NA18501 in the execution instance 1. The results obtained from execution
instance 1 is shown in Table 1. In the second execution instance, we included both the off-
springs NA12878 and NA19240, excluding all four parents of instance 1, and combined them
with low coverage samples NA12813, NA07037, NA12751 and NA18910. In the third instance,
CNV-CH was executed using all the high and low coverage data. CNV-CH detected the same
set of variants in NA12878 for both the execution instances 2 and 3. Similarly, in NA19240,
CNV-CH again identified the same set of variants for both the execution instances. It indicates
that the performance of CNV-CH is independent of hereditary relationship among the sam-
ples. We also observed that in NA12878, out of 378 detected CNVs, 58 variants were common
with its parent NA12891, and 64 variants were common with the other parent NA12892. Simi-
larly, NA19240 had 128 variants common with one of its parent NA19238, and 84 variants
were common with its other parent NA19239.

An instance of the detected CNVs (as found in execution 3), across all the samples of a real
data set in the region 26200000bp and 30000000bp, is listed in Table 2 (see supplementary for

Fig 3. An instance of GC-corrected read count data, corresponding to the genomic region 1240000bp–1280000bp, of 2 test samples, as
represented in (a) and (b). The copy number variation as duplication, was introduced in the genomic segment 1257695bp–1263695bp as represented in
(a). The other sample has no variation in this region, as represented in (b).

doi:10.1371/journal.pone.0135895.g003
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all the regions with variations, detected by CNV-CH in human chromosome 20). The first two
columns of the table show the genomic coordinates (start and end) of the CNVs that were
detected by our algorithm. The third and fourth columns of the table show the overlapped
region, i.e., the genomic coordinates of each of our detected CNVs that overlap with the

Fig 4. Themappability score of the reference sequence and its correction, of a trial instance. (a). The mappability score varies widely in [0, 1],
corresponding to high to low repeat rich region in the genome, respectively. (b) and (c), depicts the smoothed read count signal obtained after removing the
mappability bias from the GC-corrected read count data.

doi:10.1371/journal.pone.0135895.g004

Fig 5. The breakpoints achieved across the genomic region 1240000bp–1280000bp. The start bin and
end bin of the genomic region having copy number changes, has a high value of4.

doi:10.1371/journal.pone.0135895.g005
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genomic coordinates of the CNVs that are listed in the Database of Genomic Variants (DGV).
The bins 261816–262217, 262295–262418, 262421–262450 and 297454–297733 were affected
by variation in almost all the samples, whereas the bins in which the CNVs were detected in
few samples are 295173–295367, 295401–295453, 295456–295515 and 295623–295726. CNVs
in the region 29577292bp–29596682bp and the region 29600079bp–29605289bp were present
in the samples NA12878, NA12891, NA12892 and NA19238. CNVs in the region
29605587bp–29611484bp were present in only NA12878 and NA12892, whereas the region
29622290bp–29632579bp were detected only in samples NA12878, NA12891 and NA12892.
In chromosome 20 of the tested samples, the CNV regions detected by our method, are mostly
more than 10 kbp in length. However, smaller variants were also detected by CNV-CH, where
the length was as small as 0.6 kbp.

Methods compared in our work
We compared the performance of CNV-CH with four existing algorithms used for analysis of
copy number variations. The algorithms compared with CNV-CH were EWT, CNV-TV,
CMDs and cnMOPS. Among them, cnMOPS, EWT and CNV-TV used NGS data. In addition,
these algorithms detect CNVs by analysis of read count data.

EWT [13] implements a read depth based CNV detection tool, called RDXplorer, which
uses event wise testing, assuming a normal distribution for the read count data. We

Table 1. Results obtained by CNV-CH for the execution instance 1 of real data.

Samples Detected Variants Validated Variants

NA12891 308 283

NA12892 202 181

NA19238 518 481

NA19239 624 529

NA07037 184 172

NA18501 388 324

The first column represents the samples taken into consideration for the execution instance 1. The second

column of the table shows the total number of variants detected by CNV-CH, and the third column shows

the number of detected variants that has been validated.

doi:10.1371/journal.pone.0135895.t001

Table 2. Summary of the CNVs identified in the region 26200000bp–30000000bp, and their validation with Database of Genomic Variants (DGV).

Detected Start Coordinate (bp) Detected Stop Coordinate (bp) Validated Start Coordinate (bp) Validated Stop Coordinate (bp)

26241583 26281679 26249913 26250767

26289488 26301786 26298284 26301786

26302082 26304977 26302082 26302232

29577292 29596682 29577292 29596682

29600079 29605289 29600079 29605289

29605587 29611484 29605587 29611484

29622290 29632579 29622290 29632579

29805380 29833288 29805380 29832573

The first two columns of the table show the genomic coordinates (start and end) of the CNVs that were detected by our algorithm. The third and fourth

columns of the table show the overlap region, i.e., the genomic coordinates of each of our detected CNVs that has overlapped with the genomic

coordinates of the CNVs listed in DGV.

doi:10.1371/journal.pone.0135895.t002
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implemented EWT considering z-score of GC-corrected read-count data and a nominal false
positive level of 0.05. Detection of an event was associated with the occurrence of significant
high or low read count data among a set of consecutive windows. The size of each such conse-
cutive window was fixed to 100bp. Then merging of small events was performed using Z-test
with a significance level of 10−6 for minimizing false positive detections. We assumed an abnor-
mal event to be small, if it spans less than 5 bins or windows, i.e., the minimum size of genomic
region with CNV, was set to 500bp.

Implementation of cnMOPS [9] was done for comparison with CNV-CH. Like CNV-CH, it
also detects CNVs by analyzing a particular genome of multiple samples, using a mixture of
Poisson model. While implementing cnMOPS, the median read count was chosen as an initial
estimation of the mean read count. The initial value of the parameter α was the same as that in
the original implementation in [9]. While implementation of cnMOPS, the detected candidate
segment was considered to be a CNV, if the information gain of the posterior of the parameter
α, compared to its prior distribution (i.e., I/NI call), had a value greater than 0.6 or less than
-1.0, as described in the original implementation [9].

CNV-TV [18] used total variation penalized least squares for smoothing the read depth sig-
nal. CNV-TV was implemented by using the SolveLasso function (SparseLab package of http://
sparselab.stanford.edu). CMDs [16] is a multi sample based CNV analysis tool, based on the
processing of microarray intensity data. We implemented CMDs on read count data by apply-
ing a correlation coefficient as a measure of similarity among adjacent chromosomal sites, as
described in [16]. We considered each chromosomal site, i.e., a window or a bin of size 100 bp.
As CMDs processes CN (copy number) data, we pre-estimated the copy number of each chro-
mosomal site, and used it as an input data in the implemented CMDs algorithm.

Table 3 represents an instance of the percentage of overlap (in terms of base pair) between
the CNV regions detected by CNV-CH, and all the algorithms compared with, as observed in
the segment 26200000bp–30000000bp of chromosome 20. In addition, we also provided the
corresponding percentage of overlap with the regions, reported in DGV, in the same chromo-
somal segment. Based on the CNVs listed in Table 2, the first column in Table 3 represents the
coordinates of the CNVs detected by CNV-CH in the above mentioned region of chromosome
20. For a particular row, each entry shows the percentage of overlap with DGV, EWT,
cnMOPS, CNV-TV and CMDs respectively. The second column of Table 3 depicts the percent-
age of base pair overlap with those reported in database of genomic variants (DGV). On an
average 78.22 percent base pair overlap with DGV was observed in the segment 26200000bp–

Table 3. The overlapped percentage of base pairs of CNV regions detected by the aforesaid algorithms.

Region Detected (bp) DGV % EWT % cnMOPS % CNV-TV % CMDs %

26241583–26281679 2.13 100 38.70 12 20.45

26289488–26301786 28.5 .05 19.68 68.38 78.01

26302082–26304977 100 100 0 1.56 34

29577292–29596682 100 100 0 23 7

29600079–29605289 100 100 0 0 17

29605587–29611484 100 100 0 1.01 45.22

29622290–29632579 100 100 0 98.12 12

29805380–29833288 95.13 96.8 85.84 43.6 6.23

The first column represents the CNVs detected by CNV-CH in the region 26200000bp–30000000bp of chromosome 20. The second column represents

the corresponding percentage of overlap with the regions, reported in the Database of Genomic Variants (DGV), in the same chromosomal section. For a

particular row, each entry shows the percentage of overlap of CNV-CH with DGV, EWT, cnMOPS, CNV-TV and CMDs respectively.

doi:10.1371/journal.pone.0135895.t003
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30000000bp of chromosome 20, which is quite good at the base pair level. The third column
represents the percentage overlap obtained by EWT. The average value was found to be 87.8
percent. The fourth column denotes how much the CNVs, detected by cnMOPS, overlapped
with that obtained by CNV-CH. On average, the overlap percentage was 19 percent. The fifth
and sixth columns represent how much CNVs, detected by CNV-TV and CMDs, overlapped
with that obtained by CNV-CH. It was observed that the outcome of CNV-TV, on an average,
overlapped by 31 percent and that of CMDs by 27.5 percent. It was found that the outcome of
CNV-CH overlapped maximum with that of EWT. It was also observed that cnMOPS was
unable to detect many regions which our algorithm, CNV-CH, detected and validated.

The quality of the output of our algorithm was evaluated and analyzed using various stan-
dard measures, like specificity, precision, sensitivity, F-Score and markedness, defined as fol-
lows. Specificity denotes the proportion of true negatives with respect to the sum of true
negatives and false positives. Sensitivity denotes the proportion of correctly detected CNVs in a
genome, with respect to the total number of CNVs actually present in that genome. This sensi-
tivity is also called as true positive detection rate or recall. On the other hand, positive predic-
tive value or precision signifies the proportion of truly detected CNVs with respect to the total
number of detected CNVs (including both false and true detection). The objective of any ideal
CNV detection algorithm is to optimize all these measures, but practically some of these mea-
sures adversely affect each other. Hence, tradeoff criteria between these measures has to be
adopted, considering which we have taken two additional scores, viz., F-Score and markedness.
F-score reflects a measure of the quality of validation of detected CNVs with respect to true
CNVs, and Markedness reflects the overall quality of detected and undetected segments. F-
score was evaluated using the expression (2 � precision � sensitivity)/(precision + sensitivity),
and markedness was evaluated using the expression (PositivePredictiveValue + NegativePredic-
tiveValue − 1), where negative predictive value is the proportion of correctly undetected
regions (True Negatives) with no variants with respect to all undetected regions (including
True Negatives and False Negatives). F-score and markedness of all these methods for high
coverage with real data, considered in this study, are given in Table 4. A high value of F-score
and markedness denotes a better validation of detected CNVs and non detected regions respec-
tively. The value of all these measures is in [0, 1].

We considered the number of CNVs, detected by each of the above five methods, including
CNV-CH, as true positives, if the genomic coordinates of CNV regions detected, has an overlap
of at least 1 bp with those reported in DGV. The invalid detected regions by each method were
considered as false positives. Similarly, the undetected regions which has no overlap with those
reported in the DGV are considered as true negatives. Specificity, precision and sensitivity of
each method were evaluated on the basis of the number of true positives, true negatives, false
positives and false negatives, as found in each sample. Figs 6 and 7 show a comparative over-
view in terms of precision and sensitivity among these five methods for samples NA12891 and
NA19238 respectively, where the former is a CEU trio male of European ancestry, and the lat-
ter is a YRI female. With reference to Fig 6, it can be observed that for sample NA12891,
CNV-CH performed better than the other four methods with a higher precision and sensitivity
values of 0.92 and 0.82 respectively. EWT and cnMOPS also performed well with a slightly
lower precision value of 0.90. The overall performance of CNV-CH was better than the other
methods as reflected in Table 4, where F-score (0.87) of CNV-CH for the sample NA12891 was
higher. The method EWT showed a good overall performance with slightly lower F-score of
0.85 and cnMOPS having an F-score of 0.82. For sample NA19238, the precision of CNV-CH,
as shown in Fig 7, was higher with a value of 0.93 than that of the other methods. But for this
sample, EWT performed better in terms of sensitivity with a value of 0.92. The sensitivity of
CNV-CH for the sample NA19238 was observed to be 0.83, which is reasonably good with a
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higher precision value. Here, both cnMOPS and CNV-TV also obtained good sensitivity values
of 0.81 and 0.80 respectively. The method CMDs performed poorly with respect to both sensi-
tivity and precision in all the samples, as compared to the other methods. It can also be
observed from Table 4 that CNV-CH outperformed all the other methods, in terms of specific-
ity and markedness, with an exception for the sample NA12878, where cnMOPS obtained bet-
ter results. In sample NA12878, cnMOPS outperformed CNV-CH marginally, with respect to
specificity and markedness, as shown in the table.

We also compared the performance of the above five algorithms on the simulated data set,
described in Result section. We observed that almost all these methods had performed well on
this data set, as shown in Fig 8. However, CNV-CH outperformed all with a very high preci-
sion, sensitivity, and F-score values of 0.98 each. Apart from CNV-CH, the sensitivity of EWT
was higher than the other methods with a value 0.94. cnMOPS also performed quite better for

Table 4. Performance of all the comparedmethods using chromosome 20 data of various samples.

Sample Method TP FP FN TN Specificity Precision Sensitivity F-Score Markedness

NA12878 CNV-CH 340 38 112 267 0.87 0.90 0.75 0.82 0.60

EWT 286 40 104 223 0.85 0.87 0.73 0.80 0.56

cnMOPS 358 44 83 320 0.88 0.89 0.81 0.85 0.68

CMDs 270 110 98 283 0.72 0.71 0.73 0.72 0.45

CNV-TV 270 68 76 263 0.79 0.80 0.78 0.79 0.57

NA12891 CNV-CH 283 25 63 246 0.91 0.92 0.82 0.87 0.71

EWT 348 39 85 303 0.84 0.90 0.80 0.85 0.68

cnMOPS 303 33 99 238 0.87 0.90 0.75 0.82 0.61

CMDS 205 93 129 170 0.64 0.68 0.61 0.65 0.25

CNV-TV 263 51 125 190 0.78 0.83 0.67 0.75 0.44

NA12892 CNV-CH 181 21 65 138 0.86 0.89 0.73 0.81 0.57

EWT 208 34 84 159 0.82 0.86 0.71 0.78 0.51

cnMOPS 229 29 94 165 0.85 0.88 0.71 0.79 0.52

CMDs 244 74 156 163 0.69 0.76 0.61 0.68 0.28

CNV-TV 218 48 130 137 0.74 0.82 0.62 0.71 0.33

NA19238 CNV-CH 481 37 99 421 0.92 0.93 0.83 0.88 0.74

EWT 390 94 34 451 0.83 0.80 0.92 0.86 0.74

cnMOPS 471 75 105 442 0.86 0.86 0.81 0.84 0.67

CMDs 159 144 106 198 0.58 0.52 0.60 0.56 0.17

CNV-TV 348 56 87 318 0.85 0.86 0.80 0.83 0.64

NA19239 CNV-CH 529 95 122 503 0.84 0.84 0.81 0.83 0.65

EWT 508 90 149 450 0.83 0.85 0.77 0.81 0.60

cnMOPS 422 87 137 373 0.81 0.83 0.75 0.79 0.56

CMDs 321 91 159 254 0.74 0.78 0.66 0.72 0.39

CNV-TV 541 136 119 559 0.80 0.80 0.82 0.81 0.62

NA19240 CNV-CH 436 72 83 426 0.86 0.86 0.84 0.85 0.69

EWT 424 99 154 370 0.79 0.81 0.73 0.77 0.51

cnMOPS 490 101 176 416 0.81 0.83 0.73 0.78 0.53

CMDs 407 129 204 333 0.72 0.76 0.66 0.71 0.38

CNV-TV 509 136 186 460 0.77 0.79 0.73 0.76 0.50

The table represents the True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN), Specificity, Precision, Sensitivity, F-Score and

Markedness values of CNV-CH and the other 4 methods, viz., EWT, cnMOPS, CMDs and CNV-TV using high coverage data considered in this study.

The first column represents the sample names and the second column represents the methods against whom these values are given.

doi:10.1371/journal.pone.0135895.t004
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our simulated datasets, with a high precision and sensitivity values of 0.96 and 0.92 respectively
(Fig 8). Here, the performance of CMDs and CNV-TV was relatively poor, in terms of both
precision and sensitivity, as observed in the figure. Similarly, Fig 9 depicts the performance of
the above algorithms, including CNV-CH, on a real data set described in Materials and Meth-
ods section.

Discussion
Here we have developed an algorithm, called CNV-CH, for detecting copy number variation in
genomic locations, using next generation sequencing data. CNV-CH involves a novel segmen-
tation approach to detect genomic regions having copy number variations, across multiple
samples, based on the notion of a convex hull algorithm.

Reads generated from repeat rich regions suffer from mappability bias which may lead to
false detection of variants. To deal with this issue, CNV-CH considers all possible k–mers from
the reference DNA sequence, where k is the minimum length of a read. These k–mers were
aligned to the same reference sequence for calculating the mappability score of each base posi-
tion. The mappability score corresponding to a base position is the ratio of total number of k–

Fig 6. The overall precision and sensitivity of CNV-CH, EWT, cnMOPS, CMDs and CNV-TV for the
sample NA12891. The black bar shows the precision value in [0, 1] and the gray bar shows the sensitivity in
[0, 1].

doi:10.1371/journal.pone.0135895.g006

Fig 7. The overall precision and sensitivity of CNV-CH, EWT, cnMOPS, CMDs and CNV-TV for the
sample NA19238. The black bar shows the precision value in [0, 1] and the gray bar shows the sensitivity
value in [0, 1].

doi:10.1371/journal.pone.0135895.g007
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mers aligned at that base position uniquely and the total number of k–mers containing that
base position [20]. Hence, repeat rich region will have a smaller mappability score. Read counts
corresponding to bins having a lower mappability score were adjusted by performing exponen-
tial smoothing, where the factor α is set to the mean mappability score of that bin. CNV-CH
analyzes the depth of coverage data in a novel manner, by transforming each of the GC-
corrected read count data into a two dimensional geometrical point, where the first dimension
is obtained by converting the read count data into a standardized normal score and the other
dimension is obtained by representing the read count data with the cumulative binomial distri-
bution function. Another novelty of our work is the deployment of a new segmentation

Fig 8. The overall precision and sensitivity of CNV-CH, EWT, cnMOPS, CMDs and CNV-TV on the
basis of their performance on simulated data set. The black bar shows the precision value in [0, 1] and the
gray bar shows the sensitivity value in [0, 1].

doi:10.1371/journal.pone.0135895.g008

Fig 9. The overall precision and sensitivity of CNV-CH, EWT, cnMOPS, CMDs and CNV-TV, on the
basis of their performance on the real data set considered in our work. The black bar shows the
precision value in [0, 1] and the gray bar shows the sensitivity value in [0, 1].

doi:10.1371/journal.pone.0135895.g009
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algorithm across all the samples, where the notion of convex hull is used to identify the clusters
of consecutive bins, depicting copy number variations.

CNV-CH has analyzed the real sequencing data of chromosome 20 of multiple human indi-
viduals. These human genome sequences are based on deep coverage whole genome sequencing
data. Each detected region was validated with the variants listed in the Database of Genomic
Variants (DGV). CNV-CH detects both common and rare CNVs with equal computational effi-
ciency. For the samples, the CNV regions, detected by our method, were mostly greater than
10 kbp in length. Moreover, our algorithm also detected CNV regions as small as 0.6 kbp. We
also performed a simulation study by considering a real human DNA sequence of chromosome
20 and processing it to generate the control genome and n test samples. This simulation study
was performed by varying the following experimental conditions, viz., Coverage, Variant length,
Copy number, Number of test samples and Position represents the genomic coordinate where a
copy variation has been introduced. We considered all possible experimental settings, where
each condition was a combination of the above values. We observed that CNV-CH performed
efficiently in detecting the start and end locus of the segment with variation, at the base pair
level, where a very high precision, sensitivity and F-score values of 0.98 (each), were achieved.

We compared the performance of CNV-CH with four existing algorithms- EWT, CNV-TV,
CMDs and cnMOPS, used for analysis of copy number variations. The approach of cross sam-
ple analysis, adopted by CNV-CH, achieved high precision value due to low false positive
detections. The percentage of overlap of CNV regions, detected by the four existing algorithms
with those detected by CNV-CH, was analyzed. It was observed that the validated regions
detected by our algorithm overlapped maximum with EWT. The overall performance of our
method was better than the others, with a high precision value in [0.89, 0.94], and reasonably
good sensitivity values in [0.71, 0.83] for all the real test samples. The quality of the output of
our algorithm was also evaluated and analyzed using other standard measures, like specificity,
F-score and markedness. CNV-CH resulted in higher F-score values compared to the other
existing algorithms, in [0.81, 0.88] and markedness varies in [0.57, 0.74]. To our knowledge,
most of the existing algorithms assume the read count data to follow a particular statistical dis-
tribution. On the other hand, we have considered the distribution of read count data to follow
two different distribution models independently. It adds robustness against the error that may
arise from incorrect assumption of a particular statistical distribution model. Moreover, the
present algorithm also detects CNV breakpoints with higher efficiency.

As CNV-CH processes multiple human genome sequence data obtained through NGS tech-
nology, it involves high computational resource in terms of memory. We implemented our
algorithm using a 64 bit machine with 16 GB RAM. As our method is using the notion of con-
vex hull, which requires at least 3 non-collinear points, thus algorithmically, the minimum
number of samples required is 3. The complexity of the algorithm was found to be O(nklogk),
where k is the total number of samples and n is the number of 100bp bins. As cross sample
analysis has been found to produce effective results with 6–10 samples, hence the complexity O
(nklogk) is almost equal to O(n) as klogk can be approximated as a constant term. However, if
outlier data occur too frequently in different samples over several consecutive bins, the perfor-
mance of CNV-CH will degrade. As a solution to this problem, removal of the outlier data in
the preprocessing step will significantly improve the performance of the present algorithm.
Further work needs to be done for detection of outliers and their removal.

Materials and Methods
The present method CNV-CH is based on a novel approach that has considered the read depth
information of multiple samples as two dimensional geometric points, where each dimension
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is generated using a statistical measure. Next important contribution of our method is the seg-
mentation of the genomic region. It is performed based on the idea of creating convex hull of a
geometric region, formed by the previously generated two dimensional points. Next, genomic
segments, having copy number changes, are detected based on the area of the convex hull thus
created. Our method has also considered the presence of outlier data separately. The series of
processes that CNV-CH goes through are detailed below.

Input data and its processing
Let us consider n samples obtained by using next generation sequencing technology. Each sam-
ple is associated with millions of short reads generated from a DNA sequence in a particular
chromosome. These reads are present in a sequence alignment file (.sam file) or in the form of
a compressed binary file (.bam file), and are maintained in different sequence databases as dis-
cussed in Datasets considered in the present study section. Let us consider a standard reference
DNA sequence of the same chromosome.

Bins consideration. We considered a standard approach of partitioning the reference
genome into w non-overlapping bins. For each individual sample, the reads were mapped to the
bins of the standard reference sequence. This mapping was done using BurrowWheeler align-
ment algorithm [21], allowing 3 mismatches. If a read maps to multiple locations, then it is
mapped to any one location randomly, i.e., a read will map to a single location only. This map-
ping was done for all these n samples separately. Now for each sample, the number of reads get-
ting mapped to a bin of the reference sequence, was counted (read count). In this way, for all w
bins, the read counts were found out. Hence, by the above process, we got w read counts for
each of these n samples. The choice of non-overlapping bin was made because, in our work, the
read count (read depth) was calculated on the basis of many-to-one mapping (aligning) of reads
to 100bp bins of the reference. In other words, a particular read has been aligned to one particu-
lar bin. In case of overlapping bins, almost every read would have a possibility of multiple opti-
mal alignment, resulting in higher ambiguity in mapping or alignment of most of the reads,
which would incur higher mappability bias in read depth data, as compared to non-overlapping
bins. This higher mappability bias in read count data of adjacent overlapping bins would cause
abrupt variations in read count data of two consecutive overlapping bins, even in regions with-
out genomic variation. Here, the size of non-overlapping bins was chosen as 100 bp each, for
getting higher accuracy in detecting CNV breakpoints [13], with an assumption that the CNV,
spanning partially in a 100bp bin, will have an error between 0 and 100bp only.

Adjustment of GC and Mappability bias. The read counts suffer from GC-content bias
[13, 22] and need to be adjusted using the following formula,

AdjustedReadCount ¼ uij � ðdi=dij
GCÞ; ð1Þ

where uij is the number of reads (read count) in ith sample mapped to jth bin, di is the median

read count of ith sample across all the bins, and dij
GC is the median read count of those bins

which have the same GC-content as jth bin of ith sample.
Reads generated from repeat rich regions cannot be mapped uniquely to a particular bin.

These reads get randomly aligned to one of the bins, with an optimal alignment score. Thus, the
resultant read count data of the bins, corresponding to repeat rich regions of the genome, will
suffer from biases (high or low). This mappability bias may lead to false detection of variants. In
order to deal with this issue, all possible k–mers from the reference DNA sequence are gener-
ated, where k is the minimum length of a read. These k–mers were aligned to the same reference
sequence for calculating the mappability score of each base position. It is to be mentioned that
the mappability score corresponding to a base position is the ratio of total number of k–mers
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aligned at that base position uniquely and the total number of k–mers containing that base posi-
tion [20]. Now, the mappability score of each bin is calculated as the mean mappability score
over all the 100 bases in the bin. The mappability score of repeat rich regions will be low, and
hence read counts corresponding to bins having a lower mappability score are adjusted, by per-
forming exponential smoothing, where the factor α is set to mean mappability score of that bin.

Finally, we have obtained a two dimensional matrix R of order n × w, containing adjusted
read counts of n samples across w non-overlapping bins of size 100bp each. Each entry rij of R
denotes modified read count of ith sample mapped to jth bin of the reference genome.

Transformation of read count information into two dimensional geometric
points using statistical measures
As mentioned in the Introduction section, copy number variation occurs due to deletions,
duplications or insertions in genomic regions. If a sample has a duplication, insertion or dele-
tion in a particular region, the bins of the reference sequence belonging to these regions will
have a significantly high or low read counts respectively. CNV-CH treats the input matrix R in
a novel manner by transforming each element into a 2D geometric point, so that the convex
hull can be obtained for segmentation as described later. Now, the transformation of rij is done
using the following statistical measures.

a. Standardized score of read counts: Read count rij is not standard across all samples, as the
chemical process of generating reads for each sample is done independently and sometimes
read generation also suffers from low quality sequencing. Hence a standardized score of
read count needs to be adopted for establishing uniformity across all the samples. The stan-
dardized read count, denoted by zrowij [23], is obtained by

zrowij ¼
ðrij � miÞ

si

; ð2Þ

where 1� i� n and 1� j� w, and μi is the mean read count of ith sample and σi is the
standard deviation of read count of the ith sample over all the bins. When read count rij is
high, zrowij value will be high and vice versa. Thus the regions having structural variation
will have very high or very low read count corresponding to duplication, insertion or dele-
tion, and hence zrowij value will also be very high or low.

b. Cumulative distribution function of read counts: In order to find out the read count data,
we consider set of reads that are to be mapped against the non-overlapping bins of the refer-
ence sequence. If we consider a particular bin, we observe that out of the total reads avail-
able, only a few will get aligned to the bin. Here, mapping of a read to a bin is called a trial.
The trials in which the reads get successfully aligned to a bin, are termed as “successes”, and
the remaining trials correspond to “failures”. This kind of the alignment process leads us to
consider the read count data over all the bins to follow a binomial distribution. It has moti-
vated us to represent the read count data with the cumulative binomial distribution func-
tion. We have calculated the value of the cumulative distribution function for each read
count (rij) of ith sample getting mapped to jth bin on the basis of binomial distribution [23].
Here, the reads (rij) getting mapped to jth bin are considered as successes (successful align-
ment) and the remaining (ti − rij) reads as failures, ti being the total number of reads of ith
sample. Hence, if p is the probability of a read getting successfully mapped to a bin, then the
probability of rij successes is given by

PðrijÞ ¼ tiCrij
prij qðti�rijÞ ð3Þ
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where q = 1 − p, i.e., probability of failure (failed alignment). Therefore, the cumulative dis-
tribution function (CDF) [23] of rij is

cfij ¼
Xrij

k¼0

tiCkp
kqti�k ð4Þ

Here, we have obtained, on the basis of maximum likelihood estimation [23], the value p as
1/w, where w is the total number of non-overlapping bins.

Thus, we have used a novel technique to represent each rij by a two dimensional point
where the first dimension is represented by zrowij, while the other one by cfij. The cluster of
consecutive bins having high or low read counts, due to duplications, insertion or deletions will
correspondingly depict high or low zrowij as well as cfij values. This novel way of representation
of read counts as two dimensional points (zrowij, cfij) adds robustness in the process of CNV
analysis. Finally, we have got a 2–dimensional array Gn×w, where each gij entry is a vector
denoted by [zrowij, cfij]

T, 1� i� n, 1� j� w.

Segmentation over multiple samples
Insertions, deletions or duplications, causing copy number variations, are normally of size
greater than 1kbp and smaller variations are called indels. Since we have taken a bin size of
100bp, the genomic regions with a CNV will span across multiple consecutive bins. Our
method uses a novel technique to perform segmentation of genomic regions considering the
notion of convex hull, to identify the clusters of consecutive bins, depicting copy number varia-
tions. For segmentation, we have obtained convex hull over the previously obtained Gn×w

array. Convex hull is a convex polygon enclosing a set of geometrical points having minimum
area [24]. Genomic regions (bins) having similar copy numbers will tend to have similar stan-
dardized values of zrowij and cfij, and hence the two dimensional points gij corresponding to
these bins, will be in close proximity to each other in geometric space. Therefore, a convex hull
enclosing these similar geometric points will have a small area. Based on this notion of geomet-
ric orientation of points (of G), we have obtained convex hull to identify segmentation of the
bins and extract the region having some variations. The algorithm below describes the process
of creating convex hull applied over gij points of G array, and also describes how segmentation
of the bins is done to detect regions (consecutive bins) having CNV.

Input: Gn×w array.

Output: Genomic locations with copy number variations.

Steps:

1. Initialize cnvflag = false, which implies that there is no genomic variation across the region.
The flag will become true if an abnormal genomic region is encountered.

2. For each bin j from 1 to w − 1 do:

i. Create a convex hull using points of consecutive jth and j + 1th bins (column of the array
Gn×w), where 1� j< w, across n samples (i.e., row of array Gn×w). These points with which
a convex hull is created are gik, 1� i� n, j� k� j + 1. Let the area of this convex hull
obtained be Ajl, where l = j + 1.

ii. Create a second convex hull using a set of points of jth bin only. The points are denoted by
gij, 1� i� n. Let the area of this convex hull be aj.
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iii. Create a third convex hull using the set of points of (j + 1)th bin only. The points of this bin
are denoted by gil, 1� i� n, l = j + 1. Let the area of this convex hull be al.

iv. Calculate4jl = 2Ajl − (aj + al), l = j + 1.

v. If4jl is significantly high (> θ) and cnvflag = false then (It implies a breakpoint from nor-
mal to an abnormal genomic region.)

a. Mark bin l = j + 1 as the starting boundary of an abnormal genomic location. Let
the notation for starting bin or boundary be stb = l = j + 1;

b. Set cnvflag = true;

c. Set cnvlength = 1;

vi. If cnvflag = true and4jl is significantly high (> θ) then (It implies a breakpoint from
abnormal genomic region to a normal region.)

a. Mark bin j as the end boundary of the abnormal genomic region. Let the notation
for the end bin or boundary be enb = j;

b. Reset cnvflag = false;

c. If length of detected region, i.e., (enb − stb + 1)� 5 then (It implies that the detected
region is at least 500bp.) Record the detected region as a potential CNV region.

In the above segmentation algorithm the expression

4jl ¼ 2Ajl � ðaj þ alÞ; ð5Þ

will have low value if the consecutive bins belong to similar genomic regions, irrespective of
whether the region is normal or affected by CNV. The value of4jl will be high at breakpoints
where the consecutive bins will have different genomic structures. Now precisely identifying
the actual locus or base will be of concern in the starting and ending bin, which is solved by left
to right scan for finding the rightmost segment within the start bin, with the most significantly
high or low (gain or loss) value of the segment’s average base coverage, with respect to mean
read count of that sample. The starting locus of this segment will give the start base position of
the CNV region. Similarly, the end base position of the ending bin of the sample is also
detected by finding the leftmost segment within the end bin, with the most significantly high or
low (gain or loss) value of the segment’s average base coverage with respect to mean read count
of that sample. Now, the copy number is estimated by using the expression 2rij/μi as discussed
in [13].

Presence of Outlier. Another important issue is the presence of outlier in the read count
data. The presence of an outlier in read count data, in any one of the bins of a similar genomic
segment, will affect the process of segmentation. The presence of such outlier in a bin will
make the bin dissimilar to its immediate preceding as well as its immediate succeeding bins.
Thus, the value of4v−1,v of Eq (5) will be high, where v is the bin containing outlier data. This
high value of4v−1,v will be treated as a breakpoint. Similar situation arises with4v,v+1 value, if
vth bin contains outlier data. This high value of4v,v+1 will be treated as another breakpoint.
Thus, the gap between these two breakpoints comprises only a single bin. If the bin containing
outlier data lies in a normal genomic region, the above breakpoints will give rise to a CNV
region of size 1 bin. This CNV region with 1 bin will automatically be ignored by our algo-
rithm. If the bin, containing outlier data lies in an abnormal genomic region, the breakpoints
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will incorrectly divide the segment into two subsegments. Hence, to avoid such subdivision,
merging of bins is required. In other words, the method will perform merging of two consecu-
tive subsegments, if they are separated by one bin, i.e., the value of4x,y (in Eq 5) will be low,
where x denotes the end bin of one subsegment, y is the start bin of other consecutive subseg-
ment, and y − x = 1.

The performance of the present algorithm will degrade if outlier data occur too frequently
in different samples over several consecutive bins. As a solution to this problem, removal of the
outlier data in the preprocessing step will significantly improve the performance of the present
algorithm. Further work needs to be done for outlier detection and its removal. Moreover, as
our method is using the notion of the convex hull, which requires at least 3 non-collinear
points, the minimum number of samples required is 3.

Supporting Information
S1 Table. All the regions with variations, detected by CNV-CH, throughout human chro-
mosome 20. The table includes data for both high and low coverage samples.
(XLSX)
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