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Abstract: Puerarin is a C-glycoside of daidzein, one of the major bioactive ingredients isolated
from the root of Pueraria lobata, which has a wide spectrum of pharmacological effects. Although
puerarin is well-known for its effective antioxidant activity, there is seldom a systematic theoretical
study on its radical scavenging activity. Herein, the free radical scavenging ability of puerarin was
investigated systematically by density functional theory (DFT) calculations. The reaction activity was
compared with daidzein as well. Three reaction pathways: hydrogen atom transfer (HAT), single
electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer
(SPLET) were discussed and compared by thermodynamic parameters such as bond dissociation
enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA),
and electron transfer enthalpy (ETE). The reaction kinetics of puerarin with special radicals •OH and
•OOH were also studied. The results obtained may be of great significance for better understanding
the relationship between the antioxidant properties and structural design of puerarin, as well as
other antioxidants.
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1. Introduction

Reactive oxygen species (ROS) are among the most harmful free radicals in the human body,
such as hydroxyl radical (•OH), superoxide anion radical (•O2−), peroxyl radicals (ROO•), etc. [1,2].
If excessive ROS are produced in vivo, the antioxidant system will be out of balance, called oxidative
stress, which could damage the structures and functions of the biological macromolecules such as
lipids, proteins, RNA, and DNA [3,4]. Numerous human diseases are related to oxidative stress, like
aging, atherosclerosis, diabetes, and Parkinson’s disease [5,6]. Synthetic antioxidants such as butylated
hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate, and tert-butyl hydroquinone
(TBHQ) are widely used as antioxidants or preservatives in foods, medicines, animal feeds, petroleum
products, cosmetics, rubbers, etc. However, synthetic antioxidants often cause toxic and carcinogenic
problems [7,8]. Hence, the development of more efficient, less toxic, and safer natural antioxidants has
attracted broad interest.

Flavonoids are reported to be important natural antioxidants from plants, which have plenty of
pharmacological properties such as antioxidant, anticancer, anti-inflammation, vasodilation, alleviating
pain, etc., [9,10]. Puerarin (4’,7-dihydroxy-8-β-d-glucosyliso-flavone) is a C-glycoside of daidzein,
easily soluble in water with a solubility of 1.1 × 10−2 M (Figure 1) [11]. It is a major isoflavone extract
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from P. lobata roots, has potent antioxidant properties by scavenging free radicals and increasing the
activity of superoxide dismutase as well [12]. Cheng et al. found that puerarin could significantly
reverse H2O2-induced oxidative stress injury and decrease ROS production [13]. Bebrevska et al.
evaluated the antioxidant activity of P. lobata root extract and found it was very efficient and safe
in vivo [14]. Tian et al. examined the dynamics of excited states and radicals of puerarin by means of
laser flash photolysis and spin-density analysis, which revealed the presence of long-lived puerarin
radical surviving longer than milliseconds [15]. Yi and co-workers performed a complete NMR analysis
of puerarin and daidzein, and explored the antioxidative activity by bond dissociation enthalpy (BDE)
calculations [16]. However, to the best of our knowledge, there is still no systematic theoretical study on
the antioxidant activity of puerarin. Herein, a systematic theoretical study on the antioxidant activities
of puerarin was carried out to understand the radical scavenging mechanism of this natural product.
Considering the relationship between puerarin and daidzein, a comparative study was carried out to
help understand the activity.
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Figure 1. The molecular structure of puerarin and daidzein.

2. Computational Methods

Geometry optimization and frequency calculations were performed by M06-2X [17] functional
in conjunction with 6-31G(d) basis set in gas phase. Then single point calculations were conducted
at M06-2X/6-311++G(d,p) theoretical level in different environments, considering the physiological
medium is water while the possible action site could be the lipid membrane. Truhlar’s solvation model
based on density (SMD) was chosen to account for the solvation effect [18]. Unrestricted calculations
were used for open shell systems. Local minima were confirmed without imaginary frequencies, while
transition states have only one imaginary frequency. Intrinsic reaction coordinate (IRC) calculations
were performed to guarantee the connections between each transition state and the designated local
minima. All of the calculations were completed utilizing Gaussian16 code (RevA.03, Gaussian Inc.,
Wallingford CT, USA) [19]. Optimized structure and frontier molecular orbital plots were produced by
applying CYLview2.0 (University of Sherbrooke, Quebec, Canada) [20] or GaussView6.0 (Semichem
Inc., Shawnee Mission, Kansas, USA) [21].

Phenolic antioxidants could scavenge free radicals through three possible action
mechanisms [22–24]: hydrogen atom transfer (HAT), single electron transfer followed by proton
transfer (SET-PT), and sequential proton loss electron transfer (SPLET). For HAT mechanism, phenolic
antioxidant (ArOH) reacts with a free radical (R•) by transferring a hydrogen atom to the free radical
through homolytic rupture of the O–H bond. Then, the antioxidant reactivity of ArOH could be
evaluated by BDE(ArO–H), which could be calculated as follows:

BDE(ArO-H) = H(ArO•) + H(H•) − H(ArOH) (1)
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For the SET-PT mechanism, it involves two steps: electron transfer from ArOH to give radical
cation (ArOH•+) followed by proton transfer from ArOH•+. The antioxidant activity could be
described by the ionization potential (IP) and proton dissociation enthalpy (PDE) values:

IP = H(ArOH•+) + H(e−) − H(ArOH) (2)

PDE = H(ArO•) + H(H+) − H(ArOH•+) (3)

For the SPLET mechanism, it is initiated by proton loss to form anion (ArO−) and then undergoes
electron transfer to give ArO•, which could be revealed by proton affinity (PA) and electron transfer
enthalpy (ETE) values:

PA = H(ArO−) + H(H+) − H(ArOH) (4)

ETE = H(ArO•) + H(e−) − H(ArO−) (5)

Here H(H•), H(ArOH), H(ArO•), H(ArO−), and H(ArOH•+) are the enthalpies of hydrogen atom,
antioxidant, neutral radical, anion, and radical cation, respectively. The enthalpies of proton H(H+)
and electron H(e−) were obtained from literatures [25,26].

3. Results and Discussion

3.1. Stable Conformation

The most stable conformations of puerarin and daidzein were obtained after systematic
conformational search. The isoflavone scaffold is close to a plane, and there is a small dihedral
angle between chromenone and phenyl ring C, −37.9 ◦C for puerarin, or −38.1 ◦C for daidzein
(Figure 2). In puerarin, the bond length of 7-O–H is a little longer than that of 4′-O–H, because of
a weak intramolecular hydrogen bond between 7-OH and the glycosyl group. The glycosyl group
is in chair conformation, where four hydroxyl groups form three intramolecular hydrogen bonds.
Introduction of a glucose moiety makes puerarin strongly hydrophilic. For example, the solubility of
puerarin in water, 1.1 × 10−2 M [11], is much better than that of daidzein, only 5.3 × 10−6 M [27], which
makes puerarin’s oral bioavailability much better than daidzein [28].
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3.2. Frontier Molecular Orbital Analysis

Frontier molecular orbitals (FMO) play important roles in the reactivities of molecules [29–31].
As shown in Figure 3, FMO orbitals are not distributed on the glycosyl group of puerarin, and the
orbital shapes of puerarin and daidzein are similar, which indicates the glycosyl group unlikely
participated in the reaction. Thus, the glycosyl group is not considered in the following calculations.
In both molecules, the highest occupied molecular orbital (HOMO) is mainly distributed on the phenyl
ring C, while the lowest unoccupied molecular orbital (LUMO) largely lies on the chromenone moiety.
As antioxidant mostly functioned as electron donor to provide electron to radical, the phenyl ring C
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should play a more important role in radical scavenging reactions. The HOMO-LUMO gaps were
close, 6.5 eV and 6.4 eV for puerarin and daidzein, respectively, which were similar to that of another
natural antioxidant, resveratrol, 6.3 eV [32].Antioxidants 2019, 8, 590 4 of 9 
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3.3. HAT Mechanism

BDE(ArO–H) is one of the most important indicators to evaluate HAT mechanism (Table 1).
BDE(4′-O–H) of puerarin and daidzein in water are 88.2 and 88.3 kcal/mol, respectively, a little lower
than BDE(7-O–H), which indicates 4′-OH is the primary reaction site, similar to previous studies on
other isoflavonoids [33,34]. BDE(O–H) of phenol has been determined by several experiments, and the
recommended value is ~88.7 kcal/mol [35,36], very close to BDE(4′-O–H) here. A stronger bond of
7-OH than 4′-OH could be explained by the electron-withdrawing effect of pyrone moiety, which leads
to puerarin-7-O• radical less stable than puerarin-4′-O• radical. BDE in polar environment is a little
larger than that in non-polar solvent. However, the difference of BDE values among different solvents
is still within 3.0 kcal/mol, similar to previous studies on other similar polyphenols [33,37,38]. As the
glucose moiety sits far away from the reaction site, the antioxidant activities of puerarin and daidzein
should be similar, which was also supported by the values of BDE(4′-O–H).

Table 1. The O–H BDEs of puerarin and daidzein in gas phase and different solvents (Units: kcal/mol).

Sites Gas Benzene Water

puerarin
4′-OH 87.3 86.6 88.2
7-OH 97.0 96.5 96.8

daidzein
4′-OH 86.9 86.4 88.3
7-OH 91.6 91.7 95.3

3.4. SET-PT Mechanism

In SET-PT mechanism, an electron is first transferred from natural antioxidant (ArOH) to a free
radical leading to the formation of cation radical (ArOH•+), then a proton is transferred from ArOH•+

to give ArO•, described by IP and PDE, respectively. Different from BDE values, the solvent polarity
has significant effects on the IP and PDE values (Table 2), which could be attributed to the high solvation
enthalpies of proton and electron [39,40]. The IP values of puerarin in gas phase, benzene, and water
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are 179.9, 154.7, and 113.3 kcal/mol, respectively. The sequence of PDEs in different solvents are
analogous with those of IPs and the lowest PDE is in water. The IP values of daidzein are close to those
of puerarin. As IP values are larger than PDE values in solvent, the first step is thermodynamically
significant for SET-PT mechanism. For both molecules, IPs in solvent are at least 25 kcal/mol higher
than the lowest BDE, which indicates the SET-PT pathway is not as favorable as the HAT pathway.
This conclusion is similar to the references, which confirms the accuracy of this work [33,37,38].

Table 2. Ionization potentials (IPs) and proton dissociation enthalpies (PDEs) of puerarin and daidzein
in gas phase and different solvents.

Sites
IP (kcal/mol) PDE (kcal/mol)

Gas Benzene Water Gas Benzene Water

puerarin 179.9 154.7 113.3
4′-OH 220.8 29.8 17.6
7-OH 230.5 39.7 26.1

daidzein 178.9 153.9 113.4
4′-OH 213.0 21.9 9.1
7-OH 217.4 27.0 15.8

3.5. SPLET Mechanism

SPLET mechanism also plays an important role in free radical scavenging reactions (Table 3).
The calculated PAs and ETEs are listed in Table 3. Similar to PDEs, PA values show a significant decrease
from gas phase to solvent, which could be explained by the large solvation enthalpies of proton and
anion. For both molecules, in gas phase and non-polar solvent, PA(7-OH) is larger than ETE(4′-OH),
while in polar solvents the former is lower than the latter. It means that in water, the determining
step in SPLET is the second step thermodynamically. As ETE(4′-OH) is even lower than BDE(4′-OH),
SPLET pathway is more favorable than HAT pathway in water. However, in non-polar solvent, the
smaller PA values, PA(7-OH) are larger than BDE(4′-OH), thus HAT should be the dominant pathway.
These results agree well with the previous studies of flavonoids and isoflavonoids [33,37,38].

Table 3. Proton affinities (PAs) and electron transfer enthalpies (ETEs) of puerarin and daidzein in gas
phase and different solvents.

Sites
PA (kcal/mol) ETE (kcal/mol)

Gas Benzene Water Gas Benzene Water

puerarin
4′-OH 338.0 103.0 48.8 62.7 81.4 82.1
7-OH 317.0 87.3 40.8 93.4 107.1 98.7

daidzein
4′-OH 332.2 95.0 39.1 59.7 80.8 83.4
7-OH 319.9 85.1 32.9 76.4 95.7 96.3

The above analysis suggested that in water SPLET pathway is dominant, while in non-polar
solvent, HAT pathway is preferred. As in water, the determining step of SPLET pathway is the second
step thermodynamically, ETE values of the reaction site, 4′-OH, are close, 82.1 and 83.4 kcal/mol
for puerarin and daidzein, respectively, while in non-polar solvent, BDE values of the reaction site,
4′-OH, are 86.6 and 86.4 kcal/mol for puerarin and daidzein, respectively. Thus, puerarin and daidzein
have very similar antioxidant activity, which was also supported by experimental results [27,41].
Considering the solubility and bioavailability of puerarin is much better than daidzein, puerarin
should have a better antioxidant.
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3.6. Kinetics of Free Radical Scavenging by Puerarin

To have a better understanding of the radical scavenging properties of puerarin, the kinetics of
puerarin with representative free radicals was studied. Hydroxyl radical (•OH) and hydroperoxyl
radical (•OOH) were chosen as the two representative ROS, which reacted with puerarin as following:

Puerarin-OH + •OH→ Puerarin -O• + H2O (6)

Puerarin-OH + •OOH→ Puerarin -O• + H2O2 (7)

As •OH is much more reactive than •OOH, the reaction barrier of puerarin with •OH is much
lower than that with •OOH (Table 4, Table S1). In the molecule, 4′-OH is more reactive than 7-OH. For
example, in water, the free energy barrier of 4′-OH with •OH is 12.2 kcal/mol lower than that of 7-OH
with •OH. The former is as low as 3.0 kcal/mol, which suggests a diffusion-controlled process, according
to the transition state theory [42,43]. Although the reaction barriers are less than 20 kcal/mol in water,
the reactions with •OOH are endergonic except 4′-OH with •OOH, which suggests puerarin is not an
efficient scavenger of •OOH. Transition state structures are shown in Figure 4. In TS(4′-OH—•OH),
the forming and breaking O—H bonds are 1.37 and 1.05 Å in length, while in TS(4′-OH—•OOH),
the forming and breaking O—H bonds are 1.22 and 1.16 Å in length. The forming O-H bond in
TS(4′-OH—•OH) or TS(7-OH—•OH) is longer than that in the corresponding transition structure with
•OOH, indicating the former is an earlier transition state than the latter.

Table 4. Free energy barriers for the reaction of puerarin with •OH or •OOH in gas phase and solution.

Sites
∆G,(kcal/mol) ∆G (kcal/mol)

Gas Benzene Water Gas Benzene Water

Reaction with •OH
4′-OH 6.8 8.0 3.0 −29.7 −31.2 −33.0
7-OH 10.1 11.8 15.2 −20.9 −22.2 −25.3

Reaction with •OOH
4′-OH 16.6 18.1 19.4 1.8 0.9 −0.5
7-OH 22.4 25.4 26.8 10.6 9.9 7.1
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4. Conclusions

The radical scavenging activity of puerarin was investigated under the theoretical level of
M062X/6-311++G(d,p)//M062X/6-31G(d). Three reaction mechanisms were considered: HAT, SET-PT,
and SPLET. It reveals that HAT should be the preferred mechanism in non-polar solvents, while SPLET
would be more favorable in polar media, thermodynamically. The reaction activity was compared
with daidzein, which shows puerarin and daidzein have very similar antioxidant activity. However, as
puerarin has better solubility and bioavailability, puerarin should be a better antioxidant than daidzein.
The reaction kinetics of puerarin with •OH or •OOH radicals were also investigated. The reactions
with •OH have much lower energy barrier than those with •OOH. All these results suggests 4′-OH is
perhaps the most reactive site to scavenge radicals, which agrees well with previous studies. These
results might be helpful for interpreting puerarin’s antioxidant activity and for further designing new
potential derivatives.
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40. Marković, S.; Tošović, J. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.
Food Chem. 2016, 210, 585–592. [CrossRef]

41. Zhao, L.; Wang, Y.; Liu, J.; Wang, K.; Guo, X.; Ji, B.; Wu, W.; Zhou, F. Protective Effects of Genistein and
Puerarin against Chronic Alcohol-Induced Liver Injury in Mice via Antioxidant, Anti-inflammatory, and
Anti-apoptotic Mechanisms. J. Agric. Food Chem. 2016, 64, 7291–7297. [CrossRef]

42. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107–115. [CrossRef]
43. Hammond, G.S. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334–338. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0141-3910(96)00224-8
http://dx.doi.org/10.1021/ja961469q
http://dx.doi.org/10.1021/acsomega.9b00677
http://dx.doi.org/10.1016/j.phytochem.2018.10.015
http://dx.doi.org/10.1016/j.comptc.2011.03.006
http://dx.doi.org/10.1016/j.foodchem.2016.05.019
http://dx.doi.org/10.1021/acs.jafc.6b02907
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1021/ja01607a027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Computational Methods 
	Results and Discussion 
	Stable Conformation 
	Frontier Molecular Orbital Analysis 
	HAT Mechanism 
	SET-PT Mechanism 
	SPLET Mechanism 
	Kinetics of Free Radical Scavenging by Puerarin 

	Conclusions 
	References

