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Ibogaine is an atypical psychedelic alkaloid, which has been subject of research due
to its reported ability to attenuate drug-seeking behavior. Recent work has suggested
that ibogaine effects on alcohol self-administration in rats are related to the release
of Glial cell Derived Neurotrophic Factor (GDNF) in the Ventral Tegmental Area (VTA),
a mesencephalic region which hosts the soma of dopaminergic neurons. Although
previous reports have shown ibogaine’s ability to induce GDNF expression in rat
midbrain, there are no studies addressing its effect on the expression of GDNF and
other neurotrophic factors (NFs) such as Brain Derived Neurotrophic Factor (BDNF) or
Nerve Growth Factor (NGF) in distinct brain regions containing dopaminergic neurons.
In this work, we examined the effect of ibogaine acute administration on the expression
of these NFs in the VTA, Prefrontal Cortex (PFC), Nucleus Accumbens (NAcc) and the
Substantia Nigra (SN). Rats were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg
(I40) or vehicle, and NFs expression was analyzed after 3 and 24 h. At 24 h an increase
of the expression of the NFs transcripts was observed in a site and dose dependent
manner. Only for I40, GDNF was selectively upregulated in the VTA and SN. Both doses
elicited a large increase in the expression of BDNF transcripts in the NAcc, SN and
PFC, while in the VTA a significant effect was found only for I40. Finally, NGF mRNA was
upregulated in all regions after I40, while I20 showed a selective upregulation in PFC and
VTA. Regarding protein levels, an increase of GDNF was observed in the VTA only for
I40 but no significant increase for BDNF was found in all the studied areas. Interestingly,
an increase of proBDNF was detected in the NAcc for both doses. These results show
for the first time a selective increase of GDNF specifically in the VTA for I40 but not for
I20 after 24 h of administration, which agrees with the effective dose found in previous
self-administration studies in rodents. Further research is needed to understand the
contribution of these changes to ibogaine’s ability to attenuate drug-seeking behavior.
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INTRODUCTION

Ibogaine is the main indole alkaloid isolated from the root bark
of the African shrub Tabernanthe iboga (Lavaud and Massiot,
2017). Traditionally used in African religious ceremonies as a
psychedelic, ibogaine became a subject of interest to the scientific
community due to its reported ability to reduce craving and
self-administration of several drugs of abuse in humans (Brown,
2013). These effects found mainly in uncontrolled clinical trials
and observational studies, have been reported to be long-lasting
enduring weeks to months after a single administration of large
doses of ibogaine (Schenberg et al., 2014; Brown and Alper, 2017;
Noller et al., 2017; Corkery, 2018; Malcolm et al., 2018; Mash
et al., 2018). In animal models for drug dependence, ibogaine also
reduces the self-administration of morphine and heroin (Glick
et al., 1991, 1994; Dworkin et al., 1995), cocaine (Cappendijk and
Dzoljic, 1993; Glick et al., 1994), and alcohol (He et al., 2005),
with long-lasting effects that persists beyond pharmacokinetic
elimination of the drug (Alper, 2001). In addition, ibogaine
administration to animals also reduces naloxone or naltrexone
precipitated-withdrawal signs (Dzoljic et al., 1988; Glick et al.,
1992; Leal et al., 2003).

Although a vast amount of research has been done regarding
the pharmacology of ibogaine, the mechanism of action of its
ability to attenuate drug-seeking behavior remains unresolved
(Alper, 2001; Maciulaitis et al., 2008; Brown, 2013). Ibogaine
binds to numerous central nervous system (CNS) targets at
the micromolar range such as: nicotinic acetylcholine receptors
(nAChR α3β4 and α2β4) (Fryer and Lukas, 1999; Arias et al.,
2010, 2015), N-methyl-D-aspartate (NMDA) (Mash et al., 1995b),
kappa and mu opioid (Antonio et al., 2013; Maillet et al.,
2015), 5HT2A and 5HT3 receptors (Glick et al., 2000) and the
dopamine and serotonin transporters (Mash et al., 1995a; Glick
et al., 2001; Asjad et al., 2017). However, these ibogaine-receptor
interactions do not seem to account for the long-lasting effects
of ibogaine found in rodents which are described to last for
48 to 72 h after ibogaine administration (Glick et al., 1991,
1994; Cappendijk and Dzoljic, 1993). In rodents, ibogaine has
a short half-life of 1–2 h raising the hypothesis that its longer-
lived active metabolite, noribogaine, could be responsible for the
enduring effects elicited by ibogaine. Both, the parent drug and its
metabolite have differences in their binding profiles and affinities
to the abovementioned CNS receptors (Staley et al., 1996).
However, no appreciable amounts of noribogaine have been
found in rodents’ brain tissue 19 h after ibogaine intraperitoneal
(i.p.) administration (Pearl et al., 1997), and only approximately
5% of the noribogaine Cmax was detected in serum 24 h after the
same treatment (Baumann et al., 2001b).

A few years ago, a novel hypothesis linking ibogaine’s
attenuation of alcohol self-administration in rodents to its ability
to modulate the expression of Glial Cell Derived Neurotrophic
Factor (GDNF) in the brain was proposed. It was shown that
a single ibogaine i.p. administration (40 mg/kg) increased the
expression of GDNF in the midbrain of rats and mice for up to
24 h (He et al., 2005). In addition, microinjection of ibogaine
into the Ventral Tegmental Area (VTA), produced a long-lasting
reduction of ethanol self-administration, a response that was

attenuated by the intra-VTA delivery of anti-GDNF neutralizing
antibodies. These results suggested that ibogaine mediates its
effects against ethanol consumption by increasing GDNF content
in the VTA (He et al., 2005). Accordingly, another study from
the same research group showed that the intra-VTA infusion
of noribogaine induced a long-lasting decrease in ethanol self-
administration (Carnicella et al., 2010). Further, ibogaine-derived
synthetic derivatives were recently shown to induce the release of
GDNF in vitro, in established cell line systems (Gassaway et al.,
2016). These observations formed the basis for a new rationale to
explain the long-lasting effects of ibogaine; i.e., the induction of
GDNF by ibogaine/noribogaine may activate an autocrine loop,
leading a long-term synthesis and release of GDNF (that persists
beyond elimination of both substances). This mechanism may
reverse the biochemical adaptations to chronic exposure to drugs
of abuse in the reward system (He and Ron, 2006).

Neurotrophic Factors (NFs), such as GDNF and BDNF (Brain
Derived Neurotrophic Factor) are small proteins that promote
the growth, differentiation, synaptogenesis, and survival of
neurons. Their expression in the nervous tissue is relatively high
during the development of the CNS, where substantial growth,
differentiation and remodeling of the nervous system occur
(Barde, 1990; Lu and Figurov, 1997). More recently, it has been
discovered that NFs play important roles in the adult brain where
they modulate maintenance, protection, repair and plasticity
of the nervous tissue (Reichardt, 2006; Schmidt and Duman,
2007). Furthermore, accumulating evidence has suggested that
GDNF and BDNF mediate neuronal remodeling processes that
occur during the development of substance use disorders (SUDs)
(Bolaños and Nestler, 2004; McGough et al., 2004; Angelucci
et al., 2007; Jeanblanc et al., 2009; Bie et al., 2012). Particularly,
the role of GDNF and BDNF in the neuroadaptations in
the mesocorticolimbic dopamine system (Prefrontal Cortex,
PFC- VTA-Nucleus Accumbens, NAcc pathway) induced by
repeated exposure to drugs of abuse has been extensively studied,
including the impact of manipulating NFs levels on drug-
seeking behavior in animal models (Russo et al., 2009; Ghitza
et al., 2010; Koskela et al., 2017). It has been shown that
the administration of BDNF or GDNF can either promote or
inhibit drug-taking behaviors depending mainly on the brain
site of administration, along with other several factors such
as the drug type, the addiction phase (initiation, maintenance,
abstinence or relapse), the time interval between site-specific NFs
injections and the related behavioral assessments (Ghitza et al.,
2010). For example, BDNF infusion into the NAcc increases
cocaine-seeking behavior (Graham et al., 2007), while BDNF
infusion into the medial pre-frontal cortex (mPFC) suppresses
it (Berglind et al., 2007). Additionally, infusion of BDNF into
the dorsolateral striatum decreases ethanol self-administration in
rats (Jeanblanc et al., 2009).

Given the importance and the site-specificity of the elicited
responses, we decided to analyze the effect of a single
administration of ibogaine on the expression of GDNF and
BDNF (mRNA transcripts and protein content) at two time
points in those brain areas which define the mesocorticolimbic
dopamine system such as VTA, PFC and NAcc (Figure 1). As
the Substantia Nigra (SN) is a major nucleus of dopaminergic
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FIGURE 1 | Schematic showing the experimental design of this work. Experimental groups of animals were i.p. treated with ibogaine 20 mg/kg (I20), 40 mg/kg (I40)
or vehicle. After 3 and 24 h, locomotion of control and treated animals was recorded using an open field test. Afterward, animals were sacrificed, and selected brain
regions were dissected. mRNA levels for BDNF, GDNF, and NGF were determined by qPCR. Western Blot was used to determine BDNF, proBDNF, and GDNF
protein content. PFC = Prefrontal Cortex, NAcc = Nucleus Accumbens, VTA = Ventral Tegmental Area, and SN = Substantia Nigra, GDNF = Glial Cell Derived
Neurotrophic Factor, BDNF = Brain Derived Neurotrophic Factor, NGF = Nerve Growth Factor.

neurons important in the basal ganglia functioning, the
expression of these NFs in this region was also studied. In order to
examine the impact of ibogaine administration on the expression
of other relevant NFs (which impact on drug-seeking behaviors
has been much less studied) the Nerve Growth Factor (NGF)
transcript content was also analyzed in the abovementioned brain
areas. Selected time points were chosen considering previous
pharmacokinetics reports in rats using i.p. administration (Pearl
et al., 1997; Zubaran et al., 1999; Baumann et al., 2001a,b). In
this manner, we chose to study NFs expression/content in the
selected brain areas at 3 h, where ibogaine and noribogaine are
present in relevant concentrations (Baumann et al., 2001b), and
at 24 h where ibogaine is no longer detected and no significant
amounts of noribogaine would be present in the brain (Pearl
et al., 1997). In this manner, is expected that the observed effects
found at 24 h, would be due to long lasting mechanisms elicited
by the drug which remain after it has been cleared from the brain,
but not from the acute effects of ibogaine/noribogaine. Finally, a
behavioral study recording the locomotor activity of the control
and drug-treated animals was performed using an open field test
for each time point.

MATERIALS AND METHODS

Ibogaine HCl
The ibogaine used in this study was chemically synthesized using
voacangine as starting material, which was extracted from the
root bark of Voacanga africana (purchased from CAPE LABS)
using a modification of a previously described procedure (Jenks,
2002). Briefly, 100g of grounded root bark of V. africana was
extracted with a 1% aqueous solution of HCl (6 × 500 mL). The
combined aqueous extracts were basified by adding concentrated
NH4OH until pH 10–11. A brown precipitate was separated by
centrifugation and dried at 60◦C for 24 h. This solid was taken
in acetone and filtered to discard root impurities. The solvent
was evaporated in vacuo to afford a total alkaloid extract of
3.5–4.0 g. Column chromatography (SiO2, Hex:EtOAc:NH4OH,
90:10:0.01) allowed to obtain 1g of pure voacangine which was

analyzed by 1H and 13C NMR (See Supplementary Material).
Voacangine was decarboxylated as follows. To a solution of
voacangine in EtOH (0.45 M) in a double necked round bottomed
flask, KOH in pellets (5 equivalents) was added. The solution was
heated to reflux until consumption of the starting material was
evident by thin layer chromatography (TLC) analysis. EtOH was
removed under reduced pressure, and the residue was dissolved
at 0◦C in a round bottomed flask using a 6% (v/v) aqueous
solution of HCl (enough quantity to adjust pH to 1). The system
was then heated to reflux for 5 min. Once the starting material
consumption was evident by TLC analysis, the solution was
carefully basified using 50% NaOH (pH 10–11). Precipitation
of ibogaine as a white solid was observed. Ethyl acetate was
added, and the resultant biphasic system was transferred into a
separation funnel. The aqueous phase was extracted three times
with EtOAc. The combined organic layers were dried under
Na2SO4, and the solvent was removed in vacuo. Purification
was carried out using column chromatography purification
(SiO2, hexanes: ethyl acetate 8:2 + 0.5% ammonium hydroxide).
Ibogaine free base was obtained with an 86% and was analyzed by
1H and 13C NMR (see Supplementary Material). Crystallization
from EtOH afforded a crystalline solid which was converted to
the corresponding hydrochloride by treatment with diethyl ether
saturated with HCl(g). Purity of ibogaine·HCl was determined
by GC-MS analysis as 98.3% (see Supplementary Material).
Dissolution of ibogaine-HCl to prepare the samples for i.p.
injection was carried out using warm saline that was previously
degassed by nitrogen bubbling.

Experimental Animals
Thirty-six male Wistar adult rats (270–300 g) were used in this
study and assigned to one of the following groups: Vehicle group
at 3 and 24 h (n = 6 per each group); Ibogaine 20- (I20) treated
group at 3 and 24 h (n = 6 per each group) and Ibogaine
40- (I40) treated group at 3 and 24 h (n = 6 per each group).
Animals were housed four to five per cage and maintained on
a 12-h light/dark cycle (lights on at 07.00 h) with food and
water freely available before and after i.p. injection of vehicle or
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ibogaine until behavioral testing and sacrifice. All experimental
procedures were conducted in agreement with the National
Animal Care Law (#18611) and with the “Guide to the care and
use of laboratory animals” (8th edition, National Academy Press,
Washington, DC, 2010). Furthermore, the local Institutional
Animal Care Committee (IIBCE) approved the experimental
procedures (Protocol Number 007/05/2014). Adequate measures
were taken to minimize pain, discomfort or stress of the animals,
and all efforts were made to use the minimal number of animals
necessary to obtain reliable scientific data.

Behavioral Analysis
Animals were brought to the experimental room in their home
cages, identified and weighed prior to the behavioral test. An
open field (OF) apparatus consisting of a square area (45 cm
wide × 45 cm long × 40 cm high) with transparent plastic walls
indirectly illuminated (35 luxes) to avoid reflection and shadows
were employed. The OF was placed in a quiet experimental
room with controlled temperature (22 ± 2◦C). As rats were
not habituated to the OF before drug or vehicle administration,
novelty-induced motor activity was automatically recorded by a
camera connected to a computer equipped with the Ethovision
XT 12.0 software (Noldus, Netherlands) located above the OF.
Using this video tracking software, we specifically measured the
total distance traveled in meters (m) during 30 min, starting 3
and 24 h after ibogaine or vehicle administration. Animals were
randomly assigned to different experimental groups and were
used only once. Taking into account that immediately after i.p.
administration ibogaine can produce a dose-dependent unusual
motor profile and some prototypical serotonergic syndrome-
related behaviors (e.g., tremor, flat body posture, forepaw
treading) (Gonzalez et al., 2018), these specific behaviors were
assessed by a trained investigator every 5 min (for a total of
30 min) starting 3 and 24 h after ibogaine administration.
During all experiments, the OF was cleaned with 30% alcohol
before placing the following rat. All experiments were done
between 9 AM and 3 PM.

Ex vivo Studies
Brain Dissection
Three or twenty-four hours after I20, I40 or vehicle (i.p.) injection,
animals were sacrificed by decapitation and the brains were
carefully removed and chilled in ice cold saline. According to
Paxinos and Watson (2005), the whole NAcc (shell and core),
PFC (including mPFC), Substantia Nigra (SN, pars compacta-
SNpc and pars reticulata-SNpr) and VTA were dissected out
on ice and the tissue obtained was immediately frozen and
rapidly stored at –80◦C until the processing day (Scorza et al.,
1997; Meikle et al., 2013). Representative examples of coronal
section at the level of each dissected brain area are shown in the
Supplementary Material.

Semiquantitative qPCR
For RT-PCR analysis total RNA was extracted from the different
brain regions using Trizol reagent (Thermo Fisher Scientific)
followed by chloroform extraction and isopropanol precipitation.
Possible DNA contaminations were eliminated with DNase

treatment using DNase free Kit (Thermo Fisher Scientific).
RNA quality was evaluated by agarose gel electrophoresis
followed by ethidium bromide staining and quantified using a
NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific).
500 ng of this total RNA was reverse-transcribed using
200 U M-MLV-reverse transcriptase (Thermo Fisher Scientific)
following manufacturer instructions. 25 ng of the resulting cDNA
was diluted in Biotools Quantimix Easy master mix (Biotools)
in 10 µl volume. All reactions were performed in triplicates in
strip tubes (Axygen R© Brand Products), using specific forward and
reverse primers. The sequences of the quantitative PCR primers
(IDT, Integrated DNA Technologies) used are as follows: for
GAPDH F: 5′-CAC TGA GCA TCT CCC TCA CAA-3′ and R:
5′-TGG TAT TCG AGA GAA GGG AGG-3′, for BDNF F: 5′-
GAG GGG TAG ATT TCT GTT TGT T-3′ and R: 5′-TTG CCT
TAA TTT TTA TTC GTT T-3′, for GDNF F: 5′-AAA TCG GGG
GTG CGT CTT AAC T-3′ and R: 5′-AAC ATG GGC CTA CCT
TGT C-3′, for NGF F: 5′-AAG TTA TCC CAG CCA AAC TA-
3′ and R: 5′-ATG TCA GTG TTG GGA GTA GG-3′. According
to the sample, we used cycles 15–23 (the threshold cycle, Ct), in
order to calculate the relative amounts of our gene of interest.
PCR amplification was done over 40 cycles using a Rotor-Gene
6000 System (Corbett Life Science) and data were analyzed using
Rotor Gene 6000 software (Corbett Life Science). Quantification
was performed with 11Ct method using rats treated with vehicle
as a negative control, and GAPDH mRNA as reference.

Western Blot Analysis
The selected brain regions were sonicated in a lysis buffer
containing 50 mM NaCl, 50 mM HEPES, 2 mM sodium
orthovanadate, 1% Triton X-100, and SigmaFAST Protease
inhibitor cocktail (Sigma-Aldrich). After quantification and
denaturation, the samples were loaded and separated by 12%
SDS-PAGE gels and then transferred into a nitrocellulose
membrane. The membranes were incubated for 1 h in blocking
solution (BS: 5% Bovine serum albumin, 1% Tween 20 in
PBS), and incubated overnight at 4◦C with primary antibodies
to GDNF (1:500 in BS; Abcam ab119473), BDNF (1:400 in
BS; Promega G1641), or proBDNF (1:500 in BS; Invitrogen
PA1-18360), together with anti-alpha-tubulin (1:3000 in BS;
Abcam ab184613) as loading control. Afterward, the membranes
were washed and incubated for 1 h at room temperature
with IRDye 680RD/IRDye 800CW-Conjugated Goat Anti-Mouse
IgG/Goat Anti-Rabbit IgG/Donkey Anti-Chicken IgG secondary
antibodies (1:15000 in PBS each, LI-COR Biosciences #926-
68070, #926-32210, #926-68071, #926-32211, and #925-32218).
The Odyssey system (LI-COR Biosciences) was used to detect
the bands. Quantification of band intensity was performed using
Image Studio software version 5.2.5.

Data Analysis
GraphPad Prism software 5 was used to design figure graphs and
data analysis. Data are presented as mean ± SEM values. Six
animals per group were assessed for behavioral and PCR studies.
In some cases, some data was excluded from the analysis due
to insufficient sample or high deviation from the mean of the
group, rendering a lower n, but never smaller than 4. The total
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sample size (N) is given in figure legends and the sample for
each treatment (n) can be observed in the scatter plot graphs in
each figure. For western blot analysis, samples from 4 animals
per group were assessed. Data from qPCR and western blot
were analyzed and compared by one-way ANOVA followed by
post hoc Tukey’s Multiple Comparison Test. In all cases, statistical
significance was set at P < 0.05. General P and F values from
ANOVA, and p values from Tukey’s multiple comparison test are
provided in figure legends for each data set when significance is
reached. Also, eta squared values (η2) accounting for effect size
are provided. Data from motor activity were analyzed by two-
way (treatment, time, and interaction between factors) ANOVA
for repeated measures followed by Newman–Keuls multiple
comparison post hoc test and Unpaired-t-test.

RESULTS

In a previous study, we reported a very high impact of the I40
treatment on novelty-induced locomotion after 2 h of ibogaine
administration and the concomitant transient induction of some
of the behavioral signs related to the serotonergic syndrome
(Gonzalez et al., 2018). Thus, we decided to analyze the behavioral
effect of ibogaine treatment in the time points used in the present
study (3 and 24 h). The behavioral response induced by ibogaine
administration is shown in Figure 2. Compared to the control
group, novelty-induced locomotion was not altered by I20 at any
evaluated time (data not shown). Whereas I40 was not effective
to induce any behavioral alterations 3 h after i.p. administration,
it elicited a significantly reduction of the animal locomotion
24 h after injection (Figures 2A,B respectively). No abnormal
behaviors were present for both time points and animals were
qualitatively indistinguishable from the vehicle group animals
(data not shown). Immediately after each behavioral test, animals
were sacrificed to pursue brain dissection for the qPCR and
Western Blot studies.

qPCR Quantification of NFs mRNA
qPCR results for the GDNF (Figure 3) showed that ibogaine acute
administration differentially regulated GDNF mRNA expression
levels in the selected brain regions in a dose and time-dependent
manner. At 3 h, no changes in the GDNF mRNA expression
was found for both doses of ibogaine in all the studied areas.
In contrast, after 24 h of treatment, changes in the expression of
GDNF were found in a dose and site-specific manner. While the
I20 dose did not affect the GDNF expression in any of the studied
areas, the I40 dose selectively increased GDNF mRNA content
in the midbrain regions: VTA (12-fold increase compared to the
control group) and SN (6-fold increase vs. the control group) with
no appreciable effects in the PFC and NAcc.

For BDNF, ibogaine treatment produced an appreciable
downregulation of its expression in the PFC at 3 h after injection
(1.7 and 2-fold decrease for I20 and I40, respectively, compared
to control, control = 1.000 ± 0.099, I20 = 0.596 ± 0.045,
I40 = 0.492 ± 0.094), while no response was seen for the other
brain areas at this time point (Figure 4). At 24 h, ibogaine
administration upregulated the mRNA expression of BDNF in all

FIGURE 2 | Effects of ibogaine administration on locomotor activity.
Locomotor activity of rats was recorded in the OF test during 30 min, at 3 h
(A) and 24 h (B) after ibogaine (40 mg/kg) i.p. administration. The inset graphs
represent the total locomotor activity (30 min). Data are expressed as mean +
SEM. Data were analyzed by the two-way ANOVA of repeated measured
followed by Newman–Keuls test and Unpaired t-test (insets). For 24 h after
treatment, two-way ANOVA revealed a significant effect of the treatment
F(1,8) = 11.14, P < 0.01, η2 = 0.059; time F(5,40) = 66.56, P < 0.001,
η2 = 0.75; and treatment × time interaction F(5,40) = 4.85, P < 0.01,
η2 = 0.055. ∗, respective to saline group. ∗∗∗P < 0.001; ∗∗P < 0.01;
∗P < 0.05. N = 18, n = 6 per group.

the brain regions studied in a dose-dependent manner (Figure 4).
A large effect was found in the NAcc for both doses of ibogaine
(220-fold increase compared to the control for I20, and 340-fold
increase for I40). The I20 dose increased BDNF expression in PFC
(55-fold increase compared to the control) but not in the VTA
or SN. On the other hand, in addition to the NAcc, the I40 dose
also upregulated BDNF expression in PFC (107-fold increase
compared to the control), VTA (43-fold increase compared to the
control) and SN (21-fold increase compared to the control).

For NGF (Figure 5), no difference in the content of mRNA
was found 3 h after ibogaine treatments. At 24 h, an upregulation

Frontiers in Pharmacology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 193

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00193 March 4, 2019 Time: 10:55 # 6

Marton et al. Ibogaine Modifies GDNF, BDNF Expression

FIGURE 3 | Effects of ibogaine administration on GDNF expression in specific brain areas. Quantitative analysis of GDNF transcript levels in the indicated brain areas
after 3 h (upper panels) or 24 h (lower panels) of vehicle (0), 20 or 40 mg/kg ibogaine administration. For 24 h after treatment VTA, N = 16, P < 0.0001,
F2,13 = 96.11, η2 = 0.94; For 24 h after treatment SN, N = 14, P < 0.0001, F2,11 = 60.75, η2 = 0.92; ∗∗∗P < 0.001 between indicated groups.

of NGF mRNA content was found in: PFC (14-fold increase
compared to the control), NAcc (15-fold increase compared to
the control), VTA (11-fold increase compared to the control), and
SN (4-fold increase compared to the control). For the I20 dose
a significant effect was only found in the PFC (7-fold increase
compared to the control) and VTA (5-fold increase compared to
the control). However, the levels of increase in the NGF mRNA
were not as high as those for BDNF.

GDNF, BDNF and proBDNF Protein
Content by Western Blot
Considering the changes found for the expression of NFs after
24 h of ibogaine administration, we decided to analyze the
content of mature proteins BDNF and GDNF for all the studied
brain regions, because of their previously mentioned well studied
involvement in the addictive behavior. Precursor of BDNF,
proBDNF was also considered since it is well described that it
shows opposite effects to the mature protein because of a higher
affinity to the p75 receptor (Woo et al., 2005; Xu et al., 2011;
Sun et al., 2012). For GDNF, a single dose of ibogaine affected
mature protein content in a region- and dose-dependent manner
(Figure 6). While no changes in GDNF content were observed
for I20 in any of the studied regions, GDNF content was increased
in VTA for the I40 dose (2-fold increase compared to the control
group). No effect was observed in the GDNF content at the NAcc,
SN, and PFC in comparison to the control group. For BDNF no
significant change in the mature protein content was detected for

all the studied regions for both doses of ibogaine. Nevertheless, in
the case of proBDNF we found a selective increase in the protein
content for I20 and I40 in the NAcc (2.7 and 2.8-fold increase for
I20 and I40 doses, respectively, compared to control), while no
significant change was detected in the other brain areas.

DISCUSSION

In the present study, we have demonstrated that ibogaine
administration simultaneously alters the transcripts levels of
GDNF and BDNF (which have been extensively related
to drug-seeking behaviors) in a dose- and time-dependent
manner. Additionally, NGF expression was also modified,
showing potential effects of ibogaine administration on the
expression of other relevant NFs. Regarding the protein content,
we showed that after 24 h of treatment, I40 selectively
increased mature GDNF in the VTA, while proBDNF content
was increased selectively in NAcc by both doses. Since as
mentioned before, ibogaine is rapidly metabolized to produce
noribogaine, further experiments are needed to elucidate if
the metabolite and/or the parent drug produced these effects.
Considering that dopamine neurotransmission, specifically in the
mesocorticolimbic pathway, is related to rewarding/reinforcing
and motivational actions of most drugs of abuse (Di Chiara and
Imperato, 1988; Koob and Bloom, 1988; Kalivas and Volkow,
2005) our findings contribute to shed light on a mechanism
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FIGURE 4 | Effects of ibogaine administration on BDNF expression in specific brain areas. Quantitative analysis of BDNF transcript levels in the indicated brain areas
after 3 h (upper panels) or 24 h (lower panels) of vehicle (0), 20 or 40 mg/kg ibogaine administration. For 3 h after treatment PFC, N = 16, P < 0.0001, F2,13 = 9.80,
η2 = 0.61; For 24 h after treatment PFC, N = 16, P < 0.0001, F2,13 = 25.26, η2 = 0.80; For 24 h after treatment NAcc, N = 15, P < 0.0001, F2,12 = 46.62,
η2 = 0.89; For 24 h after treatment VTA, N = 14, P < 0.0001, F2,11 = 46.46, η2 = 0.88; For 24 h after treatment SN, N = 16, P < 0.0001, F2,13 = 45.50, η2 = 0.88; ∗

P < 0.05, ∗∗ P < 0.01 and ∗∗∗P < 0.001 between indicated groups.

underlying the ability of ibogaine administration to attenuate
drug-seeking behavior.

Regarding the motor function, a decrease in the novelty-
related motor activity was observed 24 h after I40 (while 3 h after
the same treatment, animals displayed a similar activity than the
control). There is no evidence at this point to establish a potential
connection between this intriguing behavior and the observed
changes in NFs expression. In this regard, considering the
changes in the expression of NFs at 24 h in the SN, it is plausible
that a neurochemical imbalance in the basal ganglia output may
underlie the changes in the motor activity (Day et al., 2008;
Calabresi et al., 2014). Moreover, we cannot rule out that this
acute motor impairment is related to this neurochemical effect
eliciting a decrease in the animal overall motivation. Behavioral
studies using valid and reliable experimental paradigms for
studying the effect of ibogaine on reward-related behaviors
should be done to understand these observations. On the other
hand, we cannot discard the participation of other factors which
may be altered in ibogaine-treated animals at this time point.

At 3 h after I20 and I40 treatments, no alteration of the GDNF
transcript content was found in all the studied brain areas. While
in a previous report by He et al. (2005), a significant GDNF
upregulation was found 3 h after I40 treatment in the midbrain of
rats, our results show that this increase doesn’t occur in the NAcc
and in the specific midbrain areas studied (VTA, NAcc, and SN).
On the other hand, after 24 h, we found that the I40 dose increased
GDNF expression and mature protein content specifically in the

rat VTA, which was also found in the whole midbrain at this
time point in the mentioned previous report. In this manner
our study identifies the VTA as the key brain region of the
mesocorticolimbic system where GDNF is upregulated after 24 h
of ibogaine administration. This finding is important since the
ability of ibogaine to attenuate ethanol self-administration had
previously been proposed to be mediated, at least in part, by
the increase in GDNF content in the VTA. (He et al., 2005; He
and Ron, 2006) Furthermore, we show that I20 administration
does not increase GDNF expression in any of the studied brain
areas, which is in accordance with the observation that this
dose was not effective in reducing drug self-administration in
the majority of previous studies in rodents (Glick et al., 1991,
1994; Cappendijk and Dzoljic, 1993; Dworkin et al., 1995). In
addition, our results are in line with the reports indicating that
GDNF infusions into the VTA has been effective in reducing
drug self-administration or conditioned place preference for
cocaine and alcohol (Messer et al., 2000; He and Ron, 2006;
Carnicella et al., 2008, 2009), and with evidence that shows that
GDNF mediates negative regulatory effects on chronic morphine-
induced neuroadaptations in VTA of rodents (Li et al., 2014;
Koskela et al., 2017). Additionally, the selective increase found
in this study for GDNF in the VTA by I40, could account, at least
in part, to the anti-addictive properties of ibogaine considering
that upregulation of the GDNF pathway has been proposed a
potential strategy to treating SUDs (Carnicella and Ron, 2009).
Lastly, I40 administration increases GDNF expression in the
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FIGURE 5 | Effects of ibogaine administration on NGF expression in specific brain areas. Quantitative analysis of NGF transcript levels in the indicated brain areas
after 3 h (upper panels) or 24 h (lower panels) of vehicle (0), 20 or 40 mg/kg ibogaine administration. For 24 h after treatment PFC, N = 17, P < 0.0001,
F2,14 = 76.40, η2 = 0.92; For 24 h after treatment NAcc, N = 17, P < 0.0001, F2,14 = 107.1, η2 = 0.94; For 24 h after treatment VTA, N = 17, P < 0.0001,
F2,14 = 44.88, η2 = 0.87; For 24 h after treatment SN, N = 16, P = 0.0050, F2,13 = 8.16, η2 = 0.61; ∗∗P < 0.01 and ∗∗∗P < 0.001 between indicated groups.

SN, which was not accompanied with a significant increase
of the GDNF protein content at this time point. Given the
relevant role of the nigro-striatal pathway in the neuropathology
of neurodegenerative disorders like Parkinson ’s Disease (PD)
(Dauer and Przedborski, 2003), it would be interesting to study
if ibogaine is able to attenuate the cell loss in the SN and
the biochemical changes at the striatum throughout the NFs
expression using an experimental model of PD.

With regard to BDNF, a selective downregulation of its
expression in the PFC for both doses of ibogaine was found
after 3 h of administration, while no changes in other areas
were observed. Ibogaine and noribogaine administration in rats
stimulate the secretion of corticosterone, being ibogaine a more
potent releaser (Baumann et al., 2001b). Since corticosterone
decreases BDNF expression in the frontal cortex (Dwivedi et al.,
2006; Huang et al., 2011), ibogaine induced corticosterone
secretion during the first hours after treatment (where ibogaine
concentrations in blood are high), could be the reason behind
this result. In contrast, at 24 h, an impressive upregulation of
BDNF expression was found, which was much more pronounced
compared to the effect on GDNF and NGF expression in
all the studied brain areas at this time point. Nevertheless,
this high effect on BDNF expression was not reflected on an
increase in the content of BDNF mature protein (no significant
differences were found between both doses and the control group
at this time point, although trending toward increased BDNF
protein levels in NAcc and VTA for both doses) (Figure 6).
Since BDNF is synthesized in a precursor form, we included

proBDNF in our experimental design. A selective increase in
the proBDNF content was selectively found for NAcc for both
ibogaine doses. It is known that the mature BDNF protein
and its precursor proBDNF have opposite effects on neuronal
protection, axonal growth, maturation of dendrites and synaptic
plasticity, owing to different affinities of each form to the TrkB
and p75 receptors (Lu et al., 2005; Teng et al., 2005; Benarroch,
2015; Borodinova and Salozhin, 2016; Li et al., 2017). In this
regard, since it is well-documented that an increase in BDNF
content in the NAcc increases cocaine-seeking behavior (Graham
et al., 2007; Bahi et al., 2008) and vulnerability to substance abuse
(Krishnan et al., 2007; Burke and Miczek, 2015), an increase
in proBDNF in this brain area could have an opposite impact.
In this line of reasoning, the increase in proBDNF content in
NAcc generated by ibogaine after 24 h of administration in
rats could also be implicated in ibogaine’s effect in drug self-
administration paradigms. Further experiments are required to
address this hypothesis.

Despite implicit assumption that differentially expressed
mRNAs are reflected in protein content, numerous previous
studies comparing mRNA and protein levels concluded that the
correlation is poor (de Sousa Abreu et al., 2009; Maier et al.,
2009). While the increase in GDNF mRNA expression was linked
to augmented mature protein content, our data showing an
impressive increase in BDNF mRNA expression and no changes
in mature protein are intriguing. The possibility exists that
the time frame of protein synthesis is different for both NFs,
however, many other factors should be considered to explain this
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FIGURE 6 | Effects of ibogaine administration on GDNF, BDNF, and proBDNF protein levels in specific brain areas. Western blot analysis of GDNF (A,B), BDNF (C,D)
and proBDNF (E,F) protein levels in the indicated brain areas after 24 h of vehicle (0), 20, or 40 mg/kg ibogaine administration. A representative image from
immunostained membrane of each condition is shown (A,C,E) with the corresponding quantification below (B,D,F). Data represent mean ± SEM of n = 4 biological
replicates assayed in triplicate. For GDNF/VTA, N = 12, P < 0.05, F2,9 = 6.86, η2 = 0.60; For proBDNF/NAcc, N = 12, P < 0.05, F2,9 = 5.87, η2 = 0.57; ∗P < 0.05
between indicated groups.
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incongruousness. These include post−transcriptional regulation,
for example miRNA−based translation repression or alternative
splicing, or translational and post-translational modifications.
Indeed, it has been previously described that sortilin, an
intracellular chaperon, acts as a regulatory switch for delivery
of BDNF to the regulatory secretory pathway or to degradation
in the lysosome, modulating in this way the neurotrophic factor
availability (Evans et al., 2011). Interestingly, BDNF levels have
been shown to be modified in PFC after chronic ethanol exposure
(Yang et al., 2017).

How does ibogaine administration produce this long-term
upregulation of GDNF and BDNF? It is well established that
an increase in serotonin transmission leads to an increase in
BDNF expression/signaling both in vitro and in vivo (Rantamaki
et al., 2007; Popova et al., 2017). In addition, serotonin and
SSRIs (Selective Serotonin Re-uptake Inhibitors) induce GDNF
expression in vitro (Hisaoka et al., 2001; Mercier et al., 2004;
Tsuchioka et al., 2008; Golan et al., 2011), and recently it has
been shown that chronic treatment in mice using SSRIs induce
GDNF content in SN and Striatum (Shadfar et al., 2018). It is
well-established that ibogaine and noribogaine increase serotonin
transmission (Wei et al., 1998; Wells et al., 1999; Baumann
et al., 2001b). Both substances are serotonin-reuptake inhibitors
(Jacobs et al., 2007; Bulling et al., 2012), and noribogaine is
more potent at increasing serotonin levels in the NAcc than
ibogaine, which correlates with the ability of both compounds
to inhibit SERT in vitro (IC50 of 3.85 and 0.18 µM for ibogaine
and noribogaine, respectively) (Baumann et al., 2001b). In this
manner, a sustained enhancement on serotonin transmission due
to ibogaine and its long-lasting metabolite noribogaine could
account, at least in part, for the observed effect on BDNF and
GDNF expression after 24 h of ibogaine administration.

Finally, in addition to GDNF and BDNF, ibogaine also
modulated the expression of other NF as NGF, 24 h after
treatment, while no changes were found at 3 h. The effect of NGF
administration in specific brain areas on drug-seeking behavior
has been much less studied in comparison to GDNF and BDNF,
and scarce data is available on the effects of NGF in brain
regions related to the dopaminergic mesocorticolimbic circuitry.
Nevertheless, NGF (as other neurotrophins) is likely involved
in mediating important responses related to chronic intake of
drugs of abuse, as illustrated by previous studies that show that
NGF content decreases in the hippocampus and hypothalamus
of alcohol-treated mice (Aloe et al., 1993) and in the serum of
chronic heroin and cocaine users (Angelucci et al., 2007). Also,
NGF administration into the central nucleus of the amygdala
mimicked the morphine reward sensitization (Bie et al., 2012).

The modifications found in NFs levels induced by
ibogaine/noribogaine, may underlie neuroplasticity processes
in the discrete brain regions analyzed as has been described by
several drugs used in clinical practice including drugs of abuse
(Castren and Antila, 2017). Most of these drugs regulate the
expression of NFs, reactivating a process defined as induced
plasticity (iPlasticity), which allows networks reorganization in
the adult brain (Castren and Antila, 2017). This is in accordance
with the fact that recently noribogaine has been recently
classified as a “psychoplastogen,” since it is capable to promote

neuritogenesis in cultured rat cortical neurons (Ly et al., 2018).
In this manner, neuroplastic changes generated by the selective
increase in NFs expression after ibogaine administration could
explain, at least in part, the ability of ibogaine to attenuate
drug-seeking behavior in rodents (which could be related to its
effects on drug craving and reinstatement in humans).

CONCLUSION AND FUTURE
PERSPECTIVES

This study demonstrates for the first time that ibogaine
administration simultaneously alters the expression of GDNF,
BDNF, and NGF transcripts in rat brain regions related to the
dopamine neurotransmission in a dose- and time-dependent
manner. Our results add relevant information concerning specific
brain areas involved in the increment of GDNF levels (VTA)
as a putative mechanism of action underlying the anti-addictive
effect of ibogaine. In addition, we showed that only I40 promoted
this increase in GDNF content, which is in accordance with
previous reports where the I20 treatment was not effective
in reducing drug self-administration in rodents (Glick et al.,
1991, 1994; Cappendijk and Dzoljic, 1993; Dworkin et al.,
1995). Also, we found that both doses of ibogaine produced
an increase in the proBDNF content in NAcc after 24 h of
treatment, which could be another factor mediating long-lasting
effects of ibogaine related to attenuate drug dependence, in
addition to the already highlighted increase in GDNF. Future
experiments are needed to clarify these important implications in
order to elucidate ibogaine’s biological mechanism to attenuate
drug seeking behavior. Considering safety concerns raised by
adverse effects found in humans after ibogaine intake, such
as prolongation of the QTC interval in the EKG (which has
been associated with sudden death cases after ibogaine intake)
(Koenig and Hilber, 2015), contributions to the understanding
of ibogaine’s mechanism of action will provide basis for the
preparation of safer and more effective analogs in the future.
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