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Severe Acute respiratory syndrome coronavirus (SARS-CoV-1) attaches to the host cell
surface to initiate the interaction between the receptor-binding domain (RBD) of its spike
glycoprotein (S) and the human Angiotensin-converting enzyme (hACE2) receptor. SARS-
CoV-1 mutates frequently because of its RNA genome, which challenges the antiviral
development. Here, we per-formed computational saturation mutagenesis of the S protein
of SARS-CoV-1 to identify the residues crucial for its functions. We used the structure-based
energy calculations to analyze the effects of the missense mutations on the SARS-CoV-1 S
stability and the binding affinity with hACE2. The sequence and structure alignment showed
similarities between the S proteins of SARS-CoV-1 and SARS-CoV-2. Interestingly, we found
that target mutations of S protein amino acids generate similar effects on their stabilities
between SARS-CoV-1 and SARS-CoV-2. For example, G839Wof SARS-CoV-1 corresponds
to G857W of SARS-CoV-2, which decrease the stability of their S glycoproteins. The viral
mutation analysis of the two different SARS-CoV-1 isolates showed thatmutations, T487S and
L472P, weakened the S-hACE2 binding of the 2003–2004 SARS-CoV-1 isolate. In addition,
the mutations of L472P and F360S destabilized the 2003–2004 viral isolate. We further
predicted thatmanymutations onN-linked glycosylation siteswould increase the stability of the
S glycoprotein. Our results can be of therapeutic importance in the design of antivirals or
vaccines against SARS-CoV-1 and SARS-CoV-2.

Keywords: computational saturation mutagenesis, spike missense mutations, SARS-CoV-1, SARS-CoV-2, protein
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INTRODUCTION

The severe acute respiratory syndrome coronavirus (SARS-CoV-1) belongs to a family of
Coronaviridae that are enveloped, positive-strand RNA viruses (Li F. et al., 2005). In November
2002, the first case of SARS-CoV-1 occurred in the Guangdong province in China. The symptoms of
SARS include upper respiratory infections, fever, chills, and general body weakness (Peiris et al.,
2003). The other signs showing human-to-human transmission were coughing and sneezing.
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Horseshoe bat species might be the origin due to their sequence
similarity (Luk et al., 2019). By the end of the SARS epidemic in
2003, SARS had spread to over two dozen countries resulting in
more than 8,000 laboratory-confirmed cases and approximately
800 deaths (www.cdc.gov) (Centers for Disease Control and
Prevention, 2021). However, in 2004, there were four mild
cases of SARS-CoV-1 outbreak. The recent outbreak of a
newer strain of coronavirus, SARS-CoV-2, began in December
2019 in theWuhan city in China (Vankadari andWilce, 2020). In
a month, this new coronavirus had spread across the world due to
global travels. Compared to SARS-CoV-1, SARS-CoV-2 has a
higher infection rate. As of November 11, 2021, the number of
confirmed global cases and global deaths due to SARS-CoV-2 are
∼252 million and ∼5.1 million, respectively (Dong et al., 2020).

The Spike protein (S) is a structural protein that protrudes
outwards from the virus surface. The role of S is to mediate viral
entry into the host’s cells. Structural studies of SARS-CoV-1’s S
revealed the presence of two subunits, S1 (residues 12–667) is in
the N-terminal and S2 (residues 667–1,190) is in the C-terminal.
Studies of mammalian coronaviruses with similarity to the SARS-
CoV-1 showed that the S1 subunit helps with hACE2 receptor
attachment, while the S2 subunit helps with the fusion (Li F. et al.,
2005). Expression analysis showed that a fragment of the S1
subunit, the receptor binding domain (RBD), residues 306–527, is
enough for tight binding to the human Angiotensin-converting
enzyme 2 (hACE2) receptor (Song et al., 2018). A shorter
fragment, residues 424–494, within the RBD interacts with the
hACE2 receptor in humans. This fragment, the receptor-binding
motif (RBM), forms a loop that fits perfectly into the peptidase
do-main (PD) of the hACE2 receptor. The SARS-CoV-1
glycoprotein has two cleavage sites that promote viral infection.
The first cleavage site is in the 667–668 residue positions. As the
virus enters the host’s cell, its spike protein is cleaved into the S1
and S2 subunit by protease activity. The second cleavage site is in
the 797–798 residue positions. Cleavage at this position detaches
the fusion protein from the S2 subunit and allows the fusion
protein to bind with the host’s membrane (Belouzard et al., 2009).

One similarity shared by SARS-CoV-1 and SARS-CoV-2 is
that they use hACE2 as the receptor to enter human cells
(Manning et al., 2002). Both SARS-CoV-1 and SARS-CoV-2 S
proteins bind to the peptidase domain in the N-terminal of the
hACE2 receptor (Li F. et al., 2005). The other domain, the
Collectrin domain, is found in the C-terminal of the hACE2
receptor. However, studies showed they exhibit varying binding
affinities. A recent study reported that SARS-CoV-2 S protein has
a 10-to-20-fold higher affinity to hACE2 than that of SARS-CoV-
1 (Song et al., 2018). The interaction between the S protein of
SARS-CoV-1 and the hACE2 receptor initiates entry into the
human cell (Xie et al., 2020). The higher affinity SARS-CoV-2 has
for hACE2 may explain the virulent nature of its infection (Chan
et al., 2020). Another similarity is the sequence and structural
homology between the S proteins of SARS-CoV-1 and SARS-
CoV-2. However, despite the similarities, a study evaluated the
binding of SARS-CoV-2 to experimentally verified monoclonal
antibodies (mAbs) against SARS-CoV-1. The result showed a
slight contrast in cross-reactivity, which had no binding between
SARS-CoV-2 and the three mAbs (Wrapp et al., 2020). This result

supports the hypothesis that the slight difference in their
sequences/structures might be re-sponsible for the varying
infectivity between SARS-CoV-1 and SARS-CoV-2. In a
previous study, we indicated that SARS-CoV-2 has a stronger
affinity towards hACE2 than SARS-CoV-1 because of its higher
electric field density (Xie et al., 2020). The hACE2 plays a role in
the renin-angiotensin pathway, that it maintains cardiovascular
homeostasis (Wang et al., 2016). The hACE2 participates in
microbial infection by serving as an entry point for
coronaviruses (Li et al., 2003). The variation of hACE2 across
species explains why SARS-CoV-1 infects humans and not rats
nor mice. A study manipulated the protein sequences of the
hACE2 of rats and mice by mutating specific residues to the
residues in humans. The result found an increase in infectivity
when the mouse or rat hACE2 has human residues in certain
positions (W. Li et al., 2004). Understanding the interactions
between the contact residues of SARS-CoV-1 and hACE2 can
provide insights into how SARS-CoV-2 enters human cells.

SARS-CoV-1 has an unstable RNA genome, an attribute
common to RNA viruses (Eigen, 1993). Our goal is to
investigate the effect of all possible mutations on the functions
of the SARS-CoV-1 S protein. Unlike experimental analysis,
computational analysis has proven an effective method in
studying protein dynamics (Teng et al., 2010). Previous studies
showed the high performance of specific or general
computational prediction algorithms to prioritize cancer
driving mutations (Zhao et al., 2018; Chen et al., 2020).
Another study identified that Foldx is a better protein
engineering tool in predicting protein mutations than random
based approaches (Buß et al., 2018). In our recent publication, we
used a computational approach to predict and analyze missense
mutations in the SARS-CoV-2 S protein (Teng et al., 2020). We
predicted several missense mutations that affect the stability and
binding affinity of SARS-CoV-2. We identified some target
mutations D614G, N501Y, and K417N in the South Africa,
United Kingdom, and Brazil variants, respectively (Teng et al.,
2020). In addition, we compared the effects of mutations on
stability in the closed state and open state of SARS-CoV-2 S, and
the Foldx results for folding energy changes introduced by
mutations are highly correlated. As a result, we employed
saturated computational mutagenesis to analyze the effects of
missense mutations on the stability and protein-protein
interactions of SARS-CoV-1. This approach is fast and
effective in identifying key residues, which will help design
therapeutic drugs against SARS-CoV-1. Our results will also
serve as a template to study and tackle future SARS outbreaks.

MATERIALS AND METHODS

Structural Preparation SARS-CoV-1 and
SARS-CoV-2
We obtained the 3-dimensional structures of full-length S and
RBD-hACE2 of both SARS-CoV-1 and SARS-CoV-2 from the
RCSB Protein Data Bank (PDB) (Protein Data Bank 2019). The
structure of a trypsin-cleaved SARS-CoV-1’s spike glycoprotein
(PDB ID: 6ACG) was used for stability analysis. The structure of
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the complex of SARS-CoV-1 S RBD and the human hACE2
receptor (PDB ID: 2AJF) was used for stability and interaction
analysis. For SARS-CoV-2, we obtained the protein complex
structure of RBD-hACE2 (PDB ID: 6LZG) for stability and
interaction analysis. The SARS-CoV-2 S (PDB ID: 6VYB) was
used only for stability analysis. For structural alignment of RBD
of SARS-CoV-1 and SARS-CoV-2, we used the structures PDB
ID:2AJF and PDB ID:6M17, respectively. For structural
alignment of the S protein of SARS-CoV-1 and SARS-CoV-2,
we used the structures PDB ID:6ACG and PDB ID:6VYB,
respectively. PyMOL (Schrödinger, LLC 2015) was used for
the visualization of the PDB structures and for structural
alignments.

Computational Mutagenesis and Energy
Calculations
Foldx version 5 (Schymkowitz et al., 2005), coded by the Foldx
Consortium, was used for mutational analysis. We used the
command line interface of Foldx to mutate each residue to the
other 19 residues. Foldx calculates free energy, ΔG, by using the
contributions of hydrophobic and polar groups to the solvation
energy, Van der Waals, hydrogen bonding, and electrostatic
interactions. These energy parameters were experimentally
derived (Schymkowitz et al., 2005). In this study, we used the
default parameters for the computation of the wildtype and
mutant free energies. The initial step used the ‘RepairPdb’
command to repair the wildtype protein structure. The
‘RepairPdb’ command finds the minimum energy
conformation for the protein structure by flipping side chains
of all residues, especially Asparagine, Glutamine, and Histidine to
reduce steric clashes (Schymkowitz et al., 2005). This was
followed by either the use of the ‘BuildModel’ command and
the ‘AnalyseComplex’ command to calculate the folding energy
change and the interaction or binding energy change,
respectively. For each mutation, we used Foldx to calculate the
folding energy change (ΔΔG) and binding energy change (ΔΔΔG)
(FOLDX, 2021). The mathematical equation for the calculation of
folding energy change (ΔΔG) is:

ΔΔG(stability) � ΔG(folding)MUT − ΔG(folding)WT

Theoretically, a negative ΔΔG means that the mutation leads
to a more stable protein structure and a positive ΔΔG means that
the mutation leads to a less stable protein structure. The five
categories of the impact of the folding energy change (ΔΔG) are-
highly stabilizing (ΔΔG < –2.0 kcal/mol), moderately stabilizing
(–2.0 < ΔΔG < –0.5 kcal/mol), neutral (0.5 < ΔΔG < +0.5 kcal/
mol), moderately destabilizing (+0.5 < ΔΔG < 2.0 kcal/mol), and
highly destabilizing (ΔΔG >2.0 kcal/mol). The mathematical
equation for the calculation of binding energy changes
(ΔΔΔG) is:

ΔΔΔG(binding) � ΔΔG(binding)MUT − ΔΔG(binding)WT

A negative ΔΔΔGmeans the mutation strengthens the binding
energy and a positive ΔΔΔG means the mutation weakens the
binding energy. The effect of the binding energy changes was also

classified into five categories: large affinity decrease (ΔΔΔG
>0.5 kcal/mol), moderate affinity decrease (0.1 < ΔΔΔG ≤0.5),
neutral (–0.1 < ΔΔΔG ≤0.1 kcal/mol), moderate affinity increase
(–0.5 < ΔΔΔG ≤ –0.5 kcal/mol), and large affinity in-crease
(ΔΔΔG < –0.5 kcal/mol).

Mutation Pathogenicity and
Sequence-Based Analysis
We used the Polymorphism Phenotyping v2 (PolyPhen2) (I. A.
Adzhubei et al., 2010) and Screening for non-acceptable
polymorphisms (SNAP) (Bromberg and Rost 2007) prediction
tools to predict the pathogenicity of each missense mutations. We
utilized the R programming language (https://www.r-project.org/)
for data visualization for the purpose of drawing inferences.
Specifically, we constructed boxplots to compare the prediction
of pathogenicity between PolyPhen2 and SNAP.

Sequence andStructural Similarity Between
SARS-CoV-1 and SARS-CoV-2
The FASTA sequences of SARS-CoV-1 and SARS-CoV-2 S
proteins were retrieved from the universal protein
knowledgebase (UniProtKB) (Bateman 2019). We performed
the pairwise sequence alignment of SARS-CoV-1 (Entry:
P59594) and SARS-CoV-2 (Entry: P0DTC2) using the Clustal
Omega computer program (https://www.ebi.ac.uk/Tools/msa/
clustalo/) and Jalview2 (www.jalview.org). We performed
structural alignments of the 3-D structures of SARS-CoV-1
and SARS-CoV-2 using PyMOL (http://www.pymol.org/). The
“fetch” and the “align” commands on PyMOL aligned the single
chains of the spike proteins of SARS-CoV-1 (PDB ID: 6ACG,
chain A) and SARS-CoV-2 (PDB ID: 6VYB, chain A), and RBD
of SARS-CoV-1 (PDB ID: 2AJF, chain E) and SARS-CoV-2 (PDB
ID: 6M17, chain E).

Other Computational Prediction Tools
We compared the outputs of six computational prediction tools
on SARS-CoV-1 S stability. Eachmethod utilizes different protein
structural properties in predicting the effects of mutations on
wild-type protein structures. The mutation Cut-off Scanning
Matrix (mCSM) tool encodes atomic-distance patterns to
predict the impact of mutations on protein structure (Pires
et al., 2014a). The Site Directed Mutator (SDM) uses a
statistical potential energy function to calculate a stability
score. SDM applies a cut-off of 2 kcal/mol to classify
stabilizing and destabilizing mutations (Pandurangan et al.,
2017). DUET is a tool that combines, consolidates, and
optimizes mCSM and SDM tools (Pires et al., 2014b). The
overall accuracy of DUET is better than either mCSM or SDM
(Pires et al., 2014b). The DynaMut tool utilizes Normal Mode
Analysis (NMA) and graph-based signatures to predict the
impact of missense mutations (Rodrigues et al., 2018). Finally,
the I-mutant suite 3.0 tool uses a support vector machine (SVM)
algorithm and accepts the protein sequence or structure as input.
However, it predicts the impact of mutations more accurately
with the protein structure inputted (Capriotti et al., 2005).
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We also compared four computational prediction tools on
SARS-CoV-1 S RBD affinity. The mutation Cut-off Scanning
Matrix on Protein-Protein Interaction (mCSM-PPI2) tool
uses inter-residue network complexes and graph-based
signatures to predict the impact of missense mutations on
protein affinity (Rodrigues et al., 2019). The Muta-Bind2 tool
evaluates the changes caused by missense mutations on
protein affinity. Muta-Bind2 is also a useful tool in protein
design (Li et al., 2016). Lastly, PISA (Protein, Interfaces,
Structures, and Assemblies) tool from the Protein Data
Bank in Europe (PDBe) was used to analyze interface
residues by comparing the contributions of their solvation
energy to the interaction energy (Krissinel and Henrick
2005).

We modified the outputs from these tools to stay consistent
with Foldx output. That is, significant positive ΔΔG and ΔΔΔG
values destabilize and weaken binding affinity, respectively, and
vice versa.

RESULTS

Sequence and Structural Alignments of S
Proteins of SARS-CoV-1 and SARS-CoV-2
The Jalview tool (Waterhouse et al., 2009) shows the aligned
residues, the quality of the alignment, the conservations scores,
and the consensus between the RBD sequences of SARS-CoV-1
and SARS-CoV-2 (Figure 1A). The sequence alignment using

FIGURE 1 | Sequence and Structural Alignment of SARS-CoV-1 S and SARS-CoV-2 S. (A) Sequence alignment of the receptor binding domain (RBD) sequences
(B) Structural alignment. Left: Alignment of the full-length spike proteins of SARS-CoV-1 (Blue) and SARS-CoV-2 (Green). Red circle indicates orientation of RBD. Right:
Alignment of RBDs. Black dashed square represents the alignment of the RBMs. Purple rectangle reveals regions with imperfect alignment.
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Clustal Omega algorithm within the Jalview tool indicates a ∼76%
sequence identity between RBD regions of SARS-CoV-1 and
SARS-CoV-2. The bright yellow bars represent high
conservation and quality between the aligned residues within
each column. As shown in Figure 1B, the structural alignment
revealed the evolutionary relationship between SARS-CoV-1 and
SARS-CoV-2. SARS-CoV-1 S (PDB ID: 6ACG, chain A) aligned
with SARS-CoV-2 S (PDB ID: 6VYB, chain A) with an RMSD of
2.272. Furthermore, we performed the structural alignment of the
RBDs of SARS-CoV-1(PDB ID: 2AJF, chain E) and SARS-CoV-2
(PDB ID: 6M17, chain E), and it yielded an RMSD of 1.043. We
selected a shorter fragment, RBM, from the RBD and performed
the structural alignment of the RBM of both coronaviruses. This
alignment yielded an RMSD of 0.878, which is more homologous.
The shape and spatial orientation of the structural alignments
overlapped which indicates close atomic coordinates between the
two structures.

Effects of Mutations on Full-Length
SARS-CoV-1 S Stability (ΔΔG)
The SARS-CoV-1 S protein has 1,255 residues that were used
to generate 23,845 non-redundant missense mutations. The
effect of each mutation on the stability of the SARS-CoV-1 S
protein was evaluated. Of the total mutations performed,
20,083 missense mutations generated energy changes,

while the remaining 3,762 missense mutations gave no
output due to missing residues on the protein structure.
Figure 2A shows that 11,635 of the 20,083 (58%) missense
mutations increased the free energy of the S protein by at least
0.5 kcal/mol, 2,964 of 20,083 (15%) missense mutations
reduced the S protein’s free energy by at most –0.5 kcal/
mol, and 5,484 of 20,083 (27%) had a neutral effect on the
stability of the wildtype S protein. The standard error of
energies calculation using the Foldx suite is ∼0.5 kcal/mol
(Schymkowitz et al., 2005). Therefore, the folding energy
changes within the range (–0.5 < ΔΔG <0.5) are
insignificant or categorized as having neutral effect. In
more specific categories, 4,767 mutations had a highly
destabilizing effect (ΔΔG > 2.5 kcal/mol) on the spike
protein, 6,868 mutations moderately destabilize the spike’s
protein (0.5 < ΔΔG ≤ 2.5 kcal/mol), 5,484 mutations had a
neutral effect (–0.5 < ΔΔG ≤ 0.5 kcal/mol), 2,816 mutations
moderately stabilize the S protein (–2.5ΔΔG ≤ –0.5 kcal/mol),
and 148 mutations have a highly destabilizing effect (ΔΔG <
–2.5 kcal/mol) on the S protein.

The line chart and the overall heatmap show the
distribution of the mutations along the entire length of the
spike protein (Figure 3A). The red lines represent the
positive mean values while the blue lines represent the
negative mean values. The bubbles represent the folding
energy changes when all the residues were mutated to

FIGURE 2 | Distribution of the effects of missense mutations on protein stability and binding affinity. Pie charts of the effects of missense mutations on SARS-CoV-
1 S (full-length) stability (A) and S RBD stability (B). (C) Pie chart of the effects of missense mutations on SARS-CoV-1 S RBD binding affinity.
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Alanine. Based on the average of ΔΔG, mutations with the
highest destabilizing effects were found in positions 839, 634,
418, 430, 536, and 1,113 (Figure 3). The two most
destabilizing missense mutations, A430W and A430F,
cause energy changes at 66.18 kcal/mol and 56.4 kcal/mol,
respectively. This position is also within the RBM of the
SARS-CoV-1 spike S protein. On the other hand, mutations
with the highest stabilizing effects were found in positions:
1,059, 981, 500, 1,089, 150, and 247 (Figure 3). The two most
stabilizing missense mutations, G981W and T1059F, reduced
the free energy of the wildtype structure by –5.16 kcal/mol
and –4.98 kcal/mol, respectively. The residue positions with
the highest and lowest mean folding energy changes (ΔΔG)
were G839 and T1059, which are both within the S2 subunit
of the S protein. Compared to the mean values of all
mutations, the missense mutations to Alanine had more
destabilizing effects than stabilizing effects. The two
“white” gaps in the overall heatmap represent missing

values in the residue positions 661–673 and 812–831,
respectively.

Effects of Mutations on SARS-CoV-1 S RBD
Stability (ΔΔG)
We utilized the crystal structure of the RBD of SARS-CoV-1
(PDB ID:2AJF) for computational prediction of the effect of
computed mutations on the stability of SARS-CoV-1 RBD.
This analysis gave an alternative perspective on the predictive
power of computational tools. We generated 3,841 mutations and
calculated the folding energy change (ΔΔG) caused by each
missense mutation. Like the full spike analysis, 63% of the
missense mutations destabilized the SARS-CoV-1 RBD
structure. Meanwhile, 8% of the missense mutations stabilized
the SARS-CoV-1 RBD structure. Figure 2B shows the pie chart of
the effects of the missense mutations on stability of SARS-CoV-
1 S RBD. The distribution of the effect of all missense mutations
in both the RBD and the full-length S stability analysis correlates

FIGURE 3 | Visualization of ΔΔG values caused by missense mutations on SARS-CoV-1 S (full-length). (A) Line chart showing mean ΔΔG values of destabilizing
mutations (red upward lines) and stabilizing mutations (Blue downward lines). Red and Blue bubbles show ΔΔG values of Alanine as alternate residues (Top). Overall
heatmap of all missense mutations showing different regions/domains (Bottom). (B) Heatmap of top five destabilizing mutations and top five stabilizing mutations on
SARS-CoV-1 S (full-length). Blue rectangle represents maximum ΔΔG values. Red rectangle represents minimum ΔΔG values.
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(r � 0.6824). Observation of individual mutations revealed
analytic similarity in both stability analysis. The heatmaps in
Figures 3B, 4A also show similarity in mis-sense mutations with
large effects on the stability of the SARS-CoV-1 S stability. For
example, the missense mutation A430W had a large effect on
both the stability of the RBD (Figure 4B) and the entire spike
protein of the SARS-CoV-1.

Comparison of Effects of Mutations on
Stabilities of Full-Length S Proteins of
SARS-CoV-1 and SARS-CoV-2
We compared the mutational effects of seven residues on SARS-
CoV-1 S protein to corresponding residues on SARS-CoV-2 S
protein. Four residues (T1059, G981, S500, and R1089) had the
highest mean stabilizing effects, while three residues (G839,
G634, and A430) had the highest mean destabilizing effects.
Pairwise alignment of SARS-CoV-1 S and SARS-CoV-2 S
showed that the residues T1059, G981, S500, R1089, G839,
G634, and A430 on SARS-CoV-1 corresponds with residues
T1077, G999, S515, R1107, G857, G648, and S443 on SARS-
CoV-2, respectively. As shown inTable 1, themissense mutations
on SARS-CoV-1 S protein had similar effects on its stability when
compared to corresponding residues on SARS-CoV-2 S protein.

We observed that the missense mutation A430S destabilizes
SARS-CoV-1 S protein by introducing the folding energy
change at 1.8 kcal/mol. Consistently, S443A in corresponding
position of SARS-CoV-2 increase the S stability (ΔΔG �
–0.768 kcal/mol). Interestingly, SARS-CoV-1 D600G can
destabilize S (ΔΔG � 0.21 kcal/mol). D614G, the dominant
variant of SARS-CoV-2, corresponds to D600G but was
predicted to stabilize S (ΔΔG � –0.784 kcal/mol). Another In
position 247, the substitution of Threonine with Alanine
increased the stability of the SARS-CoV-1. However, the
corresponding residue on SARS-CoV-2 A260 was missing.
Furthermore, we compared the predicted stability effects of
target SARS-CoV-2 S RBD mutations with the current deep
mutational scanning approach (Starr et al., 2020). The
computational predictions agree with the experimental results
(Table 1).

Effects of Mutations on SARS-CoV-1 S RBD
Binding Affinity (ΔΔΔG)
The protein structure (PDB ID:2AJF) used for interaction
analysis covered the S RBD that interact with the hACE2
receptor in humans. This RBD chain contains 180 residues,
which spanned from residual position 323 to 502. A total of

FIGURE 4 | Effects of the target missense mutations on SARS-CoV-1 S RBD protein stability. (A) Heatmap of top destabilizing mutations and top stabilizing
mutations (ΔΔG) Values up the scale (red) decreases stability/binding affinity and vice versa (blue). The blue rectangular box represents maximum values. The red
rectangular box represents minimum values. (B) Structural representation of SARS-CoV-1 S RBD showing stabilizing (T363L) and destabilizing (A430W)mutations in red
and their side chains.
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3,420 mutations were computed, with 114 missing values. The
remaining 3,306 mutations were classified into one of five
categories according to their binding energy changes (ΔΔΔG).
As shown in Figure 2C, 257 mutations had a large-decrease
effect, 183 mutations had a moderate-decrease effect, 2,738
mutations had a neutral effect, 97 mutations had a moderate-
increase effect, and 31 mutations had a large-increase effect.
Figure 5E shows the mutations with the largest effects, based
on ΔΔΔG mean values from all possible mutations in that
position.

The seven topmost mutations with decreasing effects are
found in positions which have mean values greater than
1.5 kcal/mol. While the six topmost mutations with in-
creasing effects are found in positions which have mean
values less than –0.3 kcal/mol. The values in red boxes
represent the minimum values in each position, while the
values in blue boxes represent maximum values. The overall
distribution of the missense mutations as they change ACE2
binding affinity of the SARS-CoV-1 S protein can be seen in
Figure 6. There are 7 distinct regions or domains in the
heatmap: [337–338], [388–396], [402–409], [424–436],
[439–447], [460–467], and [472–494]. Four of the seven
distinct regions are concentrated within the RBM, and they

span longer stretches of residues. Most of the red and blue
spikes on the line chart are also within the RBM. These
distinct regions can provide insight into which residues
play a key role in the interaction between SARS-CoV-1 S
protein and the hACE2 receptors in humans.

Comparison of Effects of Mutations on the
Binding Affinities of SARS-CoV-1 and
SARS-CoV-2 S Protein
As shown in Table 1, Asparagine is found on position 501 in
SARS-CoV-2 which corresponds to Threonine on position
487 in SARS-CoV-1. The computed missense mutation
T487N increased the ΔΔΔG by 2.28 kcal/mol and decreased
the ΔΔG by –0.14. In contrast, N501T, on the SARS-CoV-2
decreased ΔΔΔG by –1.346 kcal/mol. Tyrosine and
Tryptophan have nonpolar aromatic chains therefore the
missense mutations T487Y and T487W, had similar effects
(decrease binding affinity) on corresponding residue on
SARS-CoV-2, N501Y and N501W, respectively. Most of
the missense mutations on positions S432, P462, and
N479, on the average, increase the binding affinity of
SARS-CoV-1. However, the corresponding residues on

TABLE 1 | Mapping and comparing the effects of SARS-CoV-1 and SARS-CoV-2 missense mutations on protein stability (Top) and binding affinity (Bottom).

SARS-CoV-1 SARS-CoV-2

Protein stability

MUTATION ΔΔG (kcal/mol) Effect MUTATION ΔΔG (kcal/mol) Effect DMS ΔΔG Effect

G839W 51.76 Decrease G857W 58.212 Decrease NA
G839Y 48.16 Decrease G857Y 43.523 Decrease NA
G634W 48.91 Decrease G648W 43.326 Decrease NA
A430W 66.18 Decrease S443W 33.41 Decrease Decrease
A430F 56.4 Decrease S443F 22.173 Decrease Decrease
A430S 1.8 Decrease S443A –0.768 Increase Increase
A430Y 48.75 Decrease S443Y 25.052 Decrease Decrease
D600G 0.21 Decrease D614G –0.784 Increase NA
T487Y 6.09 Decrease N501Y –1.038 Increase Increase
T1059F –4.98 Increase T1077F 3.263 Decrease NA
G981W –5.16 Increase G999W 27.099 Decrease NA
G981F –4.75 Increase G999F 25.374 Decrease NA
S500W –3.53 Increase S514W –3.303 Increase Increase
T247C –2.74 Increase A260C NA NA NA
T247A –0.79 Increase A260T NA NA NA

Binding Affinity

MUTATION ΔΔΔG (kcal/mol) Effect MUTATION ΔΔΔG (kcal/mol) Effect DMS ΔΔΔG Effect

G488P 15.921 Decrease G502P 11.767 Decrease Decrease
T487Y 20.018 Decrease N501Y 4.55 Decrease Increase
T487N 2.284 Decrease N501T –1.346 Increase Increase
T487W 13.42 Decrease N501W 3.118 Decrease Increase
G482E 5.758 Decrease G496E 7.278 Decrease Decrease
S432Y –1.686 Increase V445Y –0.253 Increase Neutral
S432V –0.22 Increase V445S –0.0045 Neutral Neutral
N479M –1.42 Increase Q493M –0.3 Increase Increase
N479Q –0.607 Increase Q493N 0.679 Decrease Decrease
P462D –0.97 Increase A475D 0.633 Decrease Decrease
P462A 0.391 Decrease A475P 0.282 Decrease Decrease

Note: Result from Deep Mutational Scanning (DMS) approach was included to compare with the effects on SARS-CoV-2 S RBD, from Foldx.
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SARS-CoV-2 are Valine, Alanine, and Glutamine,
respectively. The effect of missense mutations on these
residues were evaluated by examining missense mutations
on corresponding positions on SARS-CoV-1. However, mis-
sense mutation N479Q decreased the ΔΔΔG by –0.607 kcal/
mol and increased ΔΔG by 1.91 kcal/mol. A possible
explanation is that the missense mutations created Van der
Waal clashes with neighboring atoms because of shorter
distance; The missense mutation, T487Y, caused a
differential Van der Waals of -0.449 kcal/mol, which led to
a greater re-pulsion from nearby atoms. Recent SARS-CoV-2
variant L452R (ΔΔΔG � –0.395 kcal/mol; ΔΔG � 0.021 kcal/
mol) corresponds to SARS-CoV-1 K439R (ΔΔΔG �
0.247 kcal/mol; ΔΔG � 0.41 kcal/mol). The change in

residue from Lysine in SARS-CoV-1 S protein to Leucine
in SARS-CoV-2 S protein may be responsible for the increase
in binding affinity caused by L452R.

Effects of Mutations on Post-translational
Modification Sites of S Protein
Post-Translational modifications (PTMs) of the SARS-CoV-
1 S protein are responsible for the folding, maturation, and
function of the S protein. An important PTM utilized by
SARS-CoV-1 is the O- and N-linked Glycosylation, which
plays a key role in the shielding of viruses from the host’s
immune system (Watanabe et al., 2019). As a result, viruses
evolve to become glycosylated as much as possible (Sugrue

FIGURE 5 | Topmissensemutations on SARS-CoV-1 S RBD-ACE2 interface. (A)Contact residues between Human ACE2 (Top) and SARS-CoV-1 S RBD protein
(Bottom). (B–D) Structural representation of important binding residues (SARS-CoV-1 S RBD interacting residue in green and hACE2 interacting residues in yellow and
cyan). (B) RBDG488 interacts with K353 and G354 on ACE2. (C) RBD T487 interacts with Y41 and K353 on ACE2. (D) RBD N479 interacts with H34 on ACE2. Dotted
lines indicate distance between two residues. (E)Heatmap of the ΔΔΔG of target S RBDmutations. Dotted lines indicate contact residues between the SARS-CoV-
1 S RBD and hACE2.
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2007). One O-linked glycosylation site, S336, located within
the RBD was predicted using online webserver (Steentoft
et al., 2013). On the average, the computed missense
mutations in this position increase the stability of SARS-
CoV-1. For example, the missense mutation, S336E, reduces
the ΔΔG by -1.93 kcal/mol, thereby stabilizing the SARS-
CoV-1 spike protein. Conversely, S336V in-creases the
ΔΔG by 1.28 kcal/mol, thereby destabilizing the SARS-
CoV-1 structure. We used five online prediction tools in
our N-linked glycosylation sites prediction- NetNGly 1.0
(Kumar et al., 2020), N-GlyDE (Pitti et al., 2019),
SPRINT-Gly (Taherzadeh et al., 2019), Glycopp v1.0
(Chauhan et al., 2012), and Glycopred (Hamby and Hirst
2008). We narrowed our results to sites predicted by at least
two or three prediction tools. Of these, we selected 20 N-
linked glycosylation sites located within the spike protein of
the SARS-CoV-1. Three putative N-linked glycosylation sites,
N318, N330, N357, were located within the RBD, and they
were predicted to have no effect on the binding affinity of
SARS-CoV-1 spike protein to hACE2. On the average,
mutations at position N318 were predicted to increase the
stability of SARS-CoV-1. However, on the average, the

mutations on N330 and N357 were predicted to have
neutral effects.

Figure 7 shows the target mutations in twenty N-linked
glycosylation sites, one O-linked glycosylation site, and one
palmitoylation site. Palmitoylation modifies the spike protein
through cysteine-rich residues (Petit et al., 2007). This is known
to mediate the fusion of the spike protein to hACE2. Predicted
palmitoylation sites (Ren et al., 2008) were found in positions
C19, C1217, C1218, C1222, C1232, C1235, and C1236. The
average computed mutations at the C19 position predicted
neutral effects, which showed no significant effect in the
stability of SARS-CoV-1. However, the remaining six
palmitoylated were located outside the residues covered by the
structural protein.

Statistical Analysis of SARS-CoV-1 S
Protein Mutation Pathogenicity
We used sequence-based mutation pathogenicity tools to predict
the damaging effect of our computed mutations on the SARS-
CoV-1 S function. We analyzed 25,101 missense mutations using
the full-length SARS-CoV-1 S (1–1,255). The PolyPhen2 scores

FIGURE 6 | Effects of all possible missense mutations on SARS-CoV-1 S RBD binding affinity. Line chart showing mean ΔΔΔG values of mutations decreasing
binding affinity (red upward lines) and mutations increasing binding affinity (Blue downward lines). Red and Blue bubbles show ΔΔG values of Alanine as alternate
residues (Top). Overall heatmaps showing seven hot regions/domains and residue span (Below).
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gave probabilistic values on the tolerance and deleterious effect of
missense mutations. A score less than 0.446 is considered benign,
a score greater than 0.446 but less than 0.908 is considered
possibly damaging, and a score greater than 0.908 is
considered probably damaging. In Figure 8A, the missense
mutations with neutral effect were predicted to be mostly
tolerated with some classified as benign, while the mean value,
as shown by the red line, is considered possibly damaging.
Whereas the mean values of the moderately increasing and
decreasing mutations were predicted to be possibly damaging.
However, the mean values of large increasing and decreasing
mutations were predicted to be probably damaging. The analysis
of variance (ANOVA) showed that the means of all five categories
were significantly different, with p-value < 2e-16 (Figure 8A).

SNAP is a neural network machine learning algorithm that
accepts protein structure as input for functional predictions
(Bromberg and Rost 2007). SNAP scores less than zero have
neutral effect, while SNAP scores greater than zero have a
pathogenic effect. 13,179 (∼53%) of the total 25,101missense
mutations have pathogenic effects. We performed further
analysis to correlate the effects of folding energy change ΔΔG
on stability with their SNAP scores. As shown in Figure 8B, the
SNAP scores of missense mutations with effects greater than
2.5 kcal/mol or less than –2.5 kcal/mol were higher than missense
mutations with moderate effects (0.5 < ΔΔG ≤ 2.5 or –2.5 �<
ΔΔG < –0.5 kcal/mol). Furthermore, the missense mutations with
neutral effects on SARS-CoV-1 stability also gave a neutral SNAP
prediction. The statistical analysis showed that the correlation of

SNAP scores in the five groups were significant with a p-value of
<2e-16.

Computational Analysis of S Viral Mutations
in SARS-CoV-1 Isolates
This study analyzed mutations, found on the SARS-CoV-1
protein, which have been verified through experiments to have
cellular or molecular effects on its functions. Analysis of SARS-
CoV-1 isolates from the 2002–2003 and 2003–2004 outbreaks
revealed the main driving mutations (Li W. et al., 2005). Six
residue positions of S protein, 344, 360, 472, 479, 480, and 487,
were highlighted to have varying residues between the two
isolates (Li W. et al., 2005). The 2002–2003 isolate had
residues K344, F360, L472, N479, D480, and T487.
Meanwhile, the 2003–2004 isolate had the following
corresponding residues R344, S360, P472, K479, G480, and
S487. The effects of the residue changes from the 2002–2003
isolate to the 2003–2004 isolate are shown in Table 2. The residue
change, N479K, would increase the binding affinity (ΔΔΔG �
–1.008 kcal/mol) and reduced S stability (ΔΔG � 1.52 kcal/mol).
Two mutations, L472P and T487S, decreased the binding affinity
of S RBD-ACE2 by introducing ΔΔΔG at 1.875 kcal/mol and
0.752 kcal/mol, respectively. Furthermore, the mutation L472P
destabilizes SARS-CoV-1 (ΔΔG � 1 kcal/mol). Therefore,
understanding how the changes in these residues affect the
stability and infectivity of the SARS-CoV-1 in the two isolates
would help in the target of specific residues on SARS-CoV-2.

FIGURE 7 | Effects of missense mutations on putative post translational sites on SARS-CoV-1 full-length S protein. (Left-Right) 20 N-Glycosylation sites,
1 O-Glycosylation site (S336), and 1 Palmitoylation site (C19).
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FIGURE 8 | Boxplots of the prediction of mutation pathogenicity on full-length Spike. (A) PolyPhen2 scores and (B) SNAP scores against five categories of the
effects of mutations on SARS-CoV-1 full-length S protein stability.

TABLE 2 | Computational prediction of the effect of residue changes from 2002 to 2003 isolate to 2003–2004 isolate. (N) � Neutral, (D) � decrease, (I) � increase.

SARS-CoV-1 Energy change PolyPhen2 SNAP

2002–2003 isolate 2003–2004 isolate Mutation ΔΔΔG (kcal/mol) ΔΔG (kcal/mol) Score Prediction Score Effect

K344 R344 K344R 0 (N) –0.02 (N) 0 Benign –89 Neutral
F360 S360 F360S 0 (N) 1.5 (D) 0 Benign –77 Neutral
L472 P472 L472P 1.875 (D) 1 (D) 0.432 Benign 54 Pathogenic
N479 N479 N479K –1.008 (I) 1.52 (D) 0.598 Possibly damaging –80 Neutral
D480 G480 D480G –0.261 (I) –0.25 (N) 0.001 Benign –27 Neutral
T487 S487 T487S 0.752 (D) –0.35 (N) 0.003 Benign –89 Neutral
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Recent research to study the mutation of residues from the
2002–2003 isolates to residues in 2003–2004 isolate is
consistent with this computational study (Li W. et al., 2005).

Comparison of Different Computational
Prediction Tools on Target Mutations
Protein Stability
Of the four target destabilizing mutations predicted by Foldx,
four other computational tools predicted G634W as a
destabilizing mutation, while three other tools except,
DynaMut and I-mutant3, predicted A430W, A430Y, and
G839W as destabilizing mutations. Of the two target
stabilizing mutations predicted by Foldx, only two other tools
(DynaMut and SDM) predicted G981W and T1059F as
stabilizing mutations. Two of the three key mutations (T487S
and L472P) on 2002–2003 viral isolates were predicted to de-
stabilize the protein S protein by four of the six prediction tools.
However, N479K predict-ed as a destabilizing mutation by Foldx,
DynaMut, and I-mutant3. Meanwhile, DUET, mCSM, and SDM
predicted N479K as a stabilizing mutation (Table 3).

Protein Affinity
As shown in Table 4, T487S and L472P were predicted to
decrease or weaken SARS-CoV-1 S RBD affinity to ACE2 by
Foldx, mCSM-PPI2, and MutaBind2. However, N479K was
predicted by mCSM-PPI2 and MutaBind2 to decrease the

binding affinity of SARS-CoV-1 S RBD. Despite predicting
that all three mutations decrease the binding affinity of SARS-
CoV-1 S RBD, MutaBind2 predicted that the three mutations
were not deleterious. We used PDBePISA to evaluate the
solvation energy change caused by a mutation and found the
mutation effects are consistent with Foldx predictions. Of the
three mutations, only N479K increases the solvation energy by
0.29 kcal/mol, which indicate this mutation can increase the
interaction force or binding affinity of the residue.

DISCUSSION

Coronaviruses have been the cause of the most recent pandemics.
The most recent coronaviruses are SARS-CoV-1 and SARS-Cov-
2. A recent study showed a close relationship between the
sequence and the structure of SARS-CoV-1 and SARS-CoV-2
(Kumar et al., 2020). The structural alignment performed in our
study also revealed an evolutionary relationship between their S
proteins, RBDs, and RBMs. However, the orientation of SARS-
CoV-1 residues, S461 – N473, did not align properly with SARS-
CoV-2 residues, A475 –N487. This imperfect alignment could be
responsible for their varying binding affinities to the human
hACE2 receptor (Oostra, de Haan, and Rottier 2007).

The stability of the S protein is crucial for the rapid
transmissions of infection (Moreira et al., 2020).
Understanding the role of mutations on S protein stability

TABLE 3 | Comparison of the prediction of target mutations among different computational tools on SARS-CoV-1 S stability. (N) � Neutral, (D) � Destabilize, (S) � Stabilize.

Stability ΔΔG (kcal/mol)

Mutations Foldx Effect DUET Effect mCSM Effect DynaMut Effect SDM Effect I-mutant3 Effect

A430W 66.180 D 1.675 D 1.451 D –0.729 S 1.76 D 0.41 N
A430Y 48.750 D 1.465 D 1.055 D –1.588 S 1.88 D 0.47 N
G839W 51.760 D 1.949 D 1.633 D –0.989 S 2.11 D 0.4 N
G634W 48.910 D 2.02 D 1.55 D 0.271 D 2.31 D 0.5 N
G981W –5.160 S 0.759 D 1.327 D –2.179 S –1.09 S 0.63 D
T1059F –4.980 S 0.827 D 1.008 D –0.729 S –0.34 S 0.73 D
aT487S –0.350 N 0.809 D 0.861 D 1.067 D 0.98 D 0.39 N
aN479K 1.520 D –0.759 S -0.148 S 0.312 D –0.64 S 0.97 D
aL472P 1.000 D 0.114 D 0.345 D 0.106 D –0.05 S 0.37 N

aKey mutations from 2002 to 2003 viral isolates.

TABLE 4 | Comparison of the prediction of target mutations among different computational tools on SARS-CoV-1 S RBD binding affinity.

Binding affinity ΔΔΔG (Kcal/mol)

Foldx mCSM-PPI2 MutaBind2

PDBePISA

Mutations ΔΔΔG Effect ΔΔΔG Effect ΔΔΔG Effect ΔΔiG Effect

T487S 0.752 Decrease 0.888 Decrease 1.28 Decrease –0.37 Decrease
N479K –1.009 Increase 1.448 Decrease 0.76 Decrease 0.29 Increase
L472P 1.875 Decrease 0.49 Decrease 0.03 Decrease –1.00 Decrease

Note: ΔΔiG is the change in solvation energy.
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would help in designing therapeutic drugs and vaccines. Our
prediction showed that more than half of the SARS-CoV-1 S
mutations (∼68%) destabilize the full-length S protein. Most of
these destabilizing mutations involved the substitution of Glycine
and Alanine residues, which are amino acids with hydrophobic
side chains, with residues with longer hydro-phobic side chains.
Glycine has a short side chain whichmay hinder interactions with
neighboring residues. Alanine has a deleted side chain which also
makes it difficult to interact with neighboring residues. However,
Alanine and Glycine exhibit hydrophobic effects which help to
stabilize protein structures. The two most destabilizing missense
mutations are A430W and A430F. The long side chains of
Phenylalanine and Tryptophan disrupt the hydrophobic core
of the SARS-CoV-1 S protein structure by introducing steric
clashes. While most highly stabilizing mutations involved amino
acids with polar side chains, such as Threonine, Arginine, and
Serine, except for Glycine. The two most stabilizing missense
mutations are G981W and T1059F (Figure 3B). Their polar side
chains al-low hydrogen bonding with water and ionic bond with
nearby polar molecules. The pre-diction of the effects of
mutations on the stability of SARS-CoV-1 S RBD revealed
similar results with the analysis on full-length S protein.
Among the top five positions with the highest average
destabilizing effect, G418 and A430 were common
(Figure 4A). Our study reveals a high correlation in the
effects of mutations on the S RBD and the full-length S
protein. This correlation shows that a mutation introduced
into the SARS-CoV-1 will have a similar impact regardless of
the parts, RBD or full-length S protein, used by the SARS-CoV-1.
Due to the high similarity between SARS-CoV-1 and SARS-CoV-
2, we compared the effects of mutations on their S proteins
stabilities. After extrapolating the top results, we found out that
the effects of mutations on protein stability are similar in
corresponding positions on SARS-CoV-1 and SARS-CoV-2.
We also looked at the residues that are different in
corresponding positions by substituting them with each other.
For instance, A430 on SARS-CoV-1 corresponds to S443 on
SARS-CoV-2. The mutation A430S destabilizes SARS-CoV-1 S
protein, while the mutation S443A stabilizes SARS-CoV-2 S
protein. Interestingly, T487N decrease the binding affinity of
SARS-CoV-1, while N501T increase the binding affinity of SARS-
CoV-2 (Table 1). A previous study performed deep mutation
scanning on SARS-CoV-2 identified N501T as a binding affinity
enhancer (Starr et al., 2020). Overall, our findings agree with the
results from deep mutational scanning analysis. D614G and
N501Y are mutations found in the Delta/B.1.617.2 variant of
SARS-CoV-2 S protein. Interestingly, D600G and T487Y
destabilize SARS-CoV-1 S protein, while corresponding
D614G and N501Y stabilize SARS-CoV-2 S protein. However,
the Foldx predicted T487Y to weaken the binding affinity
between the SARS-CoV-S RBD and hACE2.

The binding of the S protein to the ACE2 allows SARS-CoV-1
to enter the host’s cells (Wan et al., 2020). In this study, we
predicted the effects of S mutations on the binding affinity
between SARS-CoV-1 S RBD and hACE2. The top missense
mutations decreasing binding affinity are T487Y, T487W, and
G488P, with binding-energy changes (ΔΔΔG) of 20.018 kcal/mol,

13.42 kcal/mol, and 15.921 kcal/mol, respectively. These
mutations occur on neighboring residues in the RBM of the
SARS-CoV-1 S protein. By contrast, S432Y and N479M have the
minimum binding-energy changes (ΔΔΔG) of –1.686 kcal/mol
and –1.42 kcal/mol, respectively. Both mutations can strengthen
the binding of SARS-CoV-1 S to hACE2. Furthermore, we looked
at the Van der Waals interaction distance between inter-acting
residues on SARS-CoV-1 S RBD and hACE2. The distance
between residue T487 and K353 decreased when Threonine
mutates to Tyrosine. On residue G488, all possible mutations
will weaken its binding affinity for residues K353 and G354 on the
hACE2 receptor. However, most missense mutations on SARS-
CoV-1 N479 will strengthen its binding for H34 on hACE2
(Figures 5B–D). Compared to SARS-CoV-2 S RBD, the effects
of mutations on the binding affinity of SARS-CoV-1 S RBD are
similar. A few exceptions are in regions where the corresponding
residues differ. For example, missense mutation S432V on SARS-
CoV-1 decreased the binding energy by –0.22 kcal/mol. However,
S432V has a neutral effect on its stability. Meanwhile, on SARS-
CoV-2 S RBD, the missense mutation V445S does not affect its
binding affinity.

SARS-CoV-1 modifies its S protein through N-linked
Glycosylation, O-linked glycosylation, and palmitoylation. The
S protein of SARS-CoV-1 possesses glycosylation sites like other
coronaviruses (Kumar et al., 2020). These modifications allow
SARS-CoV-1 to bind differentially to hACE2 receptor, and to
evade the immune system. Analysis of the effect of mutations on
20 N-Glycosylation sites and one palmitoylation site shows that
these sites are crucial for the function of SARS-CoV-1. Unlike the
O-linked glycosylation site, S336, our results showed that most
mutations in the N-linked glycosylation sites would destabilize
the SARS-CoV-1 S protein.

Furthermore, we used Polyphen2 and SNAP scores to predict
the pathogenicity effects of the mutations, respectively. These
tools have proven to identify non-synonymous substitutions with
a high accuracy. In a study, Polyphen-2 achieved a prediction rate
of 92% (I. Adzhubei, Jordan, and Sunyaev 2013). In a different
study, SNAP identified all neutral and non-neutral substitutions
with an 80% accuracy (Bromberg and Rost 2007). In this study, all
five categories of the effects of mutations were significantly
different, with p-value<2e-16. The Polyphen2 and SNAP
scores of mutations with neutral effect were lower compared
to the other four categories. The outcome of PolyPhen2 and
SNAP predictions indicate the reliability of folding energy change
(ΔΔG) in predicting the effect of missense mutations on the
stability of SARS-CoV-1 S protein.

With our computational result, we compared viral isolates
from 2002 to 2003 and 2003–2004 outbreaks. A previous study
suggested that changes in residues affect the affinity of SAR-CoV-
1 for hACE2 (Li W. et al., 2005). In comparison, the decreasing
order of affinity to hACE2 is 2002–2003 SARS-CoV-1 isolate >
SARS-CoV-2 > 2003–2004 SARS-CoV-1 isolate (Wan et al.,
2020). Therefore, we were curious to know the residue change
within the SARS-CoV-1 RBD that resulted in a less severe
2003–2004 viral isolate. Our computational mutagenesis on
the six residues in a previous study highlighted their role in
hACE2 binding. The residues P472 and S487 weaken the binding
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affinity of the 2003–2004 viral isolate. The substitution of L472
with P472 in the 2003–2004 viral isolate reduces the binding of
SARS-CoV-1 to L79 and M82 residues on hACE2. Threonine at
position 487 has a stronger affinity to residues Y41, K353, and
D355 on hACE2 than Serine at position 487. This is due to the
methyl group in Threonine (Li W. et al., 2005). Also, the residues
S360, P472, and K479 destabilize the 2003–2004 viral isolate.
With the use of several prediction tools, the key mutations in the
2002–2003 viral isolates did not result in big changes in ΔΔG and
ΔΔΔG. However, the simultaneous substitutions of these changes
in residues might have contributed to a less severe 2003–2004
viral isolate. Also, the biological validation for effects of these viral
mutations on protein stabilities and virus-receptor interactions
are required. Further, we compared key mutations derived from
Foldx with other reliable computational tools, and the predictions
were highly correlated. Foldx uses a force field to create a rotamer
database which considers different rotations and conformations
of the protein. This feature makes Foldx a reliable
computational tool.

Other structural proteins such as nucleocapsid (N), membrane
(M), and envelope (E) proteins play crucial roles in the function
of coronaviruses. Saturated computational mutagenesis can be
used to analyze these proteins for understanding SARS-CoV-1
and SARS-CoV-2. Mainly, our bioinformatic method provides a
fast methodology to investigate all possible mutations, which can
also predict the potential dominant variants of coronaviruses in
future pandemics. Recently, several small inhibiting molecules
have been designed to target the interaction between SARS-CoV-
2 and hACE2 (Xiong et al., 2021; Yang et al., 2021). Key interface
residues highlighted in our results can be good therapeutic
targets.

CONCLUSION

Saturated computational mutagenesis of SARS-CoV-1 S
protein proved to be effective in analysing energy changes.
Missense mutations in key residues such as A430 and S500
stabilized and destabilized SARS-CoV-1 full-length S and
RBD, respectively. Moreover, missense mutations on
residues G488 and T487 weakened the binding affinity of
SARS-CoV1 S to hACE2. Mutation pathogenicity analysis
showed that most highly destabilizing and highly stabilizing
missense mutations would have a damaging effect on the

SARS-CoV-1 S function. We also showed that missense
mutations on N-linked glycosylation sites would destabilize
SARS-CoV-1 S. The analysis of viral isolates from 2002 to 2003
and 2003–2004 showed that residue changes N479K, L472P,
and F360S destabilized the S protein of 2003–2004 viral isolate
leading to a reduction in infection rate. In addition, T487S and
L472P weakened the binding affinity of SARS-CoV-1 S RBD.
The comparison of different prediction tools showed
consensus in predicting destabilizing mutations. Whereas
the prediction of stabilizing mutations by the six prediction
tools were inconclusive. Finally, most of the S missense
mutations on SARS-CoV-1 had a similar stabilizing or
destabilizing effect on corresponding residues on SARS-
CoV-2. This approach can provide large-scale mutagenesis
for future experimental studies on the coronavirus research.
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