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Myeloid cells include various cellular subtypes that are distinguished into mononuclear

and polymorphonuclear cells, derived from either common myeloid progenitor cells

(CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following

invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion

of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests

that myeloid cells may also regulate cancer development by infiltrating the tumor to

directly interact with cancer cells or by affecting the tumor microenvironment. Importantly,

mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have

either a positive or negative impact on the efficacy of chemotherapy, radiotherapy

as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs),

profusely found in the tumor stroma, can promote resistance to chemotherapeutic

drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to

an improved radiotherapy outcome. On the contrary, the presence of TAMs may be

beneficial for targeted therapies as they can facilitate the accumulation of large quantities

of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are

generally thought to enhance cytotoxic therapies, including those using anthracyclines.

This review focuses on the role of tumor-infiltrating and stromamyeloid cells in modulating

tumor responses to various treatments. We herein report the impact of myeloid cells in a

number of therapeutic approaches across a wide range of malignancies, as well as the

efforts toward the elimination of myeloid cells or the exploitation of their presence for the

enhancement of therapeutic efficacy against cancer.

Keywords: myeloid cells, dendritic cells, macrophages, immunotherapy, Tumor-associated myeloid cells,

nano-immunotherapy

INTRODUCTION

Immunity is the result of an intricate interaction between the innate and adaptive immune
system. Innate immunity is the initial immunological response against an invading pathogen
and has no immunological memory. On the other hand, adaptive immunity involves the
development of immunological memory and enables the host to respond more efficiently to future
exposure to the antigen. Following antigen processing, the degraded peptides associate with major
histocompatibility complex (MHC) molecules within the interior of an antigen-presenting cell

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00899
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00899&domain=pdf&date_stamp=2020-06-09
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:p.papageorgis@euc.ac.cy
https://doi.org/10.3389/fonc.2020.00899
https://www.frontiersin.org/articles/10.3389/fonc.2020.00899/full
http://loop.frontiersin.org/people/525282/overview
http://loop.frontiersin.org/people/279206/overview


Neophytou et al. Tumor-Associated Myeloid Cells in Cancer Therapy

(APC) and are exposed on its surface. Myeloid cells, including
DC and macrophages, are considered “professional” APCs. They
present foreign antigens to helper T-cells on class II MHC
molecules and can prime naïve T-cells. Other myeloid lineage
types of cells, such as neutrophils, have no or very low expression
of MHC-II and are inefficient at priming naïve T-cell responses
(1). Nearly all nucleated cells can act as APCs by presenting
antigens on class I MHC molecules to cytotoxic T-cells. Even
though cancer cells are poor APCs, antigen presentation is
involved in the body’s defense against tumors.

Immune cells of various types and origins are integral
components of the tumor microenvironment (TME) along
with fibroblasts, endothelial cells, and extracellular components,
such as collagen and hyaluronan. Cellular constituents from
the lymphoid and myeloid lineage can elicit both immune
suppressive and immune stimulatory functions and have an
important role in regulating cancer progression and survival,
as well as drug resistance (2–4). Tumors secrete factors which
promote myelopoiesis and recruit circulating cells into the tumor
mass, microenvironment or to secondary lymphoid organs, such
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as lymph nodes and spleen, and polarize their functionality to
serve their survival and growth.

Hematopoietic stem cells (HSC) differentiate in the bone
marrow into common myeloid progenitors (CMPs) which
can give rise to DCs and to tumor-associated myeloid cells
(TAMCs). TAMCs include at least four different myeloid cell
populations: (a) Tumor-associated macrophages (TAMs) that
exert crucial roles in regulating cancer-related inflammation,
(b) monocytes that express the angiopoietin receptor Tie2
(tunica internal endothelial kinase 2) and have a pivotal
function in tumor angiogenesis, (c) myeloid-derived suppressor
cells (MDSCs) that can be further characterized as monocytic
and granulocytic (m-MDSCs, g-MDSCs) depending on their
morphology, phenotype and immune suppression functions
and (d) tumor-associated neutrophils (TANs) that express pro-
angiogenic factors and participate in tumor promotion (5).

Ideally, a competent immune system recognizes tumor-
specific and embryonic antigens; however, cancer cells manage
to escape immune surveillance by secreting immune escape
variants, recruiting myeloid-derived cells and either maintaining
them in an immunosuppressive phenotype or polarizing them
into tumor-promoting cell types (6, 7). The mechanisms of
recruitment of myeloid cells to the TME are often the targets
of anti-cancer therapy. Emerging evidence indicates that TAMCs
interfere with or facilitatemost therapeutic approaches, including
conventional chemotherapy, targeted approaches, radiotherapy
and immunotherapy. TAMCs are found abundantly in the
tumor stroma; high density of TAMCs has been significantly
associated with poor prognosis in several cancer types including
head and neck, breast, thyroid, liver, kidney, pancreatic,
bladder, endometrial, ovarian, oral cancer, as well as Hodgkin
lymphoma (8–10). Many studies have shown that TAMCs
can induce chemoresistance against first-line chemotherapeutic
drugs (Figure 1). In this review, we discuss the interplay between
myeloid cells, mainly focusing on TAMs, MDSCs and DCs, and
cancer therapy, the mechanisms of action by which they exert
either positive or negative effects as well as provide insights
related to current controversies in the field.

MECHANISMS OF RECRUITMENT AND
FUNCTIONS OF MYELOID CELL
POPULATIONS IN THE TUMOR
MICROENVIRONMENT

Cell populations of myeloid origin are critically important
components of the TME as they play a central role in the
regulation of anti-tumor immune responses. At the same
time, inflammatory immune cells such as tumor-infiltrating
lymphocytes (TILs), natural killer (NK) cells, NK T-cells, and B
cells are also engaged within the TME, which further interact to
affect the growth and function of cancer cells. While myeloid
cells are required for enabling anti-tumor immunity, they can
also have an immunosuppressive role in established tumors
by promoting immune evasion, and facilitating primary tumor
growth, progression and metastasis (11).
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FIGURE 1 | Myeloid cells may block or facilitate chemotherapy. Chemotherapy induces recruitment of innate immune cells including macrophages and dendritic cells

into the treated tumor tissue. Drug treatment may lead to TAM polarization from the M2- to an M1-like phenotype, hindering tumor growth and metastasis. The

mechanisms of action utilized by myeloid cells in supporting or blocking chemotherapy are described in the text and summarized in Table 1. DCs, Dendritic cells;

TAMs, Tumor-associated macrophages.

Colony-stimulating factor-1 (CSF-1) and colony-
stimulating factor-2 (CSF-2), also known as macrophage
colony-stimulating factor (M-CSF) and granulocyte macrophage
colony-stimulating factor (GM-CSF), respectively, are secreted
cytokines that regulate mature myeloid cell populations
by affecting their activation, survival, mobilization and
differentiation. They have also been implicated in the
development of many diseases, including in tumor progression
and metastasis (12). Cancer cells expressing high levels of
M-CSF, recruit TAMs to the tumor site, via their receptor
CSF-1R (13). The elevated expression of M-CSF in tumors, and
consequently the presence of CSF-1R-positive macrophages, has
been correlated with poor prognosis in patients with breast,
bladder and ovarian cancer (9). M-CSF induces high expression
of C-C motif chemokine ligand 2 (CCL2) by macrophages, a
chemokine that acts as a chemoattractant driving them to the
tumor but may also affect their polarization and survival (14, 15).
Since M-CSF also mediates the polarization of macrophages to
the tumor-promoting type (16), the targeting of the M-CSF/CSF-
1R axis, represents an attractive therapeutic approach and has
shown efficacy in cancer metastasis models and in several murine
models of cancer (17–20).

A combination of cytokines, particularly granulocyte colony-
stimulating factor (G-CSF) or GM-CSF, interleukin (IL)-6, and
the transcriptional regulator CCAAT/enhancer-binding protein

(C/EBP) are required for the differentiation of bone marrow
progenitors into MDSCs (21, 22). Whilst solid indications
demonstrate that MDSCs directly suppress cytotoxic leukocytes,
conventional and plasmacytoid dendritic cells (pDC) can also
have immunoregulatory effects in tumors (23). Consequently,
a more comprehensive characterization of these subsets and
a better understanding of their recruitment and expansion
mechanisms are of paramount importance for the development
of novel cancer therapeutic strategies as well as for the potential
improvement of existing ones.

DCs are essential for the cross-priming of cytotoxic
T lymphocytes against tumor-specific antigens; however
tumor-residing DCs can cause cell anergy and tolerance by
expressing low levels of costimulatory molecules and pro-
inflammatory cytokines (24). TAMs that have a classic (M1)
activation state are characterized by anti-tumor immunity,
proinflammatory activity and the induction of T-cell responses
(25, 26). The presence of M1-type macrophages in high
numbers within the TME, has been associated with good
prognosis in patients with non-small cell lung cancer (NSCLC),
colorectal, hepatocellular, ovarian and gastric cancer (27). In
malignant tumors, TAMs resemble M2-type macrophages,
which undergo alternative (M2) activation. These cells have
the ability to support tumor growth, inhibit immunity against
the tumor, and promote tissue repair (28). These have been
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generally considered as a promising target for tumor therapy,
with studies concentrating on the inhibition of macrophage
recruitment, survival, and tumor-promoting activity in
tumors, as well as, predominantly, on the shift of tumor-
promoting M2 TAMs toward tumor-suppressive M1-type
macrophages (29).

The importance of myeloid cells in facilitating the killing
of tumor cells has been highlighted by many studies (30, 31).
Myeloid cells can exert significant anti-tumor functions by
activating NK and CD8+ T-cells. Cancer cells can be detected
by NK cells through the expression of ligands for the receptor
NKG2D (32). The binding of these ligands serves as a major
signal of activationNK cells to stop aberrant cell proliferation and
can be further enhanced through the function of myeloid cells.
In fact, macrophages and DCs express Dectin-1, a receptor that
recognizes N-glycan structures found on the surface of certain
types of tumor cell. Activation of Dectin-1 induced a signaling
pathway that directs the activity of NK cells against the tumor in a
lung metastasis model of B16F1melanoma cells (33). In addition,
the expression of calreticulin on the surface of cancer cells can be
recognized and processed by macrophages which then activate
CD4+ and CD8+ T-cells. T-cells can then produce interferon
gamma (IFN-γ) to induce cytolysis in cancer cells (34).

At the same time, tumor cells take advantage of the
ability of myeloid cells to inhibit tumor-targeting immune
responses and to mediate immunosuppressive effects. Tumor
growth and progression is restrained to genetic or epigenetic
alterations which, in turn, affect tumor development and
invasion into the surrounding tissues. During this process,
cancer cells reprogram infiltrating stromal cells to support an
abnormally regulated inflammation that is hyporesponsive to
the tumor (35). Cancer cells achieve this by producing immune
effector molecules, such as tumor necrosis factor-α (TNFα)
and interleukin-6 (IL-6), growth factors that regulate tumor
proliferation and angiogenesis, such as transforming growth
factor-β (TGF-β) and vascular endothelial growth factor (VEGF),
andmatrixmetalloproteinases (MMPs) that degrade extracellular
matrix proteins (31, 36). Abundance of tumor-infiltrating and
circulating monocytes, MDSCs and neutrophils, is associated
with advanced cancer progression, decreased disease-free and
overall survival (37).

MDSCs can be subdivided into two major groups: monocytic
MDSCs (m-MDSCs) and granulocytic MDSCs (g-MDSCs) that
are morphologically similar to monocytes and granulocytes,
respectively. In humans, m-MDSC have the same density fraction
as monocytes. However, monocytes express the MHC class II
cell surface receptor HLA-DR in high levels while m-MDSCs are
characterized by low or no HLA-DR expression. Furthermore,
m-MDSCs have a CD11b+HLA-DR−CD14+CD15− phenotype
(38). The expansion of m-MDSCs is induced by a combination
of soluble factors produced by tumor and/or surrounding
cells such as stromal cells, T-cells or macrophages including
VEGF, GM-CSF, M-CSF, IL-4, IL-6, IL-10, prostaglandin E2
(PGE2), MMP9, C-X-C motif chemokine ligand 5 (CXCL5),
and CXCL12/ stromal-derived factor 1 alpha (SDF1-alpha)
(39). Human g-MDSCs are phenotypically characterized as
CD11b+HLA-DR−CD14−CD15+ (38).

In addition to theirmorphological and phenotypic differences,
m-MDSCs and g-MDSCs also have different mechanisms by
which they suppress immune function. TAMs and m-MDSCs
have a shared mechanism for the expression of inducible
nitric oxide synthase (iNOS) and arginase. Indoleamine 2,3-
dioxygenase (IDO), inducible nitric oxide synthase (iNOS),
arginase I and effector cytokine production have been proposed
to be involved in suppression of T-cell proliferation and
cytotoxicity (40). iNOS generates nitric oxide (NO) causing the
inhibition of IL-2 receptor signaling, blocking T-cell activation
and proliferation, thus leading to an immunosuppressive effect
(41). TAMs that have a classic (M1) activation state (25),
paradoxically express iNOS, whose immunosuppressive effect
is, however, overawed by other proinflammatory and anti-
tumor mediators. TAMs and MDSCs commonly employ another
immunosuppressive mechanism involving the generation of
reactive oxygen species (ROS) and reactive nitrogen species,
such as peroxynitrite mediated by iNOS and arginase (42).
Following T-cell receptor (TCR) modification of anti-tumor T-
cells due to peroxynitrite, they become unable to bind to their
equivalent MHC-peptide antigens presented by APCs in the
tumors (43). Furthermore, m-MDSCs can indirectly suppress
anti-tumor immunity, through the production of TGF-β and IL-
10 cytokines, which inhibit anti-tumor TILs, generate regulatory
T-cells (Tregs) in the tumor and induce DCs into a regulatory
phenotype (44). Alternatively, immunosuppressive g-MDSCs
share many of the immunosuppressive mechanisms of m-
MDSCs, but they also produce ROS, which are able to alter the
TCR of TILs through direct cell-to-cell contact (45, 46).

Understanding the interactions between the tumor and
infiltrating cells will allow the prediction of tumor progression
as well as the design of novel anticancer therapies which will
target the tumor microenvironment. Working on the basis that
cancer and myeloid cells use common pathways for immune
system regulation, along with the fact that myeloid cells have
the ability to network with different immune cell populations
toward inducing an anti-tumor immune response, myeloid-
based therapies have increasingly gained attention as possible
adjuncts to improve efficacy of current therapies, including
immune checkpoint inhibitors (ICIs), oncolytic viruses, dendritic
cell vaccines, and traditional chemoradiation. Characterizing
the myeloid compartment also allows for patient stratification
on prognosis and response to immunotherapy based on the
presence of myeloid-specific biomarkers in combination with
tumor mutational burden, checkpoint expression, and T-cell
receptor diversity (47).

TAMCs IN CONVENTIONAL
CHEMOTHERAPY AND TARGETED
THERAPY

Negative Impact of TAMCs in
Chemotherapy
The presence of TAMs in the TME provides cancer cells with
cytokines, growth factors and proteases that mediate survival,
chemoresistance and promote invasion. One example is cysteine
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cathepsin proteases that are produced by macrophages and
have been shown to enhance pancreatic tumor growth and
invasion (48). Paclitaxel, an anti-microtubule agent belonging to
the Taxane family, is used for the treatment of ovarian, breast
and non-small cell lung cancer. Following Paclitaxel treatment,
the infiltration of macrophages in mammary tumors as well
as cathepsin levels were increased. In co-culture experiments,
macrophages protected cancer cells from Paclitaxel treatment by
producing cathepsins B and S; this was reversed by cathepsin
inhibition, suggesting that concurrent inhibition of TAMs along
with chemotherapy may limit the development of resistance
(49). The chemoresistance facilitated by macrophages was also
observed against Etoposide and Doxorubicin (49).

As previously mentioned, CSF-1 and its receptor (CSF-1R)
are also involved in the tumor-promoting functions of TAMs.
The blockade of CSF-1 decreased macrophage infiltration and
improved response of mammary and pancreatic carcinomas to
chemotherapy (50). B-Raf is a serine/threonine protein kinase,
that acts downstream of RAS and has an important role
in the mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) signaling pathway. The BRAF
gene is commonly mutated in melanoma resulting in a
constitutive function of the B-Raf protein (51). In a mouse
model of melanoma, the concurrent treatment with CSF-1R
inhibitor, PLX3397, and BRAF inhibitor, Vemurafenib, resulted
in enhanced anti-tumor responses attributed to a significant
reduction of tumor-infiltrating myeloid cells and an increase
of tumor-infiltrating lymphocytes (52). Another specific CSF-
1R inhibitor, GW2580, in combination with an anti-VEGFR-2
antibody, synergistically inhibited tumor angiogenesis in lung
cancer and melanoma in vivo models; blocking CSF-R1 led
to reduced tumor recruitment of TAMs and reverted a TAM-
mediated compensatory antiangiogenic mechanism involving
MMP-9 (53). The chemoresistance induced by tumor-infiltrating
macrophages could also be mediated by the expression of IL-
10; therapeutic blockade of IL-10 receptor (IL-10R) had similar
effects to CSF-1 neutralization and enhanced tumor response
to Paclitaxel and Carboplatin in the MMTV-PyMT transgenic
model of luminal B-type mammary carcinoma (54).

In two human hepatocellular carcinoma xenograft mouse
models (HCCLM3-R and SMMC7721) tumor growth, lung
metastasis, and tumor angiogenesis were observed following
treatment with Sorafenib, a multi-kinases inhibitor. Sorafenib
caused a significant increase in macrophage peripheral
recruitment and intratumoral infiltration accompanied with
elevation of CSF-1R, CXCL12/SDF-1 alpha, and VEGF. SDF-
1/CXCL12 has been correlated with cancer cell invasion
by recruiting macrophages to the area surrounding the
tumor (55). Targeting of macrophages using two specific
drugs, Zoledronic acid (ZA) and Clodrolip, in combination
with Sorafenib significantly hindered tumor progression,
angiogenesis, and metastasis to the lungs compared with
animals treated with Sorafenib alone (56). Serial low doses
of Sorafenib augmented tumor inhibition and function
of CD8+ T-cells by decreasing MDSCs and reversing the
immunosuppressive microenvironment in an E.G7/OT-1murine
model (57).

The importance of TAM polarization is evident in
patients treated with platinum-containing chemotherapy.
Chemoresistance is associated with elevated levels of PGE2
and IL-6, two inflammatory mediators that are regulated by
cyclooxygenase (COX), drive differentiation of monocytes to
the M2 tumor-promoting phenotype. Treatment with Cisplatin
or Carboplatin increased the potency of cervical and ovarian
cell lines to induce M2 macrophages that produce IL-10.
Tumor-produced IL-6 and PGE2 led to increased levels of
activated Signal Transducer and Activator of Transcription 3
(STAT3) and decreased levels of activated STAT1 and STAT6,
respectively. Blockade of canonical Nuclear Factor Kappa-
light-chain-enhancer of activated B cells (NF-κB) reduced
the production of PGE2 and/or IL-6 by the tumor cells and
abrogated the effect of the chemotherapy. Blocking COX using
the specific inhibitor indomethacin as well as inhibition of
interleukin-6 receptor (IL-6R) with the clinical monoclonal
antibody Tocilizumab, prevented M2 differentiation. These
results propose that chemoresistance may be caused via an
increase in the number of M2 macrophages and that concurrent
therapy with COX inhibitors and/or anti-IL-6R antibodies might
facilitate platinum-based chemotherapy in resistant tumors (58).

Studies have shown that B and T lymphocytes may exert pro-
tumor effect by regulating the activity of myeloid cells, resulting
in resistance to therapy and promoting metastasis in different
malignancies, including epithelial hyperplasia, squamous
carcinomas and prostate cancer (59–61). In the absence of a
robust CD8+ CTL response, CD4+ T-effector lymphocytes
enhance breast cancer metastasis to the lung by enhancing the
activity of TAMCs (62). In a study using an aggressive transgenic
mouse model of mammary adenocarcinoma development
[MMTV–polyoma middle T (PyMT) mice (63)], combination of
CSF1R-signaling antagonists that block infiltration of mammary
tumors by CD68+ macrophages, in combination with Paclitaxel,
improved survival, delayed primary tumor growth and reduced
pulmonary metastasis. This study also showed that the presence
of an enriched CD68high /CD4high /CD8low cell population,
significantly correlates with reduced overall survival (OS) for
patients with breast cancer (64).

Depletion of myeloid-lineage cells enhanced anti-cancer
immunity associated with gemcitabine (GEM) treatment in
mice with pancreatic ductal adenocarcinoma (PDAC) tumors
(65). GEM is a nucleoside analog used as first-line treatment.
Myeloid cells expressing the granulocytic marker (GR-1) were
found in abundance in PDAC tumor tissues while CD4+ and
CD8+ cells were present in small numbers. Following GEM
treatment, myeloid cells in tumor tissues and in peripheral
blood decreased while numbers of CD4+ or CD8+ cells
increased suggesting that anti-cancer immunity was enhanced.
In addition, concurrent treatment of mice with GEM and
further depletion of myeloid cells using an anti-GR-1 antibody
significantly prolonged survival (65). Inflammatory breast cancer
(IBC) is often characterized by overexpression of epidermal
growth factor receptors 1 and/or 2 (ErbB1, ErbB2) that activate
downstream survival pathways phosphatidylinositol-3-kinase
(PI3K)/protein kinase B (AKT) and MAPK (66). Lapatinib
(a dual ErbB1/2 tyrosine kinase inhibitor) is for IBC patient
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treatment and functions by blocking ErbB1 and ErbB2 receptor
phosphorylation and activation (67). Following combination
treatment with Lapatinib and the anthracycline Doxorubicin in
an MMTV-neu mice HER2-positive breast cancer model, CD8+

T-cells secreting IFN-γ contributed to the anti-tumor effects of
these drugs. Increased effectiveness correlated with decreased
content of immunosuppressive TAMs in the tumor bed induced
by Doxorubicin (68).

In PDAC patients, TAMs may contribute to resistance to
GEM by reducing GEM-induced apoptosis. In vitro co-culture of
macrophages with cancer cells significantly reduced of Caspase-
3 activation and apoptosis during GEM treatment. In in vivo
PDAC models of mice, macrophages recruitment to the tumor
using CSF1R-antagonist GW2580, enhanced the effect of GEM;
the presence of TAMs in the tumor seems to convey resistance
to GEM by inducing upregulation of the enzyme cytidine
deaminase (CDA). CDA metabolizes GEM following its transfer
into the cell. In PDAC cells, decreasing the expression of CDA
inhibited the protective effect of TAMs against GEM (69).

TAMs have also been found to confer resistance to MAPK
pathway inhibitors against melanoma. The mechanism of action
involved expression of TNFα by TAMs and acted through the
lineage transcription factor microphthalmia transcription factor
(MITF). MITF plays a key role in melanocyte differentiation
by transcriptional control of genes expressing enzymes involved
in melanin synthesis; in addition, MITF has protumoral targets
including B-cell lymphoma 2 (Bcl-2) and Hypoxia-Inducible
Factor 1 (HIF-1) that convey survival signals (70). TNF
binding to TNFR activatesmultiple signaling pathways, including
MAPK and NF-κB and induces apoptosis and necroptosis
pathways (71). Inhibition of TNFα signaling with IκB kinase
inhibitors significantly improved the effectiveness of MAPK
pathway inhibitors by targeting not only the melanoma cells
but also the tumor microenvironment (72). Also, in melanoma
cells macrophages conferred resistance to BRAF inhibitors in
mouse and human tumor models, which was overcome by
blocking the MAPK pathway or VEGF signaling. The presence
of macrophages predicts early relapse following therapy in
melanoma (73). Administration of the BRAF small molecule
inhibitor PLX4720 had similar effects in a murine model of
melanoma; PLX4720 reduced tumor growth by promoting the
formation of a more immune stimulatory microenvironment
correlated with a reduced accumulation of CD11b+/GR-1+

myeloid cells (74).
The polarization of macrophages into M1 or M2, has

important implications for therapeutic strategies in human
cancers (Figure 1). The M2 subtype is thought to support
tumor growth. In a spontaneous mouse model of gastrointestinal
stromal tumor (GIST) as well as upon analysis of freshly
procured human GISTs, TAMs displayed an M1-like phenotype
and function at baseline; however, treatment with Imatinib,
that acts as a KIT oncoprotein inhibitor, induced TAMs to
become M2-like, in both mice and humans. This process
involved the interaction of TAMs with apoptotic tumor cells
leading to the induction of C/EBP transcription factors and
development of resistance to Imatinib (75). Re-programming
of macrophages from an immune-inhibitory M2-like subtype

toward an immune-stimulatoryM1-like subtype, by targeting the
VEGF receptor 2, enhanced anticancer efficacy in a CD8+ T-cell–
dependent manner in murine breast cancer models, suggesting
that combination of anti-angiogenic therapy with other types of
drugs may facilitate anti-tumor effects by altering the phenotype
of TAMs (76).

TAMCs Facilitate Chemotherapy
Tumor Associated Macrophages
Common chemotherapeutic drugs may act as alkylating agents.
They function by adding an alkyl group to the guanine base of
the DNA molecule, making the strands unable to uncoil and
separate and causing breakage of the DNA strands and apoptosis.
In response to alkylating agents, an immune response involving
the activation of macrophages is initiated and this involves
the high mobility group box 1 (HMGB1) protein. HMGB1 is
an important chromatin protein that bends DNA, facilitates
protein binding and helps regulate transcription (77). Activated
macrophages and monocytes secrete HMGB1 which acts as a
mediator of inflammation (78). In an athymic mouse tumor
xenograft model where tumors were formed using immortalized
murine embryonic fibroblasts (MEFs) overexpressing Bcl-xl,
DNA alkylating therapy led to inhibition of protumor cytokines
such as IL-4, IL-10, and IL-13, recruitment of innate immune
cells including neutrophils, NK cells and macrophages into the
treated tumor tissue and to complete tumor regression; loss of
HMGB1 resulted in increased levels of protumor cytokines upon
treatment and failure to activate innate immunity (79).

Contradictory to the chemoresistance developed by
macrophages following exposure to Paclitaxel as described
in the previous chapter, other studies suggest that the agent can
promote anti-tumor immunity by polarizing M2 macrophages
to the M1-like phenotype (80). As previously mentioned,
macrophages that polarize as M1-type are considered pro-
inflammatory and potentially mediate anti-tumor activities,
whereas those that polarize as M2-type decrease inflammation
and may promote cancer cell growth via angiogenesis and
immunosuppression (81–83). Similarly, administration of Doxil
nanomedicine combined with the TGFβ inhibitor Tranilast,
increases immunostimulatoryM1-type macrophage content over
the M2-type in mouse models of triple-negative breast cancer
(84). A possible explanation, which may also be applied to other
observations, could be the improved blood vessel perfusion,
oxygenation, and normalization of the TME. Moreover,
macrophages polarize to the M1-type following exposure to
IFN-γ and Lipopolysaccharide (LPS) (85). Paclitaxel induced
TAMs toward an M1-like profile in mouse models of melanoma
and breast tumors which was depended on the presence of
Toll-Like receptor 4 (TLR4) on myeloid cells. Absence of
TLR4 weakened the antitumor effect of Paclitaxel. This was
confirmed using gene expression analysis of tumor samples
from ovarian cancer patients that showed enrichment of genes
correlated to the M1 macrophage activation profile following
Paclitaxel treatment (80). A similar effect was observed using
nanoparticles loaded with albumin-bound paclitaxel (nAb-PTX)
(86). Using 3D-spheroid models of co-cultured breast cancer
cells with macrophages as well as in vivo models, researchers
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showed increased drug accumulation within the macrophages
and the tumor spheroids; this shifted the TME toward a pro-
inflammatory, anti-tumorigenic state. In addition, the loaded
nanoparticles (NPs) increased macrophage motility and delivery
of the NPs toward the cancer cells promoting apoptosis and
inhibiting proliferation. Importantly, the NPs loaded with PTX
induced macrophage differentiation toward the anti-cancer M1
phenotype (86).

Following surgery, the OS of gastric carcinoma patients
treated with 5-fluorouracil-based chemotherapy was positively
correlated with increased numbers of CD68+ macrophages
(87). In a cohort study involving 110 patients with PDAC,
post-surgical adjuvant chemotherapy was shown to “re-
educate” TAMs and help them elicit an anti-tumoral response.
Cyclophosphamide (CTX) is a common chemotherapeutic
agent, which acts as an alkylating agent, that is used for the
treatment of several human malignancies (88). Enrichment
of TAMs at the tumor–stroma interface positively correlated
with responsiveness to CTX therapy in patients with PDAC,
independently of the density of T-cells. A similar effect was
observed in vitro, where in the presence of GEM, macrophages
activated a cytotoxic gene expression program and switched to
an anti-tumor phenotype (89). In patients with invasive ductal
breast cancer receiving adjuvant multimodal chemotherapy,
tumor infiltration by macrophages correlated with improved
time-to-relapse (TTR) and OS (90). Similar observations were
made in patients with colorectal carcinoma (CRC). In a study
of 1,400 CRCs patients treated with adjuvant multimodal
chemotherapy, the level of CD16+ macrophage infiltration
correlated with that of CD3+ and CD8+ lymphocytes and with
improved survival compared with patients with low infiltration
(91). These results contradict with previous reports indicating
that a low number of CD68+ macrophages infiltrates associates
with improved patient survival (64); the role of TAMs in
predicting patient response to treatment is therefore complex
and remains to be further elucidated.

TAMs may also act as a slow-release reservoir for therapeutic
nanoparticles (TNPs). TNPs are generally applied as a vehicle
to deliver drugs specifically to the tumor site and increase their
accumulation. TNPs comprised by a fluorescent platinum (IV)
pro-drug and a polymer platform (PLGA-b-PEG) were shown
to accumulate in TAMs. TAMs acted as a local drug depot
and allowed for the slow release of the DNA-damaging drug to
neighboring tumor cells. The depletion of TAMs led to a decrease
of intratumoral TNP accumulation and treatment efficacy in a
lung cancer animal model. The presence of TAMs can therefore
affect the design and use of TNPs for tumor targeting (92).

Histidine-rich glycoprotein (HRG), is a host-produced
immunomodulatory and antiangiogenic factor that regulates
tumor vessel formation and inflammation. HRG is produced
in the tumor stroma from plasma or platelets and has
been reported to inhibit tumor growth and metastasis and
to enhance chemotherapy in brain tumor models (93, 94).
This effect is mediated through downregulation of placental
growth factor (PlGF) followed by polarizing TAMs from the
M2- to a tumor-inhibiting M1-like phenotype. It is likely that
HRG/PIGF/M1-type TAMs enhance the antitumor immune

response and facilitate vessel normalization, effects known
to hinder tumor growth and metastasis and to facilitate
chemotherapy (29).

Dendritic Cells
The therapeutic efficacy of anthracyclines, a group of
conventional chemotherapeutic drugs that act by inhibiting
topoisomerase II causing DNA damage, may depend on the
presence of intratumoral dendritic cells. Specifically, mice
bearing fibrosarcomas were treated with the anthracycline
mitoxantrone (MTX). This caused cancer cell death which led
to the release of Adenosine triphosphate (ATP), recruitment of
myeloid cells and their differentiation locally into inflammatory
DC-like cells. The presence of the DC-subset was responsible for
the immune system-depended anti-tumor effect of anthracycline,
by engulfing tumor antigens and presenting them to T-
lymphocytes. Importantly, preventing tumor infiltration by
myeloid cells, abolished the anti-tumor immune response
following chemotherapy (95). The activation of autophagy in
cancer cells is essential for increasing the recruitment of DC
and improve the efficacy of chemotherapy. In mouse models
of colorectal cancer and sarcomas, response to chemotherapy
led to the release of ATP by autophagy-competent cancer cells,
attracted dendritic cells and T lymphocytes into the tumor
bed and restored chemotherapeutic responses (96). Exposure
to chemotherapeutic agent Paclitaxel, does not significantly
affect the viability of DCs in concentrations up to 100 µM
(97). Furthermore, exposure of DCs to clinically relevant
concentrations of Paclitaxel led to increased HLA class II
expression which was similar to the expression observed when
DCs are exposed to lipopolysaccharide (LPS). Paclitaxel also
increased proliferation of allogeneic T-cells. This study suggests
that Paclitaxel may induce immunostimulatory effects in certain
concentrations and may find clinical applications in patients
receiving DC vaccines (97).

DC-like cells are important in the anti-tumor immune
response since they have enhanced abilities to activate CD8+

T-cells compared to TAMs. The effect of Oxaliplatin combined
with Cyclophosphamide (Oxa-Cyt) treatment on tumors relied
on TLR4 signaling; Oxa-Cyt treatment led to an increase of
TLR4 selectively in DC cells within the tumor stroma and
ultimately led to CD8+ T-cell anti-tumor immunity in lung
adenocarcinoma mouse models (98). CTX has been shown to
induce anti-cancer effects by stimulating immunomodulatory
factors; in patients with hematologic malignancies, a single high-
dose treatment with CTX induced an increase in the number of
DCs (99). DC turnover in the spleen, liver, and tumor site as
well as their expansion in the circulation, enhanced the beneficial
anti-tumor effects of CTX in mice models. The expansion of
DC (CD11c+CD11b+) induced by CTX was associated with
proliferation of DCs in the bone marrow (BM) prior to their
increase in the circulation in a melanoma mouse model (100).
These newly recruited DCs secreted more IL-12 and less IL-
10 compared with those from untreated animals and were
able to induce anti-tumor T-cell responses in a colon cancer
model (101).
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In addition to facilitating chemotherapy, DCs may also
contribute to specific cancer targeting induced by small molecule
inhibitors. Overactivation of the Jak2/STAT3 signaling pathway
induced by tumor-derived factors may be responsible for
irregular DC differentiation and function in colon cancer (102).
The use of a selective inhibitor of Jak2/STAT3, JSI-124, led
to activation of the transcription factor NF-κB, promoted the
differentiation of mature DCs and led to T-cell activation (103).
JSI-124 has been previously shown to inhibit the growth of
tumors with constitutively active STAT3 (104).

Finally, recent evidence suggest that dosing and scheduling
of chemotherapy administration may also regulate anti-tumor
immunity. In contrast to traditional chemotherapy protocols in
which the anti-cancer agents are cyclically administered near
the maximum tolerated dose (MTD) alternated with longer
drug-free periods, metronomic chemotherapy protocols suggest
a more frequent administration of doses as low as 1/10th of
the MTD (105). Besides significantly reducing drug-mediated
adverse effects, metronomic chemotherapy may enhance anti-
tumor immune responses. More specifically, metronomic
administration of CTX was found to increase infiltration of DCs,
macrophages and NK cells in mouse models as well as end-
stage patients of various cancer types (106, 107). In addition,
metronomic chemotherapy regimens may also promote vascular
normalization to enhance delivery of co-administered drugs,
thus further improving the efficacy of anti-cancer treatments
(108, 109). The mechanisms of action utilized by myeloid
cells in supporting or hindering chemotherapy are summarized
in Table 1.

TAMCs IN RADIOTHERAPY

Radiotherapy is an important and commonly used treatment
approach in cancer; local radiotherapy allows for non-
invasive, site-specific intervention. Even though the main
mechanism of action is via tumor cell DNA damage, recent
evidence suggests that irradiation activates tumor-specific
immunity (Figure 2). The effects of radiotherapy include
the induction of antigen release from dying tumor cells,
the activation of APCs and the support of tumor-specific
T-cell immigration and function (110–113). In a study using
the RIP1-Tag5 (RT5), human melanoma xenografts mouse
model, and human pancreatic cancer specimens derived from
patients undergoing low-dose irradiation (LDI) of 0.5Gy,
researchers showed that neoadjuvant local LDI causes the
CTL recruitment and activation in solid tumors. This was
associated with the accumulation of iNOS-positive (iNOS+)
macrophages and led to prolonged survival in xenotransplant
mouse tumor models (114). Dendritic cells contribute to
the immune response following high dose radiation. Local
high-dose irradiation (10Gy) leads to activation of tumor-
associated DC that induce tumor-specific effector CD8+

T-cells (115).
Myeloid cells may also negatively affect radiotherapy. In a

prostate cancer animal model, irradiation with a local daily

TABLE 1 | Proteins implicated in TAM negative or positive contribution to

chemotherapy.

Drug TAMs—Mechanism

of action

Negative contribution

Sorafenib CSF-1R↑,

CXCL12/SDF-1α↑,

VEGF↑

Cancer cell invasion

Chemoresistance

Carboplatin

OR Cisplatin

STAT3↑, IL-6↑ and

PGE2↑, STAT1↓,

and STAT6↓

Chemoresistance via M2↑

Macrophages

Paclitaxel

Etoposide

Doxorubicin

Cathepsin B and S↑ Apoptosis inhibition

Cancer cell protection

Chemoresistance

Gemcitabine

(GEM)

Caspase-3↓

activation, CDA

enzyme↑

GEM-induced apoptosis

inhibition

Chemoresistance

TAMs and

DC—Mechanism

of action

Positive contribution

Alkylating

agents

HMGB1↑, IL-4↓,

IL-10↓, IL-13↓,

HRG↑, PIGF↓,

Autophagy

activation, CD8+↑,

TLR4↑, CTX↑,

JSI-124↑

Enhanced anti-tumor

response

Facilitating chemotherapy

Doxil

nanomedicine

and Tranilast

IFNγ↑

LPS↑ M1-type macrophage

promotion

Facilitating chemotherapy

Paclitaxel TLR4↑

Up arrow: elevated levels or activity.

Down arrow: decreased levels or inhibition.

dose of 3Gy for 5 days led to a systemic increase of MDSCs
in lymph nodes, lung, spleen, and peripheral blood and a
2-fold increase in CSF-1 in tumors. Blockade of CSFR1 by
a selective inhibitor, decreased macrophage migration and in
combination with radiotherapy repressed tumor growth more
effectively than irradiation alone (116). In a similar approach,
following radiotherapy of mammary tumor-bearing mice using
localized gamma irradiation (5Gy), the blockade of CSF-1 using
a neutralizing monoclonal antibody (mAb) or a small molecule
inhibitor against the CSF-1 receptor kinase (PLX3397), caused
depletion of macrophages and significantly inhibited tumor
growth. This was associated with increased numbers of CD8+

T-cells in tumors, and reduced the number of CD4+ T-cells, the
main source of the Th2 cytokine IL4 which can lead to a pro-
tumor advantage (117). Following local irradiation with 21Gy
in breast and lung carcinoma xenograft models, myeloid bone
marrow-derived cells (BMDCs), primarily macrophages, rapidly
accumulated in tumors. The levels of SDF-1alpha/CXCL12,
a chemokine that promotes BMDCs retention in the tissue,
were increased in the tumor, 2 days after local irradiation.
Concurrent treatment with radiation and an inhibitor of
SDF-1alpha receptor (AMD3100) significantly hindered tumor
regrowth. These results suggest thatmacrophages promote tumor
recurrence following radiation via increase in the expression of
SDF-1alpha (118).
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FIGURE 2 | Positive and negative feedback loops of TAM activity during radiotherapy. Following high and low irradiation protocols, antigens are released from dying

tumor cells and taken up by APCs, such as TAMs, that subsequently activate CD8+ T-cells. This causes CTL recruitment and activation that attack solid tumors. Local

irradiation may also cause the accumulation of macrophages to the tumor site that promote tumor recurrence mainly via the expression of SDF-1alpha. Ag, Antigen;

APCs, antigen presenting cells; CTL, cytotoxic T lymphocytes; TAMs, tumor associated macrophages; SDF-1alpha, stromal cell-derived factor-1 alpha.

The contradicting reports concerning the role of myeloid
cells on the efficacy of radiotherapy, may be attributed to
the radiation dose and fractionation methodology. Both these
parameters appear to affect the tumor microenvironment
and the immune system. The conventional standard dose
fractionation of 2Gy per fraction is mostly used to achieve
cell damage within the tumor (119). However, several pre-
clinical studies suggest hypofractionated high doses of 6 or
8Gy are more effective compared to a single high dose of
radiation in inducing pro-immunogenic effects (120–122). In
vitro studies have also shown that larger doses of radiation
induce immunogenic cell death (ICD) (123). The effects of
radiation of the TME should also be taken into account
when trying to evoke an immune response. High single-
fraction doses (8–16Gy) induce increased permeability and
apoptosis in endothelial cells (124). Even though a definitive
radiotherapy regimen that effectively manipulates the TME and
activates the immune system against the tumor has not been
established, low, standard and high doses as well as different
fractionation approaches have been found to be effective. It is
also possible that optimized dosing and fractionation protocols
may be suitable for different types and/or stages of cancer. The
effects or radiation on the immune system and how it may
promote tumor survival or destruction are detailed in a recent
review (125).

ROLE OF MDSCs, TAMs AND DCs IN
IMMUNOTHERAPY

The main challenge of tumor immunologists is to control the
vicious cycle of inflammation-immunosuppression taking place
within the TME. The main approaches followed include among
others, targeting immune checkpoint molecules on myeloid cells,
the inhibition of recruitment and survival of myeloid cells, while
novel approaches of nanomedicine regulating MDSCs are also
under investigation.

Targeting Immune-Checkpoint Molecules
on MDSCs, TAMs, and DCs
Immune checkpoints are among the regulators of the immune
system that defend self-tolerance. Various tumor cells utilize
these regulators to evade immune responses (126). Inhibitory
immune-checkpoint molecules, including the cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), programmed
cell death protein 1 (PD-1) and its ligand (PD-L1), T-cell
immunoglobulin andmucin-domain containing molecule (TIM-
3), ligands belonging to the B7 family, and others are promising
targets for novel cancer immunotherapeutics. Antibodies against
these inhibitory molecules are being tested in clinical trials, for
their potential as mono- or part of combinatorial therapy against
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human neoplasias. Some of them have received approval by the
Food and Drug Administration (F.D.A.) and entered the clinical
routine practice for the therapeutic management of certain
human tumors. These include (a) the human anti-CTLA-4 mAb
ipilimumab for the treatment of metastatic melanoma, (b) the
human anti-PD-1 mAbs nivolumab and pembrolizumab for
the treatment of melanoma and unresectable/metastatic solid
tumors, respectively, and (c) the anti-PD-L1 mAb atezolizumab
for patients with metastatic non-small cell lung cancer (127).
PD-1, PD-L1, TIM-3, and B7 molecules are expressed by subsets
of TAMs and DCs, and consist therapeutic targets facilitating
the inhibition of the function of these cells and the subsequent
elimination of the tumor (Figure 3).

As a response to hypoxia and specific cytokines, TAMs
express elevated levels of CTLA-4 ligands and other immune-
checkpoint inhibitors. CTLA-4 ligands such as B7 molecules are
also highly expressed in DCs of the tumor microenvironment
(128). This overexpression is associated with the downregulation
of anti-tumor activities of T-cells, by inhibition of the co-
stimulatory interaction with CD28, both in humans and in
animal models (129–132). The use of anti-CTLA-4 antibodies
would hamper this inhibition and promote T-cell co-stimulation
viaCD80/CD86–CD28 interaction. A subject of debate, however,
is whether the anti-CTLA-4 antibodies act in favor of anti-tumor
immune responses or not, in terms of targeting the CTLA-4
molecules expressed on regulatory T-cells (Tregs). CTLA-4
expression by Tregs comprise one their main cell contact-
dependent mechanisms affecting antigen-presentation to T-cells.
However, it seems that anti-CTLA-4 therapy favors the blockade
of the inhibitory activity of CTLA-4 on both effector T-cells and
Tregs (133). Indeed, ipilimumab administration in mice bearing
melanoma tumors, amplified CD8+ T-cell activities against
tumor cells and inhibited immunosuppressive functions of Tregs
(126, 133, 134). The latter is achieved via Treg phagocytosis by
TAMs expressing Fcγ receptors (133). In a murine model of
head and neck squamous cell carcinoma (HNSCC), the blockade
of CTLA-4 was correlated with reduced numbers of MDSCs
and M2 macrophages, and enhancement of T-cell activation
in both tumor microenvironment and macro-environment
(132). In humans, it has been reported that patients with
advancedmelanoma receiving ipilimumab exhibited significantly
decreased counts of MDSCs and significantly increased counts
of CD8+ effector/memory T-cells in the circulation (135). In
addition to that, in another recent study, the percentage of
FcγRIIIA+ CD16+ peripheral blood monocytes was found to be
higher inmelanoma patients who respond to ipilimumab therapy
compared to the non-responders (136). The above data underline
the pivotal role of the CD8+ T/MDSC balance in the outcome
of anti-tumor immune responses, and more importantly how
this balance can be affected by treatment with anti-CTLA-
4 antibodies. Additionally, a recent study supports that dual
therapy with ipilimumab and the vitamin A derivative all-trans
retinoic acid (ATRA), leads to a more pronounced reduction in
circulating MDSCs compared to the anti-CTLA4 monotherapy
(137). ATRA is the standard-of-care treatment for patients
with acute promyelocytic leukemia (APL), where it induces
terminal differentiation of immature myelocytic tumor cells

leading to their death (138). In a similar way, ATRA promotes the
differentiation of MDSCs, resulting in their decreased numbers
and function (139). Based on these properties, combinatorial
administration of ATRA and ipilimumab consists a promising
enhanced weapon in the treatment against human cancers.

PD-1 is expressed by a subset of macrophages and DCs of
the TME. This molecule may interact with PD-L1 on tumor cells
leading to the negative regulation of TAMs and DCs. Expression
of PD-1 by TAMs increases with the progression of tumor in
mice and in advanced stages of the disease in humans, while it
is negatively associated with their phagocytic activities against
tumors cells (140, 141). In murine models of cancer, inhibition of
the PD-1/PD-L1 interaction enhances macrophage phagocytosis,
suppresses the growth of the tumor and prolongs the survival of
animals (140). Another recent study showed that the results of
anti-PD-L1 therapy in tumor-bearing mice was totally abolished
in PD-L1-deficient animals, supporting the importance of
blocking the PD-1/PD-L1 pathway as an anti-cancer therapeutic
approach (142). Despite the promising evidence from pre-
clinical studies, in human clinical trials the administration of
nivolumab (anti-PD-L1) in patients with renal cell carcinoma,
non-small cell lung cancer or metastatic melanoma with PD-L1-
negative tumors was associated with reduced clinical response
(NCT00730639; clinicaltrials.gov) (143, 144). Tumor-infiltrating
DCs and TAMs also express PD-L1 and B7 molecules that can
interact with the PD-1 on T-cells obstructing the function of the
latter (145). Thus, it is essential that all the above mentioned
evidence are carefully considered during the development of anti-
cancer immunotherapeutic strategies to act in favor of anti-tumor
immunity and not by promoting its inhibition. Future clinical
studies are needed to evaluate the possible beneficial impact of
this blockade in patients with specific types of tumors (141).

Certain myeloid cell subsets express TIM-3, which can bind
to the phosphatidylserine (PS) revealed by apoptotic cells further
contributing to their presentation to CD8+ T-cells (146). DCs
express TIM-3 which can also bind to HMGB1 derived from
dying cells (147). HMGB1 and nucleic acids from apoptotic
cells stimulate anti-tumor immunity, and TIM-3 can block
this stimulation by competition for binding to the HMGB1-
nucleic acid complex (147). Tumor cells also express galectin-9
which interacts with TIM-3 on tumor-infiltrating DCs regulating
their function. Indeed, it was recently shown that anti-Tim-3
blocking in combination with Paclitaxel administration amplified
anti-tumor immune responses against breast cancer in vivo,
and this inhibition was facilitated by the galectin-9-Tim-3
interaction, rather than the HMGB1-nucleic acid-Tim3 or PS-
Tim3 interaction (148). This interplay between tumor cells and
tumor-infiltrating DCs is probably pivotal for the development
and perpetuation of other types of malignancies (149), since
galectin-9 is highly expressed by several tumor cell types (150).

Nowadays, numerous phase II and III clinical trials
are testing the potential of antibodies against CTLA-4
(ipilimumab, tremelimumab), or the PD-1/PDL-1 axis
(nivolumab, pembrolizumab, atezolizumab, durvalumab,
avelumab), and also the combinatorial use of anti-PD-
1/anti-CTLA-4 antibodies (nivolumab plus ipilimumab)
in a series of human malignancies. Moreover, novel
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FIGURE 3 | Inhibitory immune checkpoint molecules represent targets for cancer therapy. PD-1, PD-L1, TIM-3, and B7 molecules are expressed by subsets of

myeloid-derived cells. PD-1 on macrophages interacts with PD-L1 on tumor cells and allows cancer progression by promoting escape from immune surveillance.

TAMs also express PD-L1 and B7 molecules that can interact with the PD-1 on T-cells inhibiting the function of the latter. TIM-3 on infiltrating DCs binds to HMGB1

derived from dying tumor cells blocking anti-tumor immune responses. Tumor cells also express Galectin-9 which interacts with TIM-3 on DCs negatively regulating

their function. Tumor Associated Macrophages; DCs, dendritic cells; HMGB1, high-mobility group protein 1; TLR, toll-like receptor; RAGE, receptor for advanced

glycation end products.

antibodies, not yet FDA approved, targeting TIM-3

immune checkpoint (including INCAGN02390, Sym023,

MBG453, TSR-022) are now being tested in phase I and II

trials (127).

Inhibition of Recruitment and Survival of
MDSCs
Cancer cells often express increased levels of the chemokine
CCL2; also known as monocyte chemoattractant protein 1,
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MCP1), which recruits MDSCs (expressing the CCR2) in
the site of tumor inflammation (151). Blocking the CCL2-
CCR2 interaction could be another alternative to prevent the
accumulation of these cells in the TME. Inhibition of this
pathway has provided with promising results in murine models
of pancreatic (50), hepatocellular (152) and prostate (153)
cancer. Moreover, a phase II clinical trial using carlumab (anti-
CCL2 mAb) in individuals with metastatic castration-resistant
prostate cancer (NCT00992186; clinicaltrials.gov) supports that
the withdrawal of anti-CCL2 treatment may lead to a rebound
of CCL2 levels; in the participants of this study there was an
upregulation of the CCL2 serum levels that exceeded those before
treatment (154). Also, cessation of anti-CCL2 treatment was
shown to accelerate metastasis in a murine model of breast
cancer (155). Thus, therapeutic interventions against CCL2-
CCR2 interaction need to be critically examined and future
studies to evaluate their overall therapeutic efficiency.

Recent evidence supports that the interaction between
CD200-CD200 receptor (CD200R) is essential for the control of
immune responses in TME by regulating TAMCs. In humans,
certain tumor cell types including melanoma cells (156), ovarian
cancer cells (157), malignant B cells (158) and cells from
some neuroendocrine neoplasms overexpress CD200. Within the
TME, significantly high levels of CD200 can be also detected
on endothelial cells, activated T and B cells, Tregs (159),
as well as MDSCs, TAMs and DCs (160). The CD200 and
CD200R molecules share structural similarities with the PD-
PDL1 and CTLA4-B7 molecules and the CD200-CD200R axis is
also considered as an immune-checkpoint regulator of tumor-
related immune responses (161). The complicated network of
interactions among these cell types can drive the outcome of
immune responses in the TME and impact tumor progression.

The blockade of CD200-CD200R interactions is
currently amongst the immunotherapeutic alternatives
under investigation. Studies on hu-SCID (severe combined
immunodeficiency) mice with established tumors (162–164)
have shown that adoptively transferred peripheral blood
mononuclear cells together with blockade of CD200 can lead
to the rejection of the tumors. Nevertheless, there is a debate
regarding the beneficial effects that the blockage of CD200-
CD200R axis may have in cancer patients (141), since following
treatment with chemotherapeutic agents such as doxorubicin,
the recruitment of functional DCs in the TME claims the
CD200-CD200R pathway (165). In humans, the anti-CD200
mAb Samalizumab has entered two phase I clinical trials: one
on patients bearing solid tumors (NCT02987504) and the
other on patients with B-cell chronic lymphocytic leukemia (B-
CLL) or multiple myeloma (NCT00648739) (clinicaltrials.gov).
Both studies were terminated, but the second one published
results showing that administration of the drug was associated
with reduced expression of CD200 on B-cells and CD4+

effector T-cells of B-CLL individuals, however inefficient in
the three myeloma patients evaluated (166). What is more, it
is expected that the use of CD200-depletion antibodies would
have considerable side-effects, since CD200 is also expressed
on normal cells. Therefore, the alternative way of targeting
the CD200R, which is expressed by cancer but not by normal

cells, would be more feasible for use in the clinical setting for
the treatment of human malignancies. A study on mice with
CD200-negative melanoma tumors showed that treatment with
an agonistic anti-CD200R mAb inhibited the tumor formation
and metastasis in the lungs of the animals, via inhibition of
myeloid cell functions (167). A recent study on animals with
colon cancer, suggests that co-treatment with anti-CD200R and
a Toll-Like Receptor 7 (TLR-7) agonist promotes the anti-tumor
effects of myeloid cells within the TME (168).

FUTURE PERSPECTIVES: NANOMEDICINE
APPROACHES TO DEPLETE, MODULATE
OR RECRUIT MDSCs OR TAMs

Novel approaches for the enhancement of anti-cancer
therapeutics also lie in the field of nanomedicine: Based
on the enhanced permeability and retention (EPR) effect
therapeutic strategies that use carrier materials of < 100 nm
can enhance the uptake of chemotherapeutics specifically by
tumor cells, thus lowering non-specific cytotoxicity (169, 170).
In the field of cancer immunotherapy, the efforts focus on
the use of nanoparticles to drive various immunoregulators to
tumors and recruit myeloid-derived cells to the site of tumor
inflammation (169).

MDSCs and TAMs can facilitate the use of nanoparticles
in anti-cancer immunotherapeutics due to their phagocytic
ability (171). It was shown that in tumor-bearing mice
peripherally administered with nanoparticles, the monocytic
and polymorphonuclear MDSCs were preferentially targeted
uptaking 10-fold more of these carrier materials compared
to the tumor cells (172). Other in vivo studies on mice
with tumors or hematological malignancies have shown that
intradermal administration of nanoparticles carrying the
chemotherapeutic agents 6-thioguanine or a gemcitabine
derivative were accumulated in macrophages and myeloid cells
of the spleen and the tumors and finally led to the depletion of
the MDSC compartments in these sites, promoting adoptive
T-cell therapy (172–174).

Apart from depletion, nanoparticles have been used for the
polarization of MDSCs to an anti-tumor immune phenotype,
using stimulants of the innate immune system, such as TLR
ligands (175, 176). A recent article describes how nanoparticles
loaded with R848, a TLR7/8 agonist, can promote the
polarization of TAMs toward an M1 phenotype, resulting
in the control of the tumor growth and protection of the
animals against tumor re-challenge (177). Interestingly, the co-
administration of R848-nanoparticles with anti-PD1 therapy
abolished the resistance of mice to anti-PD1 treatment and
led to improved response rates (177). The approach of
using nanoparticles carrying mimetics of “danger signals” to
induce innate anti-tumor responses together with immune
checkpoint inhibitors has already entered trials in the clinical
setting: nanomaterials with a TLR9 agonist and the anti-PD-
1 mAb pembrolizumab are now being tested in a phase Ib/II
clinical study in patients with various metastatic solid tumors
[NCT03684785; clinicaltrials.gov].
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An alternative of reprogramming macrophages using small
interfering RNAs (RNAi) or micro RNAs (miRNAs) that
are loaded on nanoparticles was applied to mice with
melanoma, colon carcinoma, non-small cell lung cancer
and other tumors, leading to encouraging results (178–180).
Recently, a research group used nanoparticles that have co-
encapsulated both a chemoattract of MDSCs, the CCL2
chemokine, and an RNAi sequence interfering with Cebpb,
critical for the immunosuppression phenotypes of these cells.
The administration of capsules co-carrying these two protein-
and RNA- factors, induced the attraction of MDSCs while
reduced the differentiation of monocytes to macrophages in in
vitro studies of primary MDSCs and in in vivo experiments on
fibrosarcoma mice (181). Lastly, using ferumoxytol, an FDA-
approved iron supplement composed of dextran-coated iron
oxide nanoparticles, Zanganeh et al. (182) managed to inhibit
tumor growth by inducing the pro-inflammatory M1 phenotype
in the TME of early breast tumors, and liver metastases in mice
with lung cancer.

CONCLUSIONS

It is unambiguously accepted that immune cells in the
tumor stroma exert fundamental effects not only on cancer
development and disease progression but also for treatment
efficacy. In particular, myeloid cells residing in the tumor
microenvironment, including MDSCs, TAMs, DCs and
tumor-associated neutrophils (TANs), can either enhance
tumor rejection or facilitate cancer progression based on their
functional interplay with cancer cells. Moreover, while the
variety of tumor treatment options gradually increase, including

targeted therapies, nanotherapies and immunotherapies,
reaching optimal levels of efficacy often appears to be hindered
by the infiltration and complex interactions with myeloid
cells. It is therefore critically important for future studies to
further subcategorize immune cells of myeloid origin based
on their pro- or anti-tumor properties. Moreover, it may be
appropriate to tailor conventional treatment approaches, such
as chemotherapy, nanotherapy and radiotherapy, in terms
of dosing, fractionation and scheduling in order to achieve
optimal conditions for activation of anti-tumor immune
responses. Finally, identification and validation of exclusive cell
surface marker panels for each subpopulation as well as better
understanding the common pro-tumor traits of these cells will
allow for better stratification of cancer patient prognosis and the
development of more effective therapeutic interventions.
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