
 International Journal of 

Molecular Sciences

Review

Gas Signaling Molecules and Mitochondrial
Potassium Channels

Agnieszka Walewska, Adam Szewczyk and Piotr Koprowski *

Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 3 Pasteur St.,
02-093 Warsaw, Poland; a.walewska@nencki.gov.pl (A.W.); a.szewczyk@nencki.gov.pl (A.S.)
* Correspondence: p.koprowski@nencki.gov.pl; Tel.: +48-225-892-343

Received: 28 September 2018; Accepted: 16 October 2018; Published: 18 October 2018
����������
�������

Abstract: Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide
(NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have
been of increasing interest due to their beneficial effects at low concentrations. These so-called
gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection,
oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically
their respiratory complexes, constitute an important target for these gases. On the other hand,
increasing evidence of a cytoprotective role for mitochondrial potassium channels provides
motivation for the analysis of the role of gasotransmitters in the regulation of channel function.
A number of potassium channels have been shown to exhibit activity within the inner mitochondrial
membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels,
voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3).
The effects of these channels include the regulation of mitochondrial respiration and membrane
potential. Additionally, they may modulate the synthesis of reactive oxygen species within
mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection,
while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action
of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying
the action of H2S, NO, and CO on potassium channels present within mitochondria.
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1. Introduction

For a long period of time, gases such as carbon monoxide (CO), hydrogen sulfide (H2S), and nitric
oxide (NO) were often considered to be toxic. However, much attention has only been paid to NO
due to the fundamental role this gas plays in cardiovascular physiology. Although these gases often
have pleiotropic targets, ion channels are probably one of the most important objects with which they
interact. Hence, in this review, we describe the regulatory activities of gas molecules towards the class
of potassium channels that are present in the inner mitochondrial membrane.

It is not feasible to directly record the activity of potassium channels in mitochondria due to the
size of this organelle in comparison to the size of the recording pipette. Even the use of mitoplasts,
spherical objects derived by the osmotic downshock of mitochondria stripped of its outer membrane
leaving the inner membrane intact, in whole-mitoplast mode is challenging. Therefore, most of the
data on mitochondrial ion channels were obtained from excised inner mitochondria membrane patches
and require freshly isolated mitochondria. In addition, due to low success rate of such experiments in
several studies model cell lines were used for which high expression of mitochondrial channels was
established (as indicated in the text).
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Potassium channels, including ATP-sensitive potassium channel (mitoKATP), large-conductance
calcium-activated potassium channel (mitoBKCa) [1,2], voltage-gated potassium channels (mitoKv1.3
and mitoKv7.4), and TWIK-related acid-sensitive K+ channel 3 (mitoTASK-3), are present in the inner
mitochondrial membrane [3]. They affect the integrity of mitochondrial inner membranes, leading to
the regulation of energy-transducing processes and the synthesis of reactive oxygen species (ROS).
Hence, these channels play an important role in cytoprotection [4–6] and constitute promising targets
for cancer treatments [7–9]. It is important to mention that mitochondrial potassium channels are also
present in plants [10] and simple organisms [11,12].

Mitochondrial potassium channels are modulated by inhibitors (channel blockers), such
as glibenclamide and 5-hydroxydecanoic acid (5-HD), in the case of mitoKATP channels [13],
or charybdotoxin, in the case of mitoBKCa channels [14]. Mitochondrial potassium channels are
activated by potassium channel openers such as diazoxide (mitoKATP channels) [13] or NS1619
(mitoBKCa channels) [15]. In principle, all drugs acting on mitochondrial potassium channels have
also been previously found to regulate plasma membrane potassium channels.

In this paper, we discuss the interactions of mitochondrial potassium channels with
gasotransmitters such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S).
We attempt to summarize the current gaps in our understanding of the nature of these interactions
that may serve as future prospects for further study.

2. Carbon Monoxide

Carbon monoxide has been rediscovered in recent years as a vital mediator in the cell that regulates
a wide variety of biochemical reactions. Fundamental to its function in both normal physiological
processes and pathologies is its proficiency to regulate a number of ion channels, including members
of the calcium-activated K+ (BKCa) [16], voltage-activated K+ (Kv) [17] and Ca2+ channels [18], as well
as ligand-gated P2X receptors [19]. The regulatory mechanisms by which CO modulates ion channels
are still largely unexplained and stay somewhat dubious. However, the available structure-function
studies suggest that a very limited range of protein cofactors confers indirect or direct sensitivity
to CO, of a specific ion channel, and indicate that the redox state could play a crucial role in the
integrated reaction. Irrespectively of the detailed mechanism by which ion channels are modulated by
CO, its endogenous generation is physiologically important, and CO is currently being explored as a
potential therapeutic [20].

2.1. Physiological Sources of Carbon Monoxide-Hemoxygenases

Historically, CO has been known to be toxic at high levels (>500 ppm). High CO concentrations
cause hypoxemia via competitive binding, with an affinity that is >200-fold higher than that of
oxygen, to hemoglobin in its binding sites for oxygen, with resulting formation of carboxyhemoglobin
(CO-Hb) [21].

Endogenous CO is formed by oxidative decomposition of heme by heme oxygenases (HOs). In the
presence of O2 and reduced nicotinamide adenine dinucleotide phosphate (NADPH), HOs catalyze the
first, rate-limiting step in heme degradation, which is the breakdown of heme to equimolar amounts
of biliverdin-IXα, iron, and CO [22].

Heme, which is a complex of iron and protoporphyrin IX, is an essential prosthetic group for a
number of enzymes involved in the transport of oxygen (hemoglobin) and electrons (NADPH oxidase),
as well as in other enzymes such as catalase and peroxidase [23]. However, heme functions not only as
a prosthetic group within various proteins but has also been shown to function as a signaling molecule
that regulates the functions of proteins, as described below.

Free heme released from intracellular heme-containing proteins causes cell damage and has
been shown to have deleterious effects in several pathologies [24]. Heme levels have been found to
be significantly increased in the cytosol and mitochondria of the failing heart [25]. The enzymatic
reduction of biliverdin by biliverdin reductase produces bilirubin; both biliverdin and bilirubin are
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powerful antioxidants that scavenge ROS as part of a recycling mechanism [26]. Biliverdin reductase
has also been found in mitochondria [27].

The role of free iron is complex. On one hand, at physiological levels, it plays a crucial role in
cytoprotective processes [28], including ferritin-mediated processes that protect against mitochondrial
dysfunction and oxidative stress [29]. On the other hand, there is evidence that iron produced from heme by
HO may act as a pro-oxidant in lipid peroxidation and other reactions utilizing the Haber-Weiss cycle [30].

The high hydrophobicity of heme may promote deleterious iron-dependent reactions leading to
the generation of reactive oxygen species (ROS) and membrane lipid peroxidation, thereby disrupting
the cellular membranes of several organelles, including mitochondria [31]. Therefore, the levels of
heme are tightly regulated via a balance of synthesis and degradation, and cells have developed heme
detoxification systems [32]. In mammals, HOs are the only enzymes known to degrade heme, and
therefore, they play a critical role in heme and iron homeostasis and are considered to be crucial
components of the stress response and defenses against oxidative stress [33]. Three different isoforms
of HO have been identified in mammals: inducible HO-1 [34]; constitutive HO-2 [35]; and catalytically
non-active HO-3 [36]. HO-1 and HO-2 exhibit approximately 45% sequence identity.

HO-1 is induced by a variety of stimuli, including the presence of free heme, oxidative stress,
and UV radiation [37–39]. HO-1 is localized to various intracellular compartments, including nuclei
and mitochondria [27]. Mitochondria are hubs not only for heme but also for the synthesis of Fe-S
cluster cofactors [40]; localization of the HO-1 protein to mitochondria suggests that it plays roles
in regulation of turnover of heme proteins and iron in mitochondria, which may be important for
protection against conditions, such as hemorrhage or ischemia/reperfusion, that have been found
to involve the increased production of ROS. Consequently, increased expression of HO-1 may be
observed in inflammatory and cardiovascular diseases [41,42].

A number of studies have demonstrated the beneficial role of HO-1 in mitochondria.
Bindu et al. [43] showed that inducing oxidative stress by treating gastric mucosal cells with the
non-steroidal anti-inflammatory drug indomethacin resulted in the up-regulation of HO-1 expression
and the translocation of HO-1 to mitochondria. The presence of HO-1 in mitochondria has been linked
to the inhibition of apoptosis during injury. In another study, it was shown that HO-1 was translocated
to mitochondria and had increased activity in a primary culture of human small airway epithelial cells
exposed to cigarette smoke extract, suggesting a protective effect of HO-1 against ROS [44].

However, not all the effects of HO-1 that were observed in mitochondria were beneficial. When
HO-1 was specifically targeted to renal epithelial cell mitochondria [45], it mitigated hypoxia-mediated
mitochondrial injury and cell death, but the selective advantages of its long-term expression were
canceled out by its negative influence on the synthesis of mitochondrial proteins that contain heme as
a cofactor. This conclusion was in line with the research of Bansal et al. [46], which showed that the
overexpression of mitochondrial-targeted HO-1 resulted not only in heme degradation and diminished
activity of heme-containing cytochrome c oxidase (CcO) but also induced the increased production of
ROS and increased autophagy. Overall, these studies suggest that the level of mitochondrial-targeted
HO-1 must be precisely controlled to achieve a balance between its beneficial and deleterious effects.

It has been suggested that HO-2 has different functions than HO-1 in the brain, based on
differences in their patterns of expression. HO-1 has been shown to protect cultured cortical astrocytes,
but not neurons, from oxidative stress after exposure to hemoglobin [47], whereas HO-2 has been
shown to protect against apoptotic cell death in both neuronal cultures and in vivo models of ischemic
injury [48]. HO-2 plays a unique role in oxygen sensing and responses to hypoxic conditions in
mammalian cells [49]. There are three Cys-Pro signatures, called heme regulatory motifs (HRMs) in
HO-2, which are not present in HO-1 [50]. The C-terminal HRM is a thiol/disulfide redox switch that
modulates the affinity of the enzyme for heme [50] by responding to redox status of the cell, thereby
integrating heme homeostasis with CO signaling and redox regulatory processes related to cellular
metabolism. The oxygen sensor activity of HO-2 is involved in the regulation of the activity of the
plasmalemmal BKCa channels within the carotid body, as described below. However, the possibility of
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localized functioning of HO-2 in mitochondria should also be noted; in one study, immunofluorescence
staining of pulmonary arterial smooth muscle cells with various subcellular structural markers found
that HO-2 was localized not only to the endoplasmic reticulum, but approximately 20% of the enzyme
was located also in the mitochondria [51].

Although CO gas is easily diffusible and is able to reach all cellular compartments, the presence of
HO-1 in mitochondria and its localized effects indicate that the interplay of CO with heme and possibly
other products of HO activity, including biliverdin and free iron, is physiologically meaningful.

2.2. Signal Transduction via Heme-CO Interaction

Several bacterial nickel-dependent metalloenzymes are able to bind CO in their metal clusters, [52]
but in mammalian cells, it is believed that the transduction of CO by proteins requires the presence of
reduced heme iron (Fe2+). The first identified molecular target of CO was hemoglobin, but heme is
also present in a number of electron transfer proteins and redox enzymes.

CO signaling pathways have still not been entirely elucidated. One of these pathways directly
links the modulation of soluble guanylate cyclase (sGC) with the production of cyclic guanine
monophosphate (cGMP) and the activation of protein kinase G (PKG) in processes involved in
neurotransmission, vasodilation, and the inhibition of platelet aggregation [53–56]. CO-mediated
activation of sGC is dependent on the presence of heme in its modulatory domain [57].

A few studies have provided evidence of the presence of sGC in the mitochondrial matrix.
It was previously shown that the acceleration of cGMP production in cardiac mitochondria stimulates
cytochrome c release in a manner that is independent of the permeability transition that results in
apoptosis [58,59]. It has also been shown that protein kinase G-dependent opening of mitoBKCa

channels plays a critical role in cardioprotection induced by sildenafil [60].

2.3. Regulation of BKCa Channels by CO

One of the best-characterized effectors of CO is the BKCa channel. It is known that CO activates
this channel via direct and indirect mechanisms (Figure 1).
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Figure 1. Regulation of the mitochondrial large-conductance calcium-activated potassium channel
(mitoBKCa) activity by CO. The activity of the channel is inhibited (−) by heme alone but could be
stimulated (+) in the presence of heme (HEME, Fe-protoporphyrin IX) and CO (gasotransmitter shown
in the dotted box) (a product of the activity of HOs). Independently, CO stimulates sGC/cGMP/PKG
pathway leading to channel phosphorylation and activation. Abbreviations: CO, carbon monoxide;
HO, heme oxygenase; PKG, cGMP-dependent protein kinase; sGC, soluble guanylate cyclase.
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The indirect mechanism involves the phosphorylation of BKCa by PKG at specific serines (Ser855,
Ser869, and Ser1072 in human BKCa ortolog Slo1), which increases the probability of BKCa assuming
an open conformation [61–63]. Because CO stimulates sGC, leading to the activation of PKG, it is
apparent that CO promotes PKG-mediated phosphorylation of BKCa channels and increases the
channels’ activity. This mechanism appears to be valid also for mitoBKCa channels [64].

The direct mechanism involves the bimodal regulation of the BKCa channel via the interaction
of CO with its bound heme [16]. Specifically, a segment that links regulators of K+ conductance
(RCK) domains, RCK1 and RCK2, has been suspected to bind heme, based on the sequence homology
of the short motif within this linker to the heme binding motif (HBM) containing the sequence
CXXCH (X is any amino acid) that is present in cytochrome c [16]. Tang et al. [65] demonstrated
that FeIII-heme (hemin) is able to block the BKCa channels with high affinity by binding to the HBM,
since replacement of the Cys or His residues with Ser or Arg, respectively, abolished the sensitivity
of the BKCa channel to hemin. Interestingly, cytochrome c covalently binds heme c via [66], while
the noncovalent, reversible binding of heme b occurs within the BKCa channels [16]. The 23-residue
peptide known as the heme-binding domain (HBD), which encompasses the HBM, preserves its heme-
or hemin-binding properties [16,65]. It was demonstrated, using this model system, that heme, but
not hemin, is able to bind CO [16]. Using a series of patch-clamp experiments, Jaggar et al. [16]
demonstrated that BKCa channels that were inhibited by heme, but not hemin, could be reactivated by
CO. The heme-CO complex exhibited stimulatory properties, since the channels were more active in
the presence of heme-CO than in the control conditions. Thus, the substrate (heme) and the product
(CO) of heme degradation by HOs regulated channel activity in such a way that an increase in the
activity of HOs resulted in the activation of BKCa channels. In addition, using co-immunoprecipitation
experiments, it was shown that HO-2 formed a complex with the BKCa channel by binding to the
HBD, which provided evidence of a direct regulatory mechanism [67]. Within the CXXCH motif, the
histidine residue serves as the axial heme ligand, while the cysteines comprise a thiol/disulfide redox
switch that regulates the affinity of the HBM for heme and CO. The dithiol state was demonstrated to
bind hemin (Kd = 210 nM) 14-fold more tightly than the disulfide state [68].

The thiol/disulfide redox switch within the BKCa channel and the corresponding thiol/disulfide
redox switch within HO-2 are involved in hypoxic responses in the carotid body [69]. Carotid bodies
are arterial chemoreceptors that sense changes in blood oxygen and CO levels and respond to hypoxia
by secreting acetylcholine, dopamine, and ATP to increase the rate and depth of ventilation [69].
The hypoxia response element within the carotid body consists of glomus cells. BKCa channels on the
plasma membranes of the glomus cells are inhibited when the O2 supply becomes compromised. Under
these conditions, HO-2 activity is low due to the reduction of the cysteines within the HRM, which
leads to lower levels of CO, higher levels of heme, and the binding of heme to the reduced form of the
HBD in BKCa channels. This leads to BKCa inhibition, cell depolarization, Ca2+ influx, and transmitter
release [67]. On the other hand, under normoxic conditions, CO generated by heme oxygenase-2
(HO-2) during heme degradation activates the BKCa channels, leading to cell hyperpolarization. This is
a mechanism by which the BKCa channel responds in a prompt and reversible manner to alterations in
the redox state of the cell, specifically as it shifts between hypoxia and normoxia [68].

An analogous mechanism, possibly resulting from the localization of both HO-2 and mitoBKCa

inside mitochondria, could operate to control the redox state of mitochondria, which is of great
importance. However, there is a lack of studies investigating this topic. In the only study, the effects
of CORM-401 on glycolysis and respiration of mitochondria in intact human endothelial cell line
EA.hy926 were studied [70]. It was found that CORM-401 treatment results in an increase in the
oxygen consumption rate (OCR), inhibited glycolysis, decreased ATP-turnover, and increased proton
leakage. Interestingly, the blockade of mitoBKCa with paxilline abolished the increase in OCR induced
by CORM-401. Using patch-clamp experiments, the authors of this study showed that CORM-401
activated mitoBKCa channels. These effects were not observed for inactive CORM (iCORM) that was
generated using a mix of MnSO4 and the CORM-401 ligand DTC. Therefore, it was argued that the
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observed effects specifically resulted from the CO released from the donor [70]. However, one must
be cautious when interpreting experiments that involve CORMs due to a plethora of side effects that
accompany the use of these drugs (see Section 2.5).

2.4. KATP Channels

Activation of mitoKATP has long been implicated in the protection of the heart against
ischemia/reperfusion injury [13]. Abrogation of cardioprotection mediated by CORMs (CORM-2 and
CORM-3) by the KATP channel inhibitors 5-hydroxydecanoic acid [71] or glibenclamide [72] provided
indirect evidence that mitoKATP could be a target of CO. However, as was noted above, the action
of CO requires the presence of heme as the receptor. Only recently was it discovered that cardiac
plasmalemmal KATP channels are regulated by heme [73]. These channels are hetero-octameric complexes
containing four pore-forming K+ channel subunits (Kir6.2) and four regulatory subunits (SUR2A) [74].
The modulation of the activity of this channel is important for the protective response of cardiac muscle
to oxidative stress [75]. Curiously, it was found that a CXXHX16H motif in a cytoplasmic sulphonylurea
receptor subunit within the channel is responsible for heme binding. In the presence of 500 nM hemin, a
moderate (1.6-fold) increase in KATP receptor currents was observed [73]. A more dramatic, several-fold
increase in the activation of KATP was observed in the presence of gaseous CO [76].

Unfortunately, there is no definitive evidence that identifies the proteins that constitute mitoKATP.
A non-conventional short SUR2 splice variant approximately 55 kDa in size, known as SUR2A-55,

was found predominantly within mitochondrial membrane fractions [77]. However, this variant does
not contain the full-length SUR2A heme binding motif. Moreover, there is no consensus regarding the
identity of the pore-forming subunit of mitoKATP. Zhou et al. [78] used immunoelectron microscopy
and found that Kir6.1 was mainly localized to the mitochondria, while Kir6.2 was located mainly
within the endoplasmic reticulum with a minor fraction in the mitochondria. Similar results were
observed upon the heterologous expression of Kir6.1-GFP [79]. On the other hand, other studies,
including those utilizing cell fractionation, have excluded the presence of Kir6.1 or Kir6.2 in the
mitochondria [80,81]. Recently, a splice variant of Kir1.1 lacking the first 19 N-terminal amino acids
(designated Kir1.1b or ROMK2) was found to be located in mitochondria of H9c2 cell line and probably
constitutes the pore-forming subunit of mitoKATP [82]. There are no data regarding the regulation of
mitoKATP or Kir1.1 by gases, including CO.

2.5. Pharmacological CO Donors—CORMs

The experimental and clinical use of CO gas is difficult and can be dangerous. Therefore,
the development of so-called CO-releasing molecules (CORMs) as prodrugs for the administration
of CO in vitro, in tissue culture, and in living organisms (potentially as a medicine) resulted in a
significant surge in the number of studies on this topic. CORMs offer the possibility of a safe and
controllable release of CO at low amounts that is triggered by the presence of light, ligands, and
enzymes, among other factors, with the ultimate goal of utilizing its therapeutic potential [83–87].

Despite the fact that a number of different CORM molecules are available, to date most studies
have been conducted using various types of ruthenium-containing carbonyl complexes such as
tricabonyldichlororuthenium(II) dimer (CORM-2) or [Ru(CO)3Cl(glycinate)] (CORM-3) [88]. Heme is
generally considered to be the prime target of CO released from CORMs. However, it is not readily
apparent whether or not any effect of a CORM is due to CO gas, the CORM itself, or one or more
of its breakdown products. In one study that utilized heme-deficient bacteria, it was found that the
response to CORM-3 could not be attributed to the classical biochemical targets of CO [89]. In another
study, it was shown using crystallography that [Ru(CO)3Cl2(1,3-thiazole)] forms lysozyme-Ru adducts
and that mono-carbonyl Ru species [Ru(H2O)4(CO)] were covalently bound to surface histidine and
aspartates [90].

In several studies, it was shown that BKCa channels are strongly activated by CORM-2 or
CORM-3 [91–94] and that different regions that are unrelated to the heme binding motif (HBM)
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were implicated in this phenomenon [95,96]. Specifically, the stimulatory action of CORM-2 on
BKCa channels required the presence of an aspartic acid and two histidine residues (365 and 394)
in the cytoplasmic RCK1 domain [96]. This effect persisted in conditions preventive for binding
between CO and heme in other proteins. Only much later it was found that these histidines form
Ru(CO) adducts, and the effects of CORM-2 were abolished in the presence of an excess of free
histidine [97]. The authors of this study also uncovered the histidine-dependent action of CORM-2
on other voltage-gated potassium channels, such as Kv1.5 and Kv11.1, in a similar manner to
that observed in Kv2.1 channels [98]. The off-site effects seen with CORM-2/CORM-3 were not
observed for iron-containing CORM-S1 or manganese-containing CORM-EDE1 [97]. In contrast
to the strong stimulatory effects of CORM-2, gaseous CO exerted only negligible effects on BKCa

channels in a manner consistent with the targeting of heme by CO, which is only non-covalently and
transiently bound to these channels [99] and occupies its binding sites probably only partially under
experimental conditions.

The side effects of CORMs are unfortunately not restricted to ruthenium-based compounds.
Manganese-containing CORM-401 stimulates respiration, depolarizes the cytoplasmic membrane in a
manner similar to uncouplers, and elicits the loss of intracellular potassium in E. coli cells [100]. These
properties could explain the increase of the oxygen consumption rate (OCR) in intact mitochondria [70]
in the manner independent from the activation of mitoBKCa. Therefore, it appears that there is a need
to design and test other CO donors, including nonmetallic CORMs, e.g., CORM-A1 [101], to examine
their impact on mitochondrial physiology. In addition, all of the effects reported to date should be
verified with the use of gaseous CO [97].

3. Hydrogen Sulfide

Hydrogen sulfide (H2S), although considered to be a toxic gas for many years, was recently
recognized to be an important molecule that, at low concentrations, plays an important role in processes
such as inflammation, vasculature development [102,103], apoptosis [104], and the preservation of
mitochondrial functioning [105,106].

3.1. Physiological Sources of Hydrogen Sulfide

Both enzymatic and non-enzymatic pathways contribute to the endogenous production of H2S.
The following enzymes are involved in the generation of H2S from L-cysteine: cystathionine β-synthase
(CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST)/cysteine
aminotransferase (CAT) [107]. In addition, it was shown that H2S can also be produced from D-cysteine
by the 3-MST/DAO (D-amino acid oxidase) pathway in the kidney and the cerebellum [108]. CBS and
CSE are distributed only in the cytoplasm [109], while CAT and 3-MST are found in both the cytoplasm
and mitochondria, but primarily within mitochondria [110], and DAO is present in peroxisomes [111].
Although CSE is present only in the cytoplasm of vascular smooth muscle cells (SMCs) at rest, it can be
translocated to the mitochondria [109] via the addition of the calcium ionophore A23187, thapsigargin,
or tunicamycin to the SMCs. The increase in the amount of H2S in a mitochondrial fraction derived
from A23187-treated SMCs was found to be CSE-related [109].

3.2. Pharmacological Donors of H2S

It is also possible to deliver H2S from exogenous sources, including H2S releasing molecules.
The most popular of these are inorganic sulfide salts such as sodium sulfide (Na2S) and sodium
hydrogen sulfide (NaHS) [112]. Although the positive effects of sulfide salts have been reported in
relation to cardioprotection [113] and protection against inflammation [114,115], they release H2S
rapidly and spontaneously, which impedes control of its concentration. Numerous other H2S-releasing
molecules exist and each of them has both advantages and disadvantages, but they will not be
addressed in this review [116]. Because we are focused here on the action of gas signaling molecules on
mitochondrial potassium channels, we would like to briefly mention the novel mitochondrial-targeted
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H2S donors. AP39 and AP123 are mitochondrial slow-release H2S donors, which appear to be much
safer than sulfide salts because they release concentrations that exert positive effects at a much lower
level than that tolerated in vitro. AP39 and AP123 also have a beneficial effect on cellular bioenergetics
by increasing the electron transfer rate of complex III of the respiratory chain [117].

3.3. H2S Regulation of Heme Proteins

The mechanisms underlying the action of H2S, which is complex and complicated, include redox
reactions, the formation of persulfides with the -SH groups of cysteines and sulfide-metal interactions
in heme proteins [118]. A few targets of H2S will be discussed below, with an emphasis on targets
within mitochondria.

H2S reacts with the metallic centers of heme proteins. Coolman et al. [119], using a functional
model of the oxygen-reducing sites within cytochrome c oxidase, showed that H2S acts as a competitive
inhibitor of cytochrome c oxidase at high concentrations via its reversible binding to FeII heme,
thus preventing binding of the enzyme substrate (O2) to the reduced FeIICuI active site. At low
concentrations, inhibitory effects of H2S on cytochrome c oxidase are not observed, due to the low
affinity of H2S for FeII heme [119]. In addition to the inhibitory effects of H2S on cytochrome c
oxidase, it was found that H2S (100 nM–1 µM) supports mitochondrial electron transport in cells
isolated from rat liver [120]. H2S also increases OCR-linked respiratory capacity and ATP turnover in
the presence of the Krebs-cycle-derived electron donor succinate. In addition, electron transport and
production of ATP was stimulated by incubation of mitochondria from rat liver with low concentrations
of 3-mercaptopyruvate (3-MP), which is a substrate for mitochondrial H2S production. Similar
observations have been made based on mitochondria from cultured murine hepatoma cells [121].
H2S produced by 3-MST provides electrons to sulfide quinone oxidoreductase, which in turn transfers
electrons to the mitochondrial electron transport chain and increases ATP production.

The above results indicate that H2S produced within the cell plays a physiological role in
bioenergetics of the cell.

3.4. H2S Regulation via Protein S-Sulfhydration

Another mechanism by which H2S modifies the activity of proteins is S-sulfhydration
(persulfidation) via the posttranslational modification of cysteine residues (RSH) into persulfides
(RSSH) [122]. The ATP synthase (complex V) is one of the main proteins located within the inner
membrane of mitochondria that undergoes S-sulfhydration [123]. This modification increases the
enzymatic activity of ATP synthase in an NaHS concentration-dependent (10 nM–100 nM) manner.
It was found that S-sulfhydration of the α subunit of ATP synthase (ATP5A1) occurs at Cys244
and Cys294. It is significant that the basal S-sulfhydration of ATP synthase is observed in vivo in
wild-type mice and is induced by CSE-produced H2S, as this indicates the physiological importance
of S-sulfhydration [123]. It is important to note that S-sulfhydration does not occur via the direct
interaction of H2S and the -SH group of cysteine, because the sulfurs present in both molecules
are typically at lowest i.e., (−2) oxidation state. However, there are other possible ways for the
S-sulfhydration of cysteine residues to occur. For example, H2S can react with sulfenic acid (a product
of -SH oxidation), S-nitrosated cysteines, and cysteine disulfides to form -SSH groups [124]. In addition,
it has been shown that polysulfides can also take part in the S-sulfhydration of cysteine residues in vitro
and in cell culture [125].

3.5. Potassium Channels as Targets for H2S

Hydrogen sulfide has various effects on the activity of different potassium channels within the
plasma membrane (Figure 2) [126].
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Figure 2. Regulation of mitochondrial potassium channels, mitochondrial large-conductance
calcium-activated potassium channel (mitoBKCa, activation (+) or inhibition (−)), and ATP-sensitive
potassium channel (mitoKATP, activation (+)) by H2S (gasotransmitter shown in the dotted box).
Modulation of the activity of the mitoBKCa channel by H2S, inferred from regulation of its
plasmalemmal counterpart, could result from multiple, unknown (?) mechanisms (bracket).

Mustafa et al. [127] showed in 2011 that the Cys43 in the Kir6.1 subunit of the KATP channel is a
major target of H2S-mediated S-sulfhydration (NaHS was used as a donor) in HEK293 cells, which
resulted in channel activation. Interestingly, an increase in the activity of ATP-sensitive potassium
channels caused by S-sulfhydration was accompanied by reduced binding of ATP and enhanced
binding of PIP2 to Kir6.1. It is possible that the S-sulfhydration of Cys43 in Kir6.1 impedes the binding
of ATP to the channel due to electrostatic or spatial changes, which could result, in turn, in increased
access of PIP2 to its binding site [127]. It was recently shown that H2S affects the activity of other Kir
channels, Kir2 and Kir3, in a manner opposite to that of Kir6.1 mentioned above [128]. Specifically,
the use of NaHS as an H2S donor resulted in the inhibition of Kir3.2 channels in Xenopus oocytes and
Kir3.2 channels in CHO-K1 cells.

Tang et al. [129] revealed a direct effect of both exogenous H2S, in the form of an H2S-containing
solution, and endogenous H2S on the activity of KATP channels in vascular smooth muscle cells. It was
also shown that inward KATP currents and the probability of the opening of a single KATP channel was
increased after exposure to H2S. To demonstrate the effects of endogenous H2S on the activity of KATP

channels, various inhibitors of CSE and CBS were used, which resulted in a decrease of the whole-cell
KATP currents in a manner independent on the activity of the cGMP signaling pathway [129].

In contrast, less is known about the regulation of the activity of potassium channels in the
inner membrane of mitochondria by H2S. In 2016, Testai et al. [130] showed that 4-carboxyphenyl
isothiocyanate (4CPI), which is an H2S donor, significantly improved the recovery of several parameters
of myocardial function after ischemia and hindered the extent of tissue injury. Pre-treatment of rats
with a selective blocker of the mitoKATP channel, 5-hydroxydecanoic acid (5-HD), lead to an abolition
of the cytoprotective effects of 4CPI, which suggested that mitoKATP could be one of the targets of
H2S donated by 4CPI. Additionally, the addition of 4CPI to isolated rat heart mitochondria caused
depolarization of the mitochondrial membrane potential, and this effect was abrogated by ATP, which
is a physiological blocker of the mitoKATP channel. A similar effect was observed in the action of
NaHS on rat cardiomyocytes, where exposure to a H2S donor resulted in a reduction in the myocardial
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infarct size, which was in turn impaired by 5-HD [131]. From these experiments, it was inferred that
H2S opened mitoKATP channels. Unfortunately, there are no electrophysiological data regarding the
regulation of mitoKATP channels by H2S.

Similarly, nothing is known about the regulation of the activity of mitoBKCa channels by
H2S. However, it is known that H2S regulates the activity of BKCa channels in the plasma
membrane [132–134]. The effects of H2S on BKCa are equivocal and may vary in different tissues.
The open probability (Popen) and mean open time of a single BKCa channel in rat GH3 pituitary tumor
cells was increased after NaHS exposure [132]. This effect was concentration- and voltage-dependent
but also Ca2+-independent. In addition, an increase in the activity of the BKCa channel was found to be
transient and reversible. Sitdikova et al. [132] also showed that the effects of NaHS on the activity of
BKCa channels resulted from the reduction of sulfhydryl groups located on the cytoplasmic side of the
channel by NaHS and found that H2S regulation is dependent on BKCa channel phosphorylation [133].
On the other hand, the activity of BKCa channels in HEK 293 cells was inhibited by NaHS in a
dose-dependent manner [134].

It can be assumed that the mitoBKCa channels may be modulated by H2S in a similar manner
to the BKCa channels within the plasma membrane, but the effects of H2S on these channels are still
unknown. Because it is known that H2S interacts with heme proteins and that HBM is present in
BKCa channels, a question arises as to whether or not H2S can impact the activity of these channels by
interacting with heme bound to the HBM in a manner similar to the action of CO on BKCa channels [16].

4. Nitric Oxide

4.1. The Role and Physiological Sources of Nitric Oxide

Nitric oxide (NO) is a key signaling molecule in the cardiovascular system [135]. During
ischemia, NO synthesis is increased in the heart to provide cardioprotection. NO is produced
in vivo by nitric oxide synthase (NOS) via the conversion of L-arginine to citrulline [136]. NO plays
a role in mitochondrial biogenesis and regulates mitochondrial turnover in the vasculature [137].
Interestingly, the alpha isoform of neuronal NOS-1 has been identified as a mitochondrial NOS
(mtNOS) [138,139]. NO produced in mitochondria has an important regulatory impact on cellular
metabolism via its reversible inhibition of cytochrome c oxidase [140]. Nitric oxide also reacts
with mitochondrial superoxide anions to produce the potent oxidative species peroxynitrite [141],
which hinders mitochondrial activities [142].

It is well known that activators of mitoKATP channels, such as diazoxide, can depolarize
mitochondria [143]. However, it was found, unexpectedly, that diazoxide increased the phosphorylation
of neuronal NOS at positive regulatory serine, 1417 but also decreased NOS phosphorylation at a
negative regulatory Ser847, and, as a consequence, increased NO production in cultured neurons [144].
These observations functionally link mitochondrial channels with NO.

4.2. Regulation of Mitochondrial KATP Channels by Nitric Oxide

The cardioprotective properties of nitric oxide suggest that NO may interact with mitochondrial
potassium channels (Figure 3).
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By measuring mitochondrial redox potential and using this as an index of mitoKATP channel
opening in rabbit ventricular myocytes, it was shown that NO may activate mitoKATP channels [145].
The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) activated mitoKATP without stimulating
sarcolemmal KATP channels, since its effects were blocked specifically by 5-hydroxydecanoate
(5-HD) and NO scavengers. Because many effects of NO are mediated by the cGMP-dependent
pathway, it was determined whether or not NO-induced activation of mitoKATP was dependent on
8Br-cGMP. The negative results of this experiment suggested that mitoKATP are directly activated by
NO. Interestingly, when activated by the potassium channel opener, diazoxide, mitoKATP channels
appeared to be more susceptible to the potentiating effects of NO than channels that were closed [145].
Unambiguous evidence for the direct activation of mitoKATP by NO was obtained by reconstituting
cardiac mitoKATP channels into lipid bilayers [146], whereupon the mitoKATP channels were activated
by exogenous NO donors. Single channel activity was inhibited by the mitoKATP blockers 5-HD or
glibenclamide [146]. In contrast, mitoKATP channel activity that was measured using the patch-clamp
technique was inhibited by NO in human T-lymphocyte (Jurkat) cells [147]. Such differences could
result from differences in the molecular mechanisms underlying the action of NO on mitoKATP channel
proteins. Unfortunately, there are no mechanistic studies on mitochondrial channels that exist that
could answer such questions. However, such differences could be elucidated via studies performed on
plasmalemmal KATP channels. For example, cell-attached recordings of KATP currents in rat large DRG
neurons showed that the KATP channels were stimulated by NO by decreasing their sensitivity to block
by intracellular ATP [148]. This effect was also present after application of sGC and PKG inhibitors,
indicating that the sGC/cGMP/PKG signaling pathway was not responsible for this phenomenon.
This activation remained intact in inside-out patches and was reversed by dithiotreitol (DTT) and
prohibited by a thiol-alkylating agent, NEM. These findings indicated that NO activates KATP channels
via the direct S-nitrosylation of cysteine residues. During additional experiments in which the currents
produced by recombinant SUR1/Kir6.2 channels expressed in COS7 cells were measured, proved
that activation mediated by NO involves its interaction with residues in the NBD1 of the SUR1
subunit [148].



Int. J. Mol. Sci. 2018, 19, 3227 12 of 20

On the other hand, NO may also regulate mitoKATP channels indirectly via sGC/cGMP/PKG
pathway [149]. For instance, in other studies that were performed in transfected HEK293 cells and
in cardiomyocytes isolated from rabbits or genetically modified mice, exogenous exposure to the
NO donor NOC-18 in cell-attached mode resulted in an increase of the single-channel activity
of Kir6.2/SUR2A, which was abolished by exposure to a selective PKG inhibitor, KT5823 [150].
This sGC-dependent mechanism may likely be involved in the regulation of mitoBKCa channels
in cardiomyocytes [64].

5. Final Remarks

In this paper, we have described our current understanding of the interactions of CO, H2S, and NO
with mitochondrial potassium channels. Even so, our knowledge of these complex interactions is
limited to phenomenology and is lacking molecular mechanisms. Identification of the molecular
identity of mitochondrial potassium channels will increase insight into the interactions of gas molecules
with mitochondrial channel proteins.

The interacting molecules of mitochondrial potassium channels are probably not limited to CO,
H2S, and NO. The noble gas anesthetic, xenon, has been shown to protect the myocardium from
ischemia/reperfusion injury [151], and this protection could possibly be mediated by the preservation
of myocardial mitochondria and the opening of mitoKATP channels [152]. Additionally, sulfur dioxide
(SO2) can also be generated endogenously in mammals and is a physiological endothelium-derived
relaxing factor [153]. Moreover, the protective effect of SO2 on myocardial ischemia/reperfusion has
been previously observed [154]. The vasodilatory effect of SO2 is related to the opening of KATP and
BKCa channels in the plasma membrane [153]. This suggests that the regulation of mitochondrial
potassium channels by SO2 is also possible. Other gaseous molecules, including ammonia (NH3),
carbon dioxide (CO2), hydrogen gas (H2), and methane (CH4) have also been suggested to possibly
serve as signaling molecules [155].

Increased understanding of the regulation of mitochondrial potassium channels by gas molecules
will not only lead to increased knowledge of intracellular ion channels, but may also contribute to the
future application of these substances and their donor molecules to cytoprotective treatment.
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