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Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been 
identified as drivers in the development of several tumor types. Most notably, cytosolic 
IDH1 is mutated in 70–90% of low-grade gliomas and upgraded glioblastomas, and 
mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type 
IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in 
the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that 
converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an 
“oncometabolite,” inhibits key α-KG-dependent enzymes, resulting in alterations of the 
cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of 
tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad 
metabolic reprograming that extends beyond 2-HG production, and this reprograming 
often differs from what has been previously reported in other cancer types. In this review, 
we will discuss in detail what is known to date about the metabolic reprograming of 
mutant IDH cells, and how this reprograming has been investigated using molecular 
metabolic imaging. We will describe how metabolic imaging has helped shed light on the 
basic biology of mutant IDH cells, and how this information can be leveraged to identify 
new therapeutic targets and to develop new clinically translatable imaging methods to 
detect and monitor mutant IDH tumors in vivo.

Keywords: mutant iDH1, metabolic reprograming, magnetic resonance spectroscopy, molecular imaging, cancer, 
2-hydroxyglutarate, low-grade gliomas

inTRODUCTiOn

Altered cellular metabolism is a feature of malignant cancer cells (1–4). In the 1920s, Warburg 
described the elevated conversion of glucose into lactate, which occurs in tumor cells even under 
normoxia (Warburg effect) (5). Contrary to Warburg’s hypothesis that held defective mitochondrial 
function responsible for aerobic glycolysis, it is now understood that tumor cells actively reprogram 
cellular metabolism to support tumor growth and metastasis (6–8). This increased glucose con-
sumption and glycolytic flux contribute to acidification of the microenvironment, likely facilitating 
metastasis (9). Furthermore, glycolytic intermediates are used for anabolic reactions leading to 
nucleotide, phospholipid, and amino acid biosynthesis, providing the building blocks required for 
cell proliferation (7, 8, 10). Additionally, glutaminolysis provides the anaplerotic flux to replenish 
TCA cycle intermediates depleted for biosynthetic purposes and generates NADPH required for 
redox homeostasis and lipid synthesis (11–13). Choline metabolism is also modulated to provide 
precursors for membrane biosynthesis (14).
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To date, the emerging paradigm recognizes that oncogene 
and tumor suppressor signaling pathways are responsible for the 
deregulation of metabolic pathways in cancer (15–22). Mutations 
in the PI3K and LKB1–AMPK signaling pathways, Myc and Ras 
oncogenes, and the tumor suppressor p53 all reprogram metabo-
lism (16, 23–34). However, the discovery of tumors with gain-
of-function mutations in metabolic enzymes provides strong 
evidence that altered metabolism can also result from mutations 
in metabolic enzymes. This is particularly true for tumors with 
mutations in the cytosolic or mitochondrial forms of isocitrate 
dehydrogenase (IDH1 and IDH2, respectively) (19, 35, 36).

Mutations in IDH1 were first described in a whole-genome 
sequence analysis of glioblastoma patients (37). Subsequent 
studies confirmed the presence of IDH mutations in 70–90% of 
low-grade glioma and secondary glioblastoma, in ~20% of acute 
myeloid leukemia, and in intrahepatic cholangiocarcinoma, 
chondrosarcoma, and melanoma (36, 38, 39). The IDH1 muta-
tion is one of the earliest known genetic events in low-grade 
gliomas, and it is thought to be a “driver” mutation for tumo-
rigenesis (40). Discovery of the IDH1 mutation has also led to 
a molecular (rather than histological) classification of gliomas 
(41). Presence of the IDH1 mutation in this new classification is 
associated with a more favorable prognosis compared to tumors 
with wild-type IDH1 (42). The reasons for this better prognosis 
remain to be determined, but different cellular metabolism could 
be a contributing factor.

From a metabolic perspective, mutations in IDH1 and IDH2 
lead not only to the loss of wild-type enzyme activity [inter-
conversion of isocitrate to α-ketoglutarate (α-KG)] but also to 
a gain-of-function that results in the conversion of α-KG to the 
“oncometabolite” 2-hydroxyglutarate (2-HG) (43). 2-HG is a 
competitive inhibitor of multiple α-KG-dependent dioxygenases, 
such as the prolyl hydroxylases, the Jumonji C family of histone 
demethylases, and the TET family of DNA hydroxylases (44). 
As a result, IDH1/2 mutant cells undergo extensive epigenetic 
modifications that ultimately result in tumorigenesis (45–48).

Among other changes, the IDH mutation leads to alterations 
in cellular metabolism extending beyond 2-HG production. 
Interestingly, many of these changes differ from those observed in 
other, non-IDH mutated, cancer cells. To date, the metabolic char-
acterization of mutant IDH cells has been carried out using either 
mass spectrometry (MS) or magnetic resonance spectroscopy 
(MRS) (49). MS has the advantage of exquisite sensitivity (as low 
as picomolar) yielding a wealth of information on a wide range of 
cellular metabolites. However, with some exceptions (e.g., acute 
myeloid leukemia), MS requires the destruction of cell/tissue 
sample; and hence, clinical translation is limited. MRS can only 
detect metabolites above 0.1–1 mM and in vivo spectra at clini-
cal field strengths cannot resolve closely resonating metabolites. 
Nonetheless, MRS can be used as a translational, non-invasive 
modality to detect and quantify metabolites in cells and in vivo 
in animals and patients. 1H- and 31P-MRS can be used to quantify 
steady-state metabolite levels, whereas 13C- and hyperpolarized 
13C-MRS can be used to monitor metabolic fluxes (50–55).

In this review, we will discuss what is known about the 
metabolic reprograming of mutant IDH cells from a molecular 
imaging perspective. We will begin by reviewing the various MRS 

approaches that have been applied to image 2-HG. This will be 
followed by a comprehensive discussion of metabolic alterations 
in mutant IDH tumors and the imaging methods used to inves-
tigate these changes. We will describe how molecular imaging 
has helped shed light on the basic biology of mutant IDH cells 
and will address how this knowledge could serve to identify new 
therapeutic targets and novel methods for imaging mutant IDH 
tumors in the clinic.

iMAGinG 2-HG AnD 2-HG PRODUCTiOn

Ex Vivo Measurement of 2-HG Levels
The most obvious metabolic change in IDH mutant cells is the 
production of 2-HG (Figure 1). Using MS, Dang et al. reported 
elevated levels of 2-HG (5–35 μmol/g tissue) in patient glioma 
tissues (43). Gross et al., again using MS, reported elevated 2-HG 
levels (~10,000 ng/2 × 106 cells) in extracts from patients with 
IDH1/2 mutant acute myeloid leukemia (38). Elkhaled et  al. 
used 1H high-resolution magic-angle spinning spectroscopy 
(HRMAS) to quantify 2-HG levels in patients with low-grade 
glioma (56). 2-HG levels correlated with the IDH1 mutation 
determined by immunohistochemistry with 86% concordance. 
Interestingly, 2-HG levels across tumor samples of different 
grades correlated positively with increased cellularity and mitotic 
density on histopathology, suggesting that the amount of 2-HG 
per cell remained unchanged during malignant transformation. 
This finding is consistent with the role of mutant IDH1 as a driver 
mutation essential for initiating tumorigenesis (40). Kalinina 
et al. also analyzed tumor biopsy samples from low-grade glioma 
patients using two-dimensional (2D) correlation spectroscopy 
(COSY) (57). In a randomized blinded analysis of 45 glioma 
samples, spectroscopic analysis was successful in quantifying the 
2-HG cross-peaks in IDH mutant tissues with 97.8% accuracy.

In Vivo Measurement of 2-HG Levels
Although 2-HG levels are relatively high in IDH1 mutant tumors 
(5–35  mM), in  vivo detection using 1H-MRS is hampered by 
the presence of overlapping resonances from glutamate and 
glutamine in the 2–3 ppm region of the spectrum. Strategies to 
enable proper 2-HG quantification therefore need to be imple-
mented, either at acquisition or at postprocessing.

Two studies validated a single-voxel 1H-MR double-echo Point 
RESolved Spectroscopy (PRESS) sequence to estimate 2-HG 
levels in mutant IDH1 tumor patients (58, 59). Pope et al. evalu-
ated 27 patients with glial tumors using a dedicated LC-model 
postprocessing analysis to measure 2-HG in tumor voxels. They 
found significantly elevated 2-HG levels in IDH mutant tumors 
compared to wild-type tumors and correlated the 2-HG levels 
with values measured by MS (58). Choi et al. examined 1H-MRS 
data from 30 glioma patients in a manner blinded to IDH muta-
tional status (59). In this study, in addition to postprocessing 
dedicated to fitting the data, the authors also carefully optimized 
the acquisition echo time to minimize the overlap between 2-HG 
and glutamate/glutamine resonances. In every case where 2-HG 
was detected by MRS, the sample showed the presence of an 
IDH1/2 mutation. Conversely, the absence of a 2-HG signal was 
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associated with IDH wild-type status. In a third study, Andronesi 
et  al. used a more complex 2D-COSY MRS method to detect 
2-HG in mutant IDH1 glioma patients and in ex vivo biopsy 
samples (60). Use of the 2D acquisition method could prevent 
false-positive detection of 2-HG that might result from improper 
fitting of 1D MR spectra and the spectral proximity of 2-HG to 
glutamate/glutamine. However, the acquisition time for 2D data 
is significantly longer than 1D method and thus potentially more 
challenging to implement in the clinic.

In Vivo Measurement of 2-HG Production
13C-MRS has been used extensively, especially in the preclinical 
arena, to inform on real-time metabolic fluxes by probing the 
fate of exogenous 13C-labeled substrates (61). However, 13C-MRS 
lacks sensitivity and therefore requires relatively long acquisi-
tion times to achieve an adequate signal-to-noise ratio (SNR), 
limiting its implementation in vivo. The recent development of 
dissolution dynamic nuclear polarization (DNP) can overcome 
this limitation. Using dissolution DNP, 13C-labeled compounds 
can be hyperpolarized, dissolved into solution, injected into 
the sample (or subject), and be rapidly detected by MRS with a 
10,000- to 50,000-fold increase in SNR compared to thermally 
polarized compounds (62, 63). 13C-MRS of hyperpolarized 

compounds has been used to monitor enzymatic activities in 
solution, cells, and in vivo (51, 64–66). Using this technology, our 
laboratory designed and validated a new DNP probe, hyperpolar-
ized [1-13C]-α-KG, for non-invasive 13C-MRS imaging of 2-HG 
synthesis. We showed that, following injection of hyperpolarized 
[1-13C]-α-KG, the production of hyperpolarized [1-13C]-2-HG 
could be detected in lysates and in orthotopic mutant IDH1 
tumors in rodents, but not in their wild-type counterparts 
(Figure 2) (67). By providing dynamic information with regard to 
the metabolic fate of hyperpolarized [1-13C]-α-KG, this approach 
provides complementary information to 1H-MRS, which detects 
steady-state levels of 2-HG. As such, the hyperpolarized method 
can inform in real-time on the presence of active mutant IDH1 
and on potential inhibition of mutant IDH1 by novel therapies.

Metabolic Precursors of 2-HG
Although thermal equilibrium 13C-MRS is not readily translat-
able, it can be used to monitor metabolic fluxes in the preclinical 
setting and has been used to identify the metabolic precursors 
of 2-HG. Dang et al. demonstrated that glutamine is the major 
precursor of 2-HG (43). However, we and others have demon-
strated that glucose also contributes to 2-HG synthesis. In a study 
by Pichumani et  al., mutant IDH1 glioma patients received an 
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infusion of [U-13C]-glucose during surgical tumor resection (68). 
Ex vivo 13C-MRS on biopsy extracts revealed 13C-labeling in 2-HG, 
indicating that glucose contributes to 2-HG production. In our 
laboratory, we incubated two IDH1 mutant glioma models with 
[1-13C]-glucose and [3-13C]-glutamine and analyzed the propor-
tion of 13C-labeled 2-HG derived from each precursor. We found 
that ~20% of 2-HG was derived from glucose and ~80% from 
glutamine (69). These findings have therapeutic implications 
since inhibiting glutaminase (the enzyme that converts glutamine 
to glutamate, the precursor of α-KG and 2-HG) has been explored 
as a therapeutic target for IDH mutant cells, without considering 
that glucose could serve as an alternate source of 2-HG (70, 71).

iMAGinG MeTABOLiC RePROGRAMinG 
in iDH MUTAnT CeLLS

Although the most obvious metabolic change in IDH mutant cells 
is the production of 2-HG, a number of studies indicate that IDH 
mutant cells undergo broader metabolic reprograming. Reitman 
et  al. conducted an MS-based metabolomic analysis of oligo-
dendroglioma cells engineered to express wild-type or mutant 
IDH1 and IDH2 (72). Mutant IDH1/2 cells showed significantly 
increased levels of several amino acids, such as glycine, serine, 
threonine, asparagine, phenylalanine, tyrosine, tryptophan, and 
methionine (Figure  2). Glycerophosphocholine (GPC) levels 
were also higher, whereas glutamate, aspartate, and N-acetylated 
amino acid levels were reduced in IDH mutant cells compared to 
wild-type (Figure 2). Ohka et al. also carried out an MS analysis 
of wild-type or mutant IDH patient glioma tissues and reported 
a significant decrease in the levels of N-acetylated amino acids 
and glutamate (73). Additionally, both studies reported no 
change in glycolytic or pentose phosphate pathway intermedi-
ates in IDH mutant cells. We used high-resolution 1H-MRS to 

compare the metabolome of U87 cells expressing wild-type or 
mutant IDH1 and the metabolome of normal human astrocytes 
(NHA) expressing wild-type or mutant IDH1 (74). In line with 
MS observations, we found that the 1H-MRS-detectable steady-
state levels of intracellular lactate, glutamate, and phosphocholine 
(PC) were significantly reduced in IDH1 mutant cells relative to 
wild-type, and GPC levels were higher (Figure 2). Collectively, 
these studies demonstrated that mutant IDH cells broadly repro-
gram their metabolism and laid the foundation for more in-depth 
investigations, as reviewed below.

Aerobic Glycolysis
In our 1H-MRS study, we observed a reduction in intracellular 
lactate levels in IDH1 mutant glioma cells (Figure 2), suggesting 
that their metabolic reprograming could differ from other types 
of cancer cells (74). Chesnelong et al. confirmed this hypothesis 
and demonstrated that expression of lactate dehydrogenase A 
(LDHA), which catalyzes the production of lactate from pyru-
vate, was reduced in IDH mutant patient-derived glioma tissues 
compared to IDH wild-type glioblastoma that display elevated 
lactate production (75, 76). Importantly, LDHA silencing was 
mediated by increased promoter methylation consistent with the 
hypermethylator phenotype of IDH mutant cells.

In an effort to develop a complementary and clinically relevant 
imaging method for probing mutant IDH1-associated LDHA 
silencing, we recently investigated the fate of hyperpolarized 
[1-13C]-pyruvate in the BT142 patient-derived mutant IDH1 
model in  vivo. We found that hyperpolarized [1-13C]-lactate 
produced from hyperpolarized [1-13C]-pyruvate was comparable 
between mutant IDH1 tumors and normal brain in the BT142 
model, in contrast to wild-type IDH1 glioma models, wherein 
hyperpolarized [1-13C]-lactate is significantly higher than in 
normal brain (77).
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Glutamate Metabolism and TCA Cycle
Glutamate levels are reduced in IDH mutant cells compared 
to wild-type (72–74). Furthermore, using 1H-MRS, Choi et  al. 
showed that mutant IDH1 tumors showed reduced glutamate lev-
els compared to normal brain, indicating that reduced glutamate 
could serve as a biomarker of mutant IDH1 tumors (78). In an 
effort to understand and image the metabolic alterations leading 
to glutamate reduction, several studies have been performed, 
each investigating a different step in glutamate production.

Branched chain amino acid (BCAA) transferase (BCAT) 1 
and 2 catalyze the transfer of an amino group from BCAA to 
α-KG, resulting in the production of glutamate and α-keto acid. 
Tonjes et  al. reported that BCAT1 expression was significantly 
reduced in IDH mutant cells (79). To image this reprograming, 
we expanded on our previous study (67) and used hyperpolar-
ized [1-13C]-α-KG to monitor hyperpolarized [1-13C]-glutamate 
production in mutant IDH1 tumors (80). We showed that 
conversion of hyperpolarized [1-13C]-α-KG to glutamate was 
reduced in mutant IDH1 tumors compared to wild-type, in line 
with decreased BCAT1. In addition, we observed decreased 
expression of aspartate transaminase (GOT1) and glutamate 
dehydrogenase (GDH), two other enzymes catalyzing α-KG to 
glutamate metabolism, suggesting additional metabolic repro-
graming associated with the IDH1 mutation (Figure 2). BCAT1 
and GOT1 promoter methylation is higher in mutant IDH cells, 
providing a likely mechanistic link between the IDH1 mutations 
and reduced α-KG to glutamate conversion (46, 79).

When considering the hyperpolarized approach for imag-
ing glutamate production, our studies monitoring the fate of 
hyperpolarized [1-13C]-α-KG used pulse sequences optimized 
for the detection of only one metabolite: 2-HG or glutamate. 
However, further optimization of pulse sequences for detection 
of both 2-HG and glutamate could provide a molecular imaging 
approach that would simultaneously image IDH mutational sta-
tus and the metabolic reprograming specifically associated with 
the mutation.

In an effort to consider additional metabolic alterations 
that could lead to a drop in glutamate levels, we used thermal 
equilibrium 13C-MRS to probe upstream metabolic precursors of 
glutamate (69). We found that there was a significant reduction 
in 13C-labeled-glutamate derived from [1-13C]-glucose in IDH 
mutant cells compared to wild-type resulting from lower PDH 
activity (69). Further mechanistic studies revealed that PDH 
activity was reduced due to increased inhibitory phosphoryla-
tion mediated by elevated expression of pyruvate dehydrogenase 
kinase 3 (PDK3), downstream of mutant IDH-driven stabilization 
of hypoxia inducible factor-1α (44, 81, 82). Importantly, treat-
ment of IDH mutant cells with the PDH agonist dichloroacetate 
(DCA), not only reversed the metabolic changes induced by the 
IDH mutation but also abrogated the clonogenic potential of 
IDH1 mutant cells (69). This suggests that reprograming of PDH 
activity is essential for tumorigenesis of mutant IDH cells and 
that PDK inhibitors/PDH agonists deserve further investigation 
as potential therapeutic targets for low-grade gliomas. From an 
imaging perspective, we also demonstrated that PDH-mediated 
conversion of hyperpolarized [2-13C]-pyruvate to hyperpolarized 

[5-13C]-glutamate could be used to monitor the mutant IDH-
driven drop in PDH activity in cells (Figure 2) (69), with potential 
in vivo implementation (83).

Glutamine Metabolism
As with glycolysis, the reprograming of glutamine metabolism 
differs in mutant IDH cells compared to other cancer cells. Cancer 
cells can use a reductive pathway of glutamine metabolism in 
which wild-type IDH carboxylates α-KG to isocitrate (84–86). 
Subsequent conversion of isocitrate to citrate and of citrate to 
acetyl CoA contributes to fatty acid synthesis (86, 87). However, 
mutant IDH1 and IDH2 cannot catalyze reductive carboxyla-
tion (88), and IDH1 mutant cells show reduced metabolism of 
glutamine to citrate and acetyl CoA, resulting in altered fatty 
acid biosynthesis (89, 90). In addition, as mentioned, glutamine 
is the primary precursor of 2-HG. Imaging the fate of glutamine 
could therefore provide a useful complement to other metabolic 
imaging methods for detecting IDH status.

Infusion of human glioma patients with [U-13C]-glutamine 
prior to surgery, followed by 13C-MR analysis of metabolites 
extracted from tumor tissue has been used to estimate glutamine 
metabolism in brain tumors (91), but it is challenging to implement 
in vivo. 13C-MRS for probing the conversion of hyperpolarized 
[5-13C]-glutamine to hyperpolarized [5-13C]-glutamate has been 
reported in liver and prostate cancer cells (92, 93) and in rat liver 
tumor in vivo (93) and could potentially be used to characterize 
mutant IDH tumors. Interestingly, Venneti et al. described posi-
tron emission tomography (PET) imaging of glutamine metabo-
lism using the glutamine analog 4-18F-(2S,4R)-fluoroglutamine 
(18F-FGln) in wild-type gliomas (94). They showed uptake of 
18F-FGln in mouse xenografts in vivo, reduced 18F-FGln uptake in 
response to temozolomide treatment, and clinical translatability 
to glioma patients. Further research is needed to assess the value 
of this approach to mutant IDH gliomas.

Phospholipid Metabolism
Mass spectrometry and 1H-MRS studies have shown a drop in PC 
and increase in GPC in mutant IDH1 cells compared to wild-type 
(Figure 2). Esmaeili et al. recently used 31P-MRS to further assess 
phospholipid metabolism in glioma rodent xenografts and in 
human biopsy samples (95). They confirmed that IDH mutant 
tumors showed higher levels of GPC and also found lower levels 
of phosphoethanolamine (PE) (Figure 2). Furthermore, ratios of 
GPC:PE, PC:PE, GPC:glycerophosphoethanolamine (GPE), and 
(PC + PE:GPC + GPE) were higher in IDH mutant tumors relative 
to wild-type (95). Further studies are needed to understand the 
significance of these findings and possible correlations between 
choline-containing metabolites and IDH status. Nonetheless, 31P-
MRS could prove useful for non-invasive imaging of IDH mutant 
tumors.

COnCLUSiOn

Cancer cells actively reprogram their metabolism to sustain 
and drive increased cell proliferation. At the preclinical level, 
metabolic imaging allows visualization of biochemical pathways 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


March 2016 | Volume 6 | Article 606

Viswanath et al. Metabolic Imaging of Mutant IDH Cells

Frontiers in Oncology | www.frontiersin.org

promoting a better understanding of the physiological mecha-
nisms of tumorigenesis. It also serves to identify new therapeutic 
targets. Further studies are needed to fully elucidate the wide 
range of metabolic changes occurring in mutant IDH cells. 
Nonetheless, the unique features of glucose, glutamine, and 
lipid metabolism identified to date can already be exploited for 
molecular imaging of mutant IDH tumors. Clinical deployment 
of these imaging methods could provide a useful complement 
to anatomical imaging methods and aid in tumor detection and 
monitoring of treatment response.
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