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Abstract

Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated
with the animal’s behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not
well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we
used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background
oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to
show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms
incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of
synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1
neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs
and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater
during the depolarized phases between 30–135 degrees of theta frequency current injection. Summation gain on the other
hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled
with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of
summed inputs during the same phase window of 30–135 degrees. Overall, our study suggests that although oscillations
provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains
unaffected during membrane oscillations.
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Introduction

Oscillations in the brain have been suggested to provide single

neurons with a temporal reference to network activity. The phase

of spiking with respect to these oscillations is believed to play a role

in information coding of the stimulus features [1–4]. The

hippocampus generates rhythmic activity at unique behaviourally

relevant frequency bands [5]. The output firing of hippocampal

cells is thus a combined response to the internal state governed by

the network oscillations and external inputs it receives through the

afferent fibres [6].

Hippocampal rhythms are typically in the theta (4–12 Hz) and

gamma (30–100 Hz) frequencies. Both theta and gamma oscilla-

tions have been shown to be emergent properties intrinsic to the

hippocampal network [7–9]. Theta rhythm is typically seen during

REM sleep, spatial tasks and during learning tasks [1,10–12].

Gamma rhythms are seen in the hippocampus during sensory

stimulation, working memory maintenance and attention based

tasks [13–15]. Gamma rhythms can be classified into distinct fast

and slow frequency components routing inputs to CA1 from the

medial entorhinal cortex and the CA3 region [16]. Lower

frequency network oscillations are used for high level temporal

interactions with distant regions whereas higher frequency gamma

rhythms are implicated in more local computations [17,18]. These

rhythms are not exclusive, and gamma activity is frequently nested

within theta waves [19–21].

Here we ask the question – do membrane oscillations tune

synaptic summation in hippocampal CA1 neurons? Studies on

single neuron computation have shown that stimulus at the rising

phase of theta oscillations can reliably potentiate the cellular

response, which can be depotentiated by stimuli at the falling

phases [22–24]. In vivo and in silico studies in the cortex have shown

that the level of network activity (UP or DOWN states) affects the

amplitude and duration of the evoked post-synaptic potential (PSP)

but the summation remains linear with asynchronous inputs

[25,26]. The above studies suggest the possibility that oscillations

provide windows of opportunity where summation of synaptic

inputs is more effective.

Here we measured the postsynaptic and spiking responses of

CA1 pyramidal neurons to summed synchronous synaptic input in

the presence of sinusoidal current input representative of network

oscillations. Our experiments were designed as a physiological

implementation of the intracellular environment and readouts

during theta rhythm. This allowed us to simplify the oscillatory

interference model [4,27] to a sinusoidal current injection. Since

this technique restricts oscillatory changes to a single point and the

non-linear dendritic interactions may not be captured [4], we used

a detailed computer model to explore a variety of rhythms and

combinations of dendritic and somatic input [26].
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Together, these experimental and modeling results show that

the theta rhythm robustly gates a window for transmission of

synaptic input, but linear summation of multiple inputs remains

unaffected at all phases.

Results

In this study, we investigated the role played by rhythmic

hippocampal activity represented by sinusoidal current injection,

in tuning responses and summation properties of hippocampal

neurons to synaptic inputs. The sinusoidal current injection at

4 Hz, 40 Hz and 100 Hz were designed to simulate the

fluctuations in membrane voltage during theta and gamma (slow

and fast) spontaneous network activity typically seen in CA1

neurons in vivo [28–30]. We first characterized the responses of

single neurons to increasing levels of sinusoidal current injection at

each of the three frequencies – 4 Hz, 40 Hz and 100 Hz. We then

delivered synaptic inputs through the afferent fibres (Schaffer

Collaterals) at different phases of the background sinusoidal input.

We used a computer simulation to explore how different rhythm

frequencies of synaptic input might affect the summation. Finally,

we delivered multiple simultaneous synaptic inputs to study the

effect of sinusoidal current injection on both the spiking response

and summation properties of CA1 neurons.

Firing Rate Is Entrained to Background Current Injection
In order to investigate the response of the CA1 pyramidal

neuron to oscillatory input, we injected sinusoidally modulated

current at increasing amplitudes. The firing pattern of CA1

neurons to increasing tonic current injection has been previously

studied [31,32]. We injected increasing amplitudes of sinusoidally

modulated current at each of the 3 frequencies to simulate theta,

slow gamma and fast gamma rhythms respectively (4 Hz, 40 Hz,

and 100 Hz, Figure 1A). This gave us firing rate versus input

curves (f-I curves) and firing phase for each of the 3 frequencies.

Figures 1B–1D show average spikes per cycle of the sine wave

injected, calculated as

Average Spikes per Cycle~

Firing Rate

Frequency of the Sinusoidal Injection

ð1Þ

We found that on injecting theta frequency (4 Hz) sinusoidal

current the cell reached a maximal firing rate of 20 Hz similar to

tonic current injection [31]. The firing rate was entrained by the

frequency of the current injection (Figure 1B).

In the case of slow gamma frequency (40 Hz) current injection,

the cells showed a non-linear sigmoidal increase in the firing rate

response. However at higher current amplitudes the cells were

eventually entrained by the stimulus frequency and fired at 40 Hz

(Figure 1C). The duration of firing increased with increasing

current amplitude. It was difficult to make the cells fire at all with

the fast gamma (100 Hz) current injection. This is presumably

because depolarization was for too short a time to allow the

feedback due to the Na current to build up to an action potential.

At very high currents, the cells eventually began to fire (Figures 1A

and 1D). These strong stimuli are unlikely to be representative of

physiological conditions, and were analyzed here for completeness

of the stimulus series. There was considerable variability between

the response curves of different cells at higher frequencies of

current injection (Figure 1D).

In a behaving animal, the number of spikes fired by a CA1

neuron is known to encode spatial location. As the animal

repeatedly runs through the cell’s place field its spike timing

advances in phase with respect to the theta rhythm [2,3]. The

spike timing and phase thus encode the animal’s location. We

therefore calculated the timing of action potential (AP) firing from

the response curves to the sinusoidal current injection. With

increasing current the first AP fired at an advancing phase.

Figure 1. CA1 response entrained by sinusoidal current
injection. (A) Sine current injection into a CA1 neuron at increasing
peak to peak amplitude (y-axis) at 4 Hz, 40 Hz and 100 Hz (left to right).
The APs have been clipped at 20 mV. Scale shown in the top left corner.
Inset shows expanded views of the dashed box regions. The AP firing is
entrained to the frequency of the sine wave especially with 4 Hz
injection. Additionally, the cell spikes earlier in the cycle with increasing
current amplitude. At 40 Hz, again the spikes are entrained to the
frequency of the sine wave, but the cell goes into a quiet state after
firing, possibly due to inactivation of active channels. In the 100 Hz
case, it is difficult to make the cell fire even at high current amplitudes.
(B–D) Average spikes per cycle as a function of peak-to-peak amplitude
of current injected (N = 11 cells) in the 4, 40 and 100 Hz cases. The firing
rate is entrained by the frequency of current injection. The increase in
firing rate is sigmoidal in the 40 Hz case. (E) The latency of the first
spike shows significant phase advancement only with the theta
frequency current injection. Error bars represent SE.
doi:10.1371/journal.pone.0055607.g001

Summation Robust to Rhythmic Background
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However, we found significant phase advancement of the first AP

with increasing current amplitudes only in the case of theta

frequency (p%0.05, one-way ANOVA performed for latencies

across the various current amplitudes). The spike latency was

inversely proportional to the current amplitude (Figures 1E and

S1). We did not observe phase advancement with increasing

current amplitude in the case of slow and fast gamma frequency

current injections.

This characterization was essential since we use sinusoidal

current injection in our subsequent experiments to simulate theta

and gamma rhythms. Additionally, these experiments allowed us

to fix the current amplitude of sinusoidal injection at 60 pA. At

this current amplitude the cell did not fire action potentials, and

generated oscillations approximating membrane potentials record-

ed in vivo [28,33]. Additionally, we found that the low-pass filtering

properties [32] of CA1 neurons resulted in sparse spiking and

negligible tuning in spike timing during gamma frequencies. These

results suggest that theta frequency inputs may have stronger

phase-dependent effects on spiking responses than gamma

frequencies.

Phasic Response to Synaptic Inputs is a function of the
Background Rhythm

We next considered interactions of rhythmic (theta and gamma)

activity with excitatory synaptic inputs [34]. To replicate this

condition ex vivo, we systematically stimulated the hippocampal

neurons with afferent synaptic input in combination with

sinusoidal current injection (Figure 2). Synaptic input was given

at 16 different input phase values (Figure 2A). We hypothesized

that responses to afferent synaptic input might be a function of

frequency of background input, or of input phase, or both. We

used latency of AP firing and EPSP area as our response readouts

for spiking output and the driving force (Methods). We then

replicated this experiment in silico by simulating the inputs to the

CA1 neuron to calibrate the current injection responses (Figure 3A)

with network activity represented as barrages of excitatory and

inhibitory inputs (Figure 3B) (Methods).

Does the phase-tuning of synaptic response manifest in spiking

output? We measured spiking latency and spiking probability as a

function of phase of afferent input (Figures 4A and 4B). We found

a strong phase-tuning of spiking probability (p,0.05, Binomial

test) in the case of theta frequency background. There was a

complementary decrease in spiking latency with a negative

covariance with instantaneous background current of 20.93

(p,0.005), again in the case of theta frequency background. In

contrast to the theta frequency, slow and fast gamma frequency

current injections had a smaller phase-dependence of latency and

firing probability. The spiking probability was lower than control

for all input phases (Figure 4B).

To further characterize spiking phase dependence, we estimated

how spike generation lagged the synaptic input. We defined Phase

Lag as

Phase lag~AP spiking phase{input phase ð2Þ

At theta, slow and fast gamma frequency backgrounds, phase lag

remained constant with the input phase [35] (Figure S2). The

coefficient of variance of phase lag was comparable across the

three frequency backgrounds (coefficient of variance of 0.12, 0.11,

0.10 for 4, 40 and 100 Hz backgrounds). We also analysed the

effect of background input on the spike timing precision. Jitter in

spike timing has been shown to be low for synchronous synaptic

inputs like the afferent inputs used in this study [36]. We did not

find any significant phasic modulation of jitter (measured as

standard deviation in spike latency across trials, Student’s two-

sample t-test, p.0.05) with either frequency of background or

input phase.

We measured how EPSP area varied with the input phase, and

with the frequency of current injection. We used two cycles of the

voltage trace after the end of the EPSP to obtain a best fit sinusoid

to the cell’s response. This fitted response was then subtracted

from the EPSP trace (Figure 2B). We found that both the

amplitude and duration of the EPSP were functions of the input

phase. EPSP area was lower at the depolarising phases (30–90

degrees) and higher for hyperpolarising phases (210–315 degrees)

with all three background frequencies (Figure 4C). Specifically, the

EPSP area differed significantly from control for all input phases

except 120–180 degrees with theta frequency background

(Student’s two-sample t-test, p,0.05). EPSP area was negatively

correlated with the instantaneous amplitude of background

current injected (Pearson’s correlation coefficients, r = 20.77,

p,0.0005 for theta, r = 20.54, p = 0.066 for slow gamma and

r = 20.46, p = 0.072 for fast gamma frequency current injections).

Figure 2. Experimental Design. (A) Schematic of stimulus phase
relationships. Synaptic inputs were delivered through an electrode to
the Schaffer Collaterals at 16 different input phases on the sine-wave
background current injection into a CA1 neuron (shown by circles).
Thick black line represents the zero mean background input. (B)
Response readout EPSP area of the non-spiking region gave a measure
of the amount of charge injected into in the cell from a single EPSP
trace. The APs have been clipped at 20 mV. The latency of the AP was
also measured from the stimulus artifact. In the example shown, the
afferent input arrives at 135u to the theta frequency current injection.
We calculated the positive area up to 200 ms after the stimulus artifact
to get the total EPSP area (top panel). We then obtained a best fit
sinusoid to the cell’s response (dashed line). This fitted response was
then subtracted from the EPSP trace to get the subtracted EPSP area
(bottom panel). (C) Raw traces (each of a single trial) shown for a cell’s
(#210510s1_c1) response to synaptic inputs combined with sine
current injection. At certain phases (4 Hz, 0–180 degrees), the synaptic
input results in an AP (trimmed). The response of the cell to just
synaptic inputs without current injection was used a control. The
response of the cell is dependent both on the frequency of sinusoidal
current injection and on the phase of synaptic input.
doi:10.1371/journal.pone.0055607.g002

Summation Robust to Rhythmic Background
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An earlier extracellular study in CA1 neurons reports fEPSP slope

dependence on theta rhythm input phase that is consistent with

our intracellular readouts shown in Figure 4 [37]. This is an

important validation for the use of sinusoidal current injection as

representative of in vivo oscillations.

Together, these results suggest that the response of the cell, as

measured by spiking probability and by EPSP, appears to be tuned

by the input phase with respect to background rhythmic activity.

Further, the large changes (,50%) in EPSP size which we see with

background rhythmic input suggest that driving force may not be

the only reason for phase tuning.

Figure 3. Model Design. CA1 neurons were modelled using 25-
compartments with the inclusion of NMDA, AMPA and GABA receptors.
Note that in the cell model schematics, the basal dendrites are
positioned upward and the apical dendrites downward, consistent with
typical recording configurations. (A) Theta frequency network activity
simulated using sinusoidal current injection. This generated a sinusoidal
response at the soma with a peak-to-peak membrane potential of
,10 mV (sub-panel ii, Scale bars represent 1 mV, 20 ms). Current
injection was then given in combination with afferent synaptic input at
16 input phases. Example in sub-panel iii shows afferent inputs
converging at an input phase of 90 degrees (Scale bars represent 2 mV,
10 ms). (B) Theta frequency network activity simulated using a
patterned barrage of excitatory and inhibitory inputs. GABA inputs
were clustered on the soma and on the most proximal apical and basal
compartments (open circles). Glutamate and NMDA receptors were
distributed throughout the apical dendrite including its branches (filled
circles). Sub-panel ii shows the resulting sinusoidal theta frequency
response measured at the soma (Scale bars represent 1 mV, 20 ms).
Afferent synaptic inputs were then overlaid at 16 input phases. Example
in sub-panel iii shows afferent inputs converging at an input phase of
90 degrees (Scale bars represent 2 mV, 10 ms). Somatic responses
generated using current injection are comparable to those generated
using a barrage of synaptic inputs.
doi:10.1371/journal.pone.0055607.g003

Figure 4. Rhythmic Input Shapes Response to Synaptic Input.
Mean response of hippocampal CA1 cells to synaptic input arriving at
16 different phases of the injected sine wave. Sine waves of 3
frequencies were injected (Red: theta; Green: slow gamma, Blue: fast
gamma). The dotted line parallel to the x-axis represents the control
case with no background current injection and the sinusoidal gray trace
shows the somatic current injected at the input phases. Open symbols
represent significant data points (in comparison with the control
group). Error bars represent SE. (A) Latency of spiking is a function of
the phase with both theta and gamma frequency background. The cell
spikes earlier in the depolarizing phase of sinusoidal current injection.
This effect is more pronounced for theta frequency current injection but
does not cross the significance criterion of p,0.05. (B) The probability
of spiking following synaptic input is significantly higher between 30–
135 degrees input phase with theta current injection. The probability of
spiking is below the control for all values of input phase with slow and
fast gamma frequency current injection. Data points that are
significantly higher or lower (Binomial Test, p,0.05) than control are
represented as open symbols. (C) Subtracted EPSP area is a function of
both the phase of synaptic input and frequency of current injected.
Area is normalized to control responses with no background current.
The background sine wave injected is centered on zero current. The
best fit sinusoid to the cell’s response was subtracted from the EPSP
trace. Data points that are significantly higher or lower (Student’s t-test,
p,0.05) than control are represented as open symbols. (D) Somatic
current injection and network activity generated using a barrage of
excitatory and inhibitory inputs caused similar phasic modulation in
sinusoid subtracted EPSP area to afferent inputs. The comparison was
done using an in silico model of CA3-CA1 network. The phasic
modulation is qualitatively similar to responses measured in whole-cell
recording experiments. (E) Theta-gamma coupled inputs paired with
afferent inputs were simulated using the current injection protocol.
Two types of input were given – one, with the maximal power of
gamma frequency input aligned with the depolarized phase of theta
input (above). Two, the maximal power of gamma input coincided with
the hyperpolarized phase of theta input (below). (F) The phasic tuning

Summation Robust to Rhythmic Background
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Sinusoidal Current Injection is a good approximation for
rhythmic network activity

Several single neuron studies suggest the role of dendritic

activity in introducing non-linearities in the somatic response.

Such studies suggest that these nonlinearities may not be captured

using a simple current injection protocol [4]. To examine this, we

built a 25-compartment model of a CA1 pyramidal neuron

embedded in the CA3-CA1 network to simulate and compare the

responses with the current injection and synaptic input protocols

for theta frequency (Methods, Figure 3). Briefly, the synaptic input

protocol utilized excitatory (GluR and NMDAR) synaptic input in

the dendrites, and inhibitory (GABA-R) input at and near the

soma. The excitatory and inhibitory inputs were delivered 180

degrees out of phase with each other as suggested by the somato-

dendritic interference model [4,27]. We ran both simulation

protocols for 5 trials and compared the phasic change in average

area under curves (Figure 4D). We found that network activity

simulated using synaptic inputs causes a similar phasic modulation

of area under the curve as current injection (Pearson’s correlation

coefficient r = 0.79, p,0.0005). However, in the synaptic input

simulation we found a phase delay of ,21 degrees. This phase

shift was caused due to the capacitive elements in the model which

were compensated for in the whole-cell recordings. We also ran

simulations with 8 and 12 Hz frequency backgrounds using both

the current injection and synaptic input protocols. Our results with

8 and 12 Hz theta rhythms gave similar phase tuning to the 4 Hz.

However, as expected, phase shift between the current injection

and synaptic input cases, increased with the increase in the input

frequency (Figure S3, phase shift at 8 Hz = ,40 degrees,

12 Hz = ,70 degrees).

We then compared the simulation results (with 4 Hz theta) with

that observed in the whole-cell recordings. We found a strong

correlation between the ex vivo and in silico current injection

experiments (r = 0.75, p,0.005). The phasic relationship of lower

EPSP area in the depolarizing phases and higher EPSP area in the

hyperpolarizing phases was consistent across both the simulations

and the recordings (r = 20.77, p,0.0005 for whole-cell recording,

r = 20.96, p,0.0005 for simulated current injection and

r = 20.78, p,0.0005 for simulated synaptic input case).

We then used the simulations to investigate the role of active

channels in reducing EPSP area during depolarized phases and

enhancing EPSP area in the hyperpolarized phases. As detailed in

the methods section, we convolved the EPSC with the time-profile

of the inverse of the net conductance. We repeated this calculation

for all stimulus phases. We carried out these calculations first with

all somatic voltage-gated ion channels, and second with only the

K-channels. First, we observe that the estimated modulation of

EPSP area due to channel conductances is similar in phase to the

observed modulation of EPSP area in experiments and in

simulations (r = 0.73, p,0.001). However, the amplitude of this

modulation is smaller than in the experiments and simulations by a

factor of about 2. Second, we found that K-channels account for

almost all of the modulation of EPSP area (Figure S3) (correlation

between K-channel and all channel contribution r = 0.97,

p,0.00001). These results suggest in addition to driving force,

the modulation of K-channel conductances may also contribute to

the phasic modulation of EPSP area.

We conclude that the summation of Schaffer Collateral volley

input with sinusoidal current injection is a reasonable approxi-

mation to the summation of SC input with ex vivo theta rhythms

generated by periodic excitatory and inhibitory synaptic input.

Theta-gamma coupled input causes similar response
tuning as theta frequency

Does gamma frequency input coupled with theta frequency

affect the phase tuning? This possibility is suggested by the

observation that gamma rhythms in the hippocampus are

frequently observed riding on the theta rhythms [21]. Cross-

frequency coupling between theta and gamma rhythms has been

proposed to assist in the encoding and retrieval of short-term

memory [10,19].

We simulated cross-frequency coupled background inputs in the

25-compartment CA1 neuron model (Methods, Figure 4E). The

gamma frequency (2–3 mV) was co-modulated with theta

frequency (5–7 mV). We tested 2 cases – with gamma frequency

having maximal power at either depolarized theta (90 degrees) or

at hyperpolarized theta (270 degrees) [20,21]. We recorded the

phasic change in average area under curves with both the current

injection and synaptic input protocols. Interestingly, we found that

responses with the cross-frequency input current injection closely

matched our responses with just theta frequency input (Pearson’s

correlation coefficient r = 0.9, p,1025 for gamma on theta

depolarizing; r = 0.93, p,1026 for gamma on theta hyperpolar-

izing) (Figure 4F).

We also compared responses using synaptic input to drive the

coupled theta and gamma rhythms. Here we found that the

response tuning with gamma on theta depolarizing case correlated

positively with the response tuning seen with just theta background

(r = 0.5, p,0.052 and Figure S4). However the gamma on theta

hyperpolarizing did not exhibit strong tuning (correlation with

only theta background r = 20.17, p,0. 51 and Figure S3). We

suggest that the mechanisms for eliciting these coupled rhythms

need further detailing in order to establish the physiological

relevance of this observation. Overall, the cross-frequency

coupling simulations provide additional support for the idea that

phasic tuning of CA1 neurons is largely influenced by the slower

theta component, and that the gamma component has little effect.

Summation of Synaptic Inputs is sub-linear
In order to establish baseline summation properties of afferent

inputs in our preparation, we next asked how synaptic inputs

summed in the absence of background current injection. We

positioned an array of four stimulating electrodes on the Schaffer

collaterals (SC) of rat hippocampal brain slices. We stimulated

these electrodes in different combinations, and measured how

their responses summed (Methods).

Previous studies have shown that the distribution of synapses

receiving input on the dendrite decide the mode of integration in

CA1 neurons [36,38]. Summations investigated in this study

represented spatially distributed, synchronous synaptic stimuli

(Methods S1 and Figure S5).

We used whole-cell patch recordings readouts to record single

neuron integration of synaptic inputs without any additional

somatic current injection. We used 3 readout parameters - number

of action potentials fired, area under EPSP and latency of first AP

and compared actual response with expected response. The

expected response was calculated as a linear sum of individual

input responses. A slope of actual response to expected response of

1 represent linear summation, ,1 represents sub-linear summa-

tion and .1 represents supra-linear summation. We find that

although the response had a good linear fit, with a slope of 0.65

(linear regression fit, R2 = 0.851) the summation was sub-linear

(Figure 5A).

of EPSP area with theta-gamma coupled input closely matched the
tuning seen with just theta frequency background. The lines in the red
and black as same as those shown in Figure 4D.
doi:10.1371/journal.pone.0055607.g004

Summation Robust to Rhythmic Background
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We found that the number of APs was not a good analog

measure of input received by the neuron, because in most cases the

CA1 neuron responded with a single AP even for strong, multi-

electrode synchronous synaptic stimulation [36]. We further tested

if the presence of background neuronal input might linearize the

output response as measured by action potentials. We simulated

background input using steady as well as noisy current clamp

inputs. Here too, the number of action potentials remained a poor

readout of summed cellular inputs (Figure 5B). Finally, we looked

at the latency of AP firing as a measure of the summed input. As

expected, the latency decreased when total input increased.

Additionally, the latency of AP firing (time to fire from the

stimulus artifact) correlated negatively (Pearson’s correlation

coefficient 20.52, p,0.01, linear regression fit R2 = 0.95) with

the total input (Figure 5C). The spike latency never fell below a

minimal value of 5.761.2 ms (mean 6 s.d.).

Overall, the intracellular recordings showed that the summation

of neuronal input is sub-linear with a gain of 0.65 encoded in

intracellular potential readouts such as EPSP area.

Rhythmic excitation tunes Transmission of Summed
Synaptic Inputs

Having established baseline summation properties (Figure 5),

and the phase-dependence of single-input response to background

sinusoidal input (Figures 4), we next combined the two cases. Here

we asked if synaptic input summation rules were also modulated

by background network activity, represented here by sinusoidal

somatic current injection (Figures 6 and 7). This experiment tested

several possible outcomes. Specifically, a gain of .0.65 would

result in even stronger phase tuning of summed responses; gain of

,0.65 would reduce phase dependence, and gain = 0.65 would

preserve phase dependence of responses. Phase-selective summa-

tion on the other hand would result in a shift in the phase tuning.

The electrode array consisted of 2 electrodes, so that the

summation properties could be measured by comparing responses

of individual electrodes with the response to combined stimulus.

We again used AP timing and EPSP area as the supra-threshold

and sub-threshold response readouts. This allowed us to address

the role of the background activity in synaptic summation.

As with the single afferent input, the latency of spiking following

summed inputs was smallest in the phase window between 45 and

135 degrees for theta-frequency background input but the changes

were not significant as compared to the control (Student’s t-test

p.0.3, Figure 6A, see also Figure S6). This effect also reflected in

the phase tuning of the spiking probability (Figure 6B). Spiking

probability increased in the phase window between 30–150

degrees, and significantly decreased between 225–330 degrees

for the theta frequency background injection (p,0.05, Binomial

Test). Thus the summed inputs experienced modulation in both

depolarizing and hyperpolarizing phases of theta. There was a

high correlation (Pearson’s correlation coefficient, r.0.9) between

spiking probability and instantaneous background current with

theta rhythm, but this correlation was weaker for the two gamma

frequencies (Figure 6C). The maximum absolute spiking proba-

bility of 0.69 (11% above baseline and 20% above average) was

recorded at input phase of 90 degree with theta frequency

background current injection. However, spiking probability was

nearly flat and consistently below control with both slow and fast

gamma frequencies (p.0.05, Binomial Test). We also looked at

the relationship between the AP phase lag and precision. Both

phase lag (coefficient of variance of phase lag 0.14, 0.14, 0.13 for 4,

40 and 100 Hz backgrounds) and jitter in spike timing remained

constant for all input phases and background frequencies

(Figure 6D).

We computed a sub-threshold measure of linearity for each

phase of synaptic input for theta, slow gamma and fast gamma

frequencies of sinusoidal current injection (Figure 7A):

Figure 5. Summation of Synaptic Inputs. Whole-cell patch
recordings from CA1 neurons to multiple synaptic inputs without
background current injection. In all panels the solid line represents the
linear regression fit and the dashed line represents a slope of 1. (A)
Responses of CA1 neurons to multiple inputs using area under EPSP as
readout, plotted against sum of responses to individual inputs. Data is
plotted for 15 stimulus combinations on 4 electrodes (N = 14 cells). (B)
Responses of CA1 neurons (N = 11 cells) to multiple inputs in the
presence of background somatic current injection using area under
EPSP as a readout. Inset shows response (above) from a cell (280509_c3)
to Gaussian noise background current injected (below). The synaptic
stimuli were given at the onset of the background current. Scale bar for
current injected (X-axis 5 ms, Y-axis 100 pA). Scale bar for voltage
response (Y-axis 10 mV). (C) Latency to fire first AP is negatively
correlated with total input (N = 14 cells, averaged over 10 trials).
Expected input was calculated as the sum of EPSP slopes of single
inputs.
doi:10.1371/journal.pone.0055607.g005

Summation Robust to Rhythmic Background

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e55607



Summation Gain~
response to simultaneous inputs

sum of single input responses
ð3Þ

Sub-linear summation in the depolarizing phases and supra-linear

summation in the hyperpolarizing phases would result in strong

phase tuning of summation gain and vice versa. Uniform

summation on the other hand would result in a flat relationship

between summation gain and phase.

We subtracted the sinusoidal component from the EPSP traces

and measured phasic modulation of summation gain using EPSP

area. We found no significant phasic modulation of summation

gain with either theta or gamma frequency current injections

(Figure 7B). We did not find any significant correlation between

the summation gain and instantaneous background current

injection (Pearson’s correlation coefficients r = 20.17, p = 0.52

for theta, r = 0.22, p = 0.48 for slow gamma and r = 20.38,

p = 0.14 for fast gamma frequency current injections). We thus

conclude that the summation remained uniformly sub-linear as

measured by EPSP area.

Overall, these results support sub-linear and phase-independent

summation of synaptic input. This applies both to strong inputs

which elicit spiking, and to sub-threshold summation.

Discussion

Here we studied the role of background rhythmic input in

shaping response and summation properties of single neurons. We

found that theta but not gamma background oscillations

contribute to stimulus information coding in hippocampal

neurons. Specifically, we found that the probability of synaptic

stimulation to evoke cell firing is higher at the depolarizing phases

of theta frequency input. Furthermore, the summation properties

of cells remained robustly sub-linear, both with theta and gamma

frequency rhythms. Thus, summed inputs behaved with a similar

theta phase-dependence as the individual inputs, and spiking

responses.

Figure 6. Rhythmic Input Shapes Spike Probability. The dotted
line parallel to the x-axis represents the control case with no
background current injection and the sinusoidal gray trace shows the
somatic current injected at the input phases. Error bars represent SE. (A)
Latency of evoked APs by summed inputs (N = 12 cells) is also a
function of the phase. It is not significantly affected by the summation.
(B) Probability of spiking is tuned to input phase for summed inputs.
The probability dipped significantly between 225–330 degrees only for
theta frequency background. In the case of the gamma frequency
backgrounds, the probability was below the control (without back-
ground current injection) for all values of input phase. Data points that
are significantly higher or lower (Binomial Test, p,0.05) than control are
represented as open symbols. (C) High positive correlation between the
probability of spiking and the instantaneous current injected at input
phase is seen with only theta frequency background. The lines indicate
the best fit found using linear regression (R2 of 0.93, 0.18 and 0.46 for
theta, slow and fast gamma frequencies respectively). Data shown for
only summed synaptic inputs. (D) Phase lag remains constant with
changing input phase. This relationship remains unaffected on
summation for all three background frequencies.
doi:10.1371/journal.pone.0055607.g006 Figure 7. Summation Gain robust to Rhythmic Input Shapes

Transmission. (A) Example traces (cell # 010410s2_c3) show response
to multiple inputs (red) for 2 input phase values of 0 and 180 degrees.
Linear sum shown in black, the actual summed response shown in red
and the sinusoid subtracted summed responses in blue. (B) Summation
gain (N = 20 cells) measured as a ratio of sinusoid subtracted EPSP area
for multiple inputs to EPSP area for sum of single inputs. On subtracting
the best fit sinusoid from the responses, there is no significant phasic
modulation with either theta or gamma frequency current injection.
Error bars represent SE. The gray trace shows the somatic current
injected at the input phases.
doi:10.1371/journal.pone.0055607.g007
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Computational Implications of Phase Dependent Firing
In many brain areas, the firing rate code is strongly modulated

by sensory inputs and the behavior of the animal. It is also known

that using additional information about the timing of firing with

respect to network activity rhythms may refine encoding, and

contribute to behavioral accuracy as seen during phase precession

in spatial tasks [2,27,39]. This output phase code allows precise

prediction of the animal’s location from neuronal response. Our

results show that phase coding is analog in nature, thus resulting in

a gradual modulation of responses with phase. It suggests two

possible mechanisms that may result in phase advancement – one,

by ramping up the excitatory inputs, thus resulting in an increase

the amplitude of the theta rhythm (Figure 1C) and two,

modulating the input phase of the afferent inputs. We show that

modulations in input phase result in corresponding shifts in the

output phase (Figure 4A). Furthermore the slow changes in

membrane potential as seen during theta but not gamma

frequency oscillations are necessary to facilitate phase coding.

Phase coding has also been observed with gamma oscillations as

temporal reference especially in the cortex. Pyramidal neurons in

the visual cortex are known to preferentially fire in a small

temporal window when the network is engaged in gamma

oscillations. Furthermore, cells that do not fire early are not able

to fire at all in the cycle [40]. A study by Burchell et. al. has earlier

shown that gamma frequency oscillations are shut down by

afferent inputs to the same synapses [41]. However, we do not see

this effect in our study where our afferent synaptic inputs are

independent of the membrane oscillations and we do not activate

the GABAergic network with our oscillatory input. Our study

showed marginal input phase tuning of responses with both slow

and fast gamma frequency oscillations in the hippocampus. The

spiking latency following synaptic input was shorter for only a

narrow window between 30–60 degrees (Figure 4A). It should be

noted here that in experiments with fast gamma injection several

synaptic inputs arrive within a millisecond of each other. In such

cases, it is difficult to distinguish between the two inputs; however

even when synaptic inputs arrive at distinct time points we still do

not find any significant response tuning. We find that neither slow

nor fast gamma oscillations exhibit strong phase coding.

Network oscillations provide a broad temporal framework

reflecting the general behavior of the animal, for instance, theta

oscillations during locomotion or gamma oscillations during

sensory stimulation [5,14,40]. Within this framework is embedded

a second level of precise information encoded in the form of phase

coding in neurons. Phase coding is a possible method to amplify

signal to noise, by eliminating weak inputs [40,42]. Our findings

highlight the fact that neuronal response is modulated with respect

to the phase of the afferent inputs as well as the frequency of the

network oscillations in an analog manner (Figure 4B). The output

readout of a hippocampal neuron thus integrates two input

features – frequency of network activity and timing of synaptic

inputs. The frequency of network activity is characteristic of the

behavioral context and the timing of synaptic inputs is a possible

correlate of the sensory information.

Network vs. intracellular computation
Membrane potential oscillations in vivo have been hypothesized

to be caused by interactions between dendritic excitation and

somatic inhibition. Thus the neuron constantly gets a barrage of

synchronous synaptic inputs which interact with asynchronous

input at various input phases. While network input differs from our

intracellular input in having a dendritic rather than somatic

location, we consider this a reasonable approximation on four

grounds [4]. First, we find that summed synaptic input from

multiple input electrodes behaves in a similar manner to single-

electrode synaptic input, suggesting that our results are not very

sensitive to the extent of dendritic activation (Figure 5). Extensive

literature on summation in CA1 neurons demonstrate that the

nature of inputs decide the summation properties. Non-linear

summation is seen typically when inputs are spatially or temporally

clustered [36,43]. Additionally, the summation properties also

depend on the readout parameter; in our experiments we have

used EPSP area which is a temporally broad but robust signal.

Given the nature of our input and readout parameter, we expect

summation of be sub-linear. Saturation of inputs will result in

saturation of EPSP area, which we do not observe. Second, we

obtain comparable phase dependence of our intracellular EPSPs

to extracellularly recorded field EPSPs from in vivo studies in which

dendritic network input is present [37]. In this earlier study, Wyble

et. al. describe findings of field EPSP slope dependence on theta

phase. They report the slope to be largest ,290 degrees and

smallest ,100 degrees of intracellular theta. Our intracellularly

recorded data are in agreement with this (Figures 4C). Third,

resonance in membrane potential responses was seen at theta

frequency in slice experiments in hippocampal CA1 neurons using

sinusoidal current injection [30]. This resonance frequency

matched the spontaneous oscillation frequency suggesting the

same voltage dependent phenomenon driven by sinusoidal

injection as seen in vivo. Fourth, we were able to replicate the

phase-dependence of our intracellular EPSPs in a detailed

compartmental model. This model behaved in approximately

the same manner for somatic current injection as for spatially

separated theta-frequency inhibitory and excitatory synaptic input

(Figure 4D). Together, these observations suggest that our

approach of simulating network activity using sinusoidal intracel-

lular current injection is a reasonable approximation to actual

periodic network activity. Furthermore, the simulations suggest

that the outcome of such stimuli are relatively insensitive to

variations within the theta frequency range (4–12 Hz) and also to

overlaying gamma frequencies on the theta rhythm. Using

intracellular recordings, we are able to extend the EPSP phase-

dependence analysis to show a significant increase in probability of

AP generation at shorter latencies between phases of 0–180

degrees and a significant reduction in probability at the

hyperpolarizing phases between 270–360 degrees. For example,

this could enhance sensitivity of the cell to smaller inputs in this

phase range (Figure 4A). We interpret the anti-correlation between

spiking activity and EPSP area as arising from the K-channel

activation mediating post-spike hyperpolarisation. This phenom-

enon of increasing duration of hyperpolarisation has also been

shown to enhance the precision of the next AP [44].

Computational implications of robust summation during
theta

The hippocampus has been extensively studied because of its

role in short-term memory [45]. The hippocampus temporarily

binds together information from various sensory modalities to

represent the information holistically [5,46–48]. Sensory input

from various cortical areas impinges on the hippocampus in the

form of afferent inputs while their membrane potential oscillates at

various frequencies. Since the response is phase-dependent, there

is only a narrow time window in which the neuron can maximally

transmit and thus receive information. This has led to the

hypothesis that oscillations are a mechanism to synchronize

neurons and play a critical role in input integration [5,49–51].

It has been suggested that the integration of multiple sensory

inputs into a single percept (poly-modal binding) can be broken

down into two distinct inputs. One, temporally synchronous
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sensory inputs sent to the hippocampus from the various cortical

regions and two, phase-locking oscillations between the hippo-

campal-cortical circuits [5,40,46,50,52]. In this model, the

hippocampus integrates both these inputs and records a unified

‘memory engram’ of the event. The present study suggests a

mechanism for such integration. Our findings show that the

hippocampus preferentially transmits summed inputs arriving in a

narrow phase window of theta frequency current injection

(Figure 6B). This provides the network a ‘window of opportunity’

where the neuron’s response is selectively amplified. Neurons in

the brain constantly encounter inputs from a large number of

sources which reflects in the network activity. It still remains highly

debated whether the oscillations are essential to the neuronal

function, or whether the neuronal functions are carried out despite

the fluctuations. Our results show that although the neuronal

response oscillates with the background input, a functionally

critical property - summation gain - remains robust to oscillatory

background inputs (Figure 7). Summation remains unperturbed

even as background input fluctuates between intense and sparse

activity. This is a theoretically desirable property for a distributed

system like the brain with large input convergence and large

output divergence.

Materials and Methods

All of the experimental procedures were approved by the

National Centre for Biological Sciences institutional animal ethics

committee, in accordance with the guidelines of the Government

of India.

Electrophysiology
400 mm transverse hippocampal slices were prepared from 4 to

6 week old male Wistar rats using a vibratory microtome

(Vibratome 1000 classic series, Vibratome, USA) in ice-cold

artificial cerebro-spinal fluid (aCSF) containing (in mM)—118

NaCl, 2.5 KCl, 2.5 CaCl2, 1.25 Mg Cl2, 1.25 NaH2PO4, 26

NaHCO3, and 10 glucose, saturated with carbogen gas (95% O2,

5% CO2). Slices were equilibrated in aCSF at room temperature

(22–25uC) for 60 min. The response was recorded using whole cell

recordings in current clamp mode. Internal solution used to fill the

pipette contained (in mM) – 120 K-gluconate, 6.66 KCl, 10

HEPES, 2 MgCl2, 0.3 Na-GTP, 0.2 EGTA, 4 Mg-ATP, 14

Phosphocreatine and was adjusted with KOH to pH 7.2–7.3

and with sucrose to osmolarity 280–300 mOsm. Whole cell

voltage recordings from the CA1 soma were recorded with an

amplifier (HEKA EPC10) under visual guidance by infrared

differential interference contrast video microscopy. Patch pipettes

were pulled from standard-wall borosilicate tubing. Junction

potential and capacitance were corrected for. Experiments in

which the series resistance or input resistance changed by more

than 30% were discarded and only cells with resting membrane

potential negative to 255 mV were included in the analysis.

Voltages were not corrected for liquid junction potential,

estimated to be ,7 mV. Signals were filtered at 5 k Hz and

analysed offline.

Input Design
Tonic Sinusoidal Current Injection. We first recorded the

neuronal response to tonic sinusoidal current injection at

increasing amplitudes ranging from 50–500 pA in steps of

50 pA. The patched neurons were held at resting potential. Based

on these recordings we fixed 4 Hz, 40 Hz and 100 Hz sinusoidal

wave at a peak-to-peak amplitude 60 pA and zero mean as our

reference sinusoidal inputs (Figure 1). This generated ,5–10 mV

and ,2–5 mV peak to peak membrane potentials for theta and

gamma respectively, which is in the range observed in vivo

[3,28,33]. The cell did not spike with the background sinusoidal

current injection.

The sinusoidal injected current modeled intracellular mem-

brane potential fluctuations caused by rhythmic network activity.

One of the widely accepted ex vivo models of theta activity in the

hippocampus is the somato-dendritic interference model [27].

This model replicates many characteristic features of the

extracellular and intracellular membrane potential changes

recorded in an animal running in a track [2]. According to this

model, the phasic excitatory input impinges onto the dendrite and

phasic inhibitory input impinges proximal to the soma. Our

sinusoidal current injection is an attempt to simplify this model

further. All oscillatory effects are restricted at a single point since

our readouts are only intra-cellular. We validate this protocol

further using a simulated model of CA1 neuron.

In the case of gamma rhythm in CA1 neurons, the oscillation

frequency predominantly depends on GABA receptor mediated

inhibition. The slow and fast gamma rhythms are routed through

CA3 and medial EC, which synapse onto the fast-spiking basket

cells whose firing drives gamma oscillations [53]. Since both slow

and fast gamma rhythms are routed through GABAergic

interneurons, we approximate the intrinsic effects by sinusoidal

current injections at 40 and 100 Hz. Additionally, since we use

only impulse afferent inputs the interaction caused by the

coherence in fluctuations between the CA3 and CA1 neurons

can be safely neglected.

Calibration of Afferent Input Summation. We then

calibrated the summation properties of hippocampal CA1

responses to near threshold afferent inputs without somatic

current injection. The stimulating electrodes used to inject

synaptic input consisted of an array of custom made twisted

bipolar electrodes (Nichrome, 50 mm outer diameter). The

electrodes were aligned as close together as possible and placed

along the dendritic axis stimulating the Schaffer Collaterals a few

millimeters from the recorded neurons. In previous work we have

shown that this arrangement results in a very small overlap

between electrodes when tested using cross-electrode paired pulse

facilitation [54]. The synaptic inputs are distributed along the

dendrite and largely stimulate the Stratum Radiatum layers

(Methods S1 and Figure S5). The input currents ranged between

0.04–0.3 mA. Currents were delivered using a Master-8

(A.M.P.I.). We delivered a single pulse of current (duration

60 ms) synchronously to the Schaffer Collaterals as the afferent

input. We used 4 input electrodes and were thus able to give 15

stimulus combinations (2Nel-1), of which 11 were summed

combinations (N = 12 cells) (Figure 5). We also injected noisy

background current into the soma while giving synaptic input

patterns (3 patterns with 2 electrodes) at the Schaffer Collaterals.

The currents injected were Gaussian noise (mean 6 sd, 0620 pA

and 0640 pA). The background input given for 40 ms and the

afferent inputs were given at the onset of the background stimuli.

This protocol did not elicit multiple APs.

Combining sinusoidal current injection with afferent

inputs. In an independent set of recordings we combined

sinusoidal current injection with afferent inputs (N = 13 neurons).

The patched neurons were held at resting potential. The sinusoidal

current injection was delivered at the same 60 pA amplitude and

zero mean (N = 20 cells). Synaptic inputs were overlaid with the

current injection to the cell at different phase values with respect to

the sinusoidal current injected at the soma. We refer to the phase

of synaptic input with respect to the background sinusoidal input

as the ‘‘input phase’’. Synaptic input was delivered at 16 input
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phase values of – 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240,

270, 300, 315, 330 and 360 degrees. Thus if the synaptic input

coincided with the start of the sinusoid, the input phase was zero,

and if the synaptic input was a quarter cycle later the input phase

was 90 degrees (Figure 2A). Input patterns were interleaved

between single, multiple synaptic inputs and 16 input phase values

with 5 repetitions at each input pattern. We also recorded

responses to synaptic inputs without background sinusoidal

injection as a control measure. Our response readouts were

spiking probability, latency, phase of AP firing and area under the

EPSP with respect to the sinusoidal current. Spiking probability

was calculated as the ratio of number of trials in which the cell

spiked to the total trials with data pooled from all cells for a given

phase and frequency value. This gives us a single probability for

each phase value. The spiking probability at each input was

normalized to control spiking probability without background

input to get the relative spiking probability. The statistics were

calculated using a Binomial Test which gives the significance of the

deviation of relative spiking probabilities from 1 (control). Latency

was defined as the time of spiking from the stimulus artifact

measured in ms. Latencies were compared only for cells which

spiked at least once at every phase and frequency value. Phase of

AP firing was calculated as the phase of output spike with

reference to the input sinusoidal current injection. EPSP area was

calculated over a time period 200 ms.

Model
We modelled inputs to the CA1 neuron using the GENESIS

simulator using a 50 ms time step [55]. CA1 neurons were modeled

as 25-compartment neurons modified from Bhalla (2011) [56]

which in turn was based on Traub et al. [57] with the inclusion of

NMDA, AMPA and GABA receptors. Model geometry and

channel details are presented in Table S1. In brief, GABA inputs

were clustered on the soma and on the most proximal apical and

basal compartments (Figure 3). Glutamate and NMDA receptors

were distributed throughout the apical dendrite including its

branches. Synaptic weights were set up using a Gaussian-based

distributions (Mean synaptic probability of 0.4). We designed 4

simulation experiments using this model.

1. We first recorded the CA1 neuron’s response to tonic

sinusoidal current injection at increasing amplitudes ranging

from 50–500 pA in steps of 50 pA. This generated ,5–10 mV

peak to peak membrane potentials for theta frequency injection

similar to the experimental results.

2. Network activity simulated using Current Injection – We

replicated our experiment here. We gave synchronous synaptic

inputs overlaid with sinsusoidal somatic current injection to the

CA1 neuron at 16 different phase values with respect to the

sinusoidal wave (Figure 3A).

3. Network activity simulated using Synaptic Input patterns – We

replicated the somato-dendritic interference model here.

Excitatory and inhibitory pre-synaptic inputs were given to

the CA1 in order to generate a 4 Hz oscillatory sine wave at

the soma. Excitatory inputs were delivered at the apical

dendrites and their branches, whereas inhibitory inputs were

present only at the soma and proximal basal dendrites, and the

proximal 120 mm of the apical dendrite [4] (Figure 3B). The

pre-synaptic input was modelled as input spikes that arrived at

each synapse as Poisson spike trains with a probability

modulated with a sine wave. The positive part of the sine

wave modulated the glutamate/NMDAR inputs, and the

negative part of the sine wave was rectified and used to

modulate the probability of inputs to the GABA receptors.

Synaptic weights were calibrated to generate a reasonable sine-

wave potential at the soma (Figure 3Bii). In addition to the

sinusoidal current or synaptic input, synchronous excitatory

inputs were overlaid to represent our electrode input to the

Schaffer Collaterals. Model voltage changes were recorded at

the soma (Figures 3A and 3B subpanel iii).

4. Theta-gamma coupled model – We designed 2 simulation

experiments with cross-coupled frequency input. The power

and timing of gamma rhythm on theta are the two key

parameters of cross-frequency coupled inputs in hippocampus

[20,21]. The power of gamma frequency was gradually

modulated in time. We designed 2 cases – where the maximal

power gamma input was either incorporated at 90 degrees or at

270 degrees (Figure 4E) [20,21]. We designed these input

stimuli with both current injection and synaptic input pattern

protocols. As in model 3, we provided excitatory (GluR and

NMDAR) synaptic input in the dendrites, and inhibitory

(GABAR) synaptic input in the soma and near-proximal

dendrites.

In addition to these four simulated experiments, we also used

the model to investigate the contribution of voltage gated

channels, and specifically K+ channels, to the phase dependence

of EPSP area. To do this we computed the EPSC (excitatory post-

synaptic current) due to the same simulated volley synaptic input

as in the ‘experiments’ above. We then computed the sum of all

the somatic voltage-gated ion channel conductances, as well as the

sum of all the somatic K+ channel conductances, at a series of

time-points from 5 to 35 ms. We did this for all the stimulus-phase

combinations in ‘experiment’ 2 above. We also computed the

input resistance of the model neuron at rest. For each of the

sampled time-points we computed EPSP = EPSC/total conduc-

tance, where the total conductance was 1/input resistance+ion-

channel conductance. We weighted the sampled time-points by

their spacing, and summed them up. The net effect of this

procedure was to compute the convolution of the EPSC with the

instantaneous resistance of the cell. We carried out this convolu-

tion for every stimulus-phase, and repeated the calculations with

just the K+ channel conductances. These calculations were done

using Microsoft Excel.

All analysis except the EPSC convolution ones was done using

MatlabR2007. All numerical data are reported as means 6 SEM.

Supporting Information

Figure S1 (A) The latency of the first spike is inversely

proportional to the current amplitude. This effect is most

prominent in the theta frequency (4 Hz) current injection. (B)

Phase delay is also inversely proportional to the current amplitude

but only in the case of theta frequency current injection. In the

cases of slow and fast gamma frequencies, the phase shift is

independent of the current amplitude.

(PDF)

Figure S2 (A) Plot shows the output spike lag as a function of

input phase. The coefficient of variation of phase lag is 0.12, 0.11

and 0.10 for theta, slow gamma and fast gamma frequencies. (B)

Plot shows the dynamically changing relationship between the

EPSP area and probability of spiking as the phase of the afferent

input changes.

(PDF)

Figure S3 (A–B) Somatic current injection and network activity

generated using a barrage of excitatory and inhibitory inputs at

8 Hz and 12 Hz caused similar phasic modulation as seen with the
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4 Hz background. However, the phase shift between the current

injection and synaptic input backgrounds increased with the

increase in the input frequency. (C) The simulations with somatic

current injection and synaptic input generated background were

run with sub-threshold afferent inputs (cell did not spike). The

phase tuning was low and negatively correlated with the phasic

tuning seen with spiking inputs. This suggests the small effect of

driving force changes caused by the background on phase tuning.

(D) EPSP area modulation by voltage-gated ion conductances.

The modulation phase is similar to that of the experimental and

simulated EPSP area (Figure 4). The K+ channels on their own

produce almost the same amount of modulation as all the ion

channels.

(PDF)

Figure S4 (A) Theta-gamma coupled inputs paired with afferent

inputs were simulated using patterned barrage of excitatory and

inhibitory inputs. Two types of input were given – one, with the

maximal power of gamma frequency input aligned with the

depolarized phase of theta input (above). Two, the maximal power

of gamma input coincided with the hyperpolarized phase of theta

input (below). (B) Response tuning with gamma on theta

depolarizing case correlated positively with the response tuning

seen with just theta background. However, no response tuning was

seen with gamma during hyperpolarizing theta.

(PDF)

Figure S5 (A) Fluorescence image of a CA1 neuron sparsely

loaded (ballistically) with Calcium-green1 dextrans (406, Scale

Bar 10 mm, left). We measured fluorescence changes in the

primary branches to check whether the inputs were clustered or

distributed. To get high resolution and high-speed movies (123 Hz

using the same CCD camera) we imaged a small region around

the branch point. Traces of DF/F in the ROIs (white dashed line)

indicated the distribution of inputs across the dendritic branches.

(B) Inputs from CA3 axons were distributed on multiple branches

of the CA1 dendrites in 8 out of 9 cells imaged.

(PDF)

Figure S6 (A) Latency of evoked APs by summed inputs (dark

colors) with single electrode inputs (light colors) for the same group

of cells shows similar tuning but smaller absolute values in the case

of summed inputs.

(PDF)

Methods S1 The distribution of CA1 synapses receiving
input on the dendrite was investigated using calcium
dye-loading technique. This section presents the details of the

experiments conducted.

(PDF)

Table S1 Table contains CA1 neuron model geometry
and channel details. Inputs to the CA1 neuron were modelled

using the GENESIS simulator.

(PDF)
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