
The Scientific World Journal
Volume 2012, Article ID 842893, 10 pages
doi:10.1100/2012/842893

The cientificWorldJOURNAL

Research Article

Estimating Annual CO2 Flux for Lutjewad Station Using Three
Different Gap-Filling Techniques

Carmelia M. Dragomir,1 Wim Klaassen,2 Mirela Voiculescu,1

Lucian P. Georgescu,1 and Sander van der Laan3

1 European Centre of Excellence for the Environment, Faculty of Sciences, Dunarea de Jos University of Galati,
Street Domneasca No. 111, 800201 Galati, Romania

2 Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
3 Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Correspondence should be addressed to Mirela Voiculescu, mirela.voiculescu@ugal.ro

Received 31 October 2011; Accepted 14 December 2011

Academic Editors: C. Calfapietra and R. M. Staebler

Copyright © 2012 Carmelia M. Dragomir et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by
gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using
three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to
a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike
in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of
gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is
seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less
sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous
than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller
scatter is expected when gap filling is applied directly to measurements.

1. Introduction

A good knowledge of the production rate and local storage
of CO2 as well as of the flow of energy (mainly heat and
momentum) and mass (mainly gasses and vapour) is impor-
tant in view of the recent reports about global climate change.
The CO2 flux to and from the atmosphere is a measure
of growth or decrease of biomass in an ecosystem. Inverse-
ly, ecosystem-atmosphere gas fluxes can be modelled using
knowledge of biomass changes.

When atmospheric conditions (relative humidity, wind
velocity, air temperature, and global radiation) are constant
and the main vegetation is homogeneous and situated on a
flat terrain for an extended distance upwind, the eddy covari-
ance method is the most reliable for determining the quantity
of CO2 exchange between the biosphere and atmosphere [1].

When the eddy covariance method is used over natural and
complex landscapes or during atmospheric conditions that
vary with time, the measurements must include estimates of
atmospheric storage, flux divergence, and advection. Gross
ecosystem carbon uptake and ecosystem respiration are the
two major components of NEE with the atmosphere [2];
thus, the exchange of CO2 between the atmosphere and
the biosphere is the balance between the gross ecosystem
productivity and ecosystem respiration [3].

Gaps or missing data originate in calibration errors,
night-time air drainage flow beneath sensors, and missing
data due to instrument failure or extreme weather conditions
[4–8]. Calculating carbon balances from daily to annual time
scales is a challenge because of these errors. Moreover, gaps
in recorded data set are usually not distributed randomly
during the year due to seasonal variations in the climate and
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ecosystem function, which adds difficulties to the gap filling
process and data processing [9]. Another source of gaps is, for
the particular data set used in this study, the selection of wind
direction with flow over homogeneous vegetation, because
data with northern wind are influenced by the nearby Wad-
den Sea.

Gap-filling methods have developed starting with the
innovative procedure of Falge [10]. Presently, gap-filling
methods use interpolation, probabilistic filling, look-up
tables, nonlinear regression, artificial neural networks, and
process-based models in a data-assimilation mode [11–25].

Despite intensive studies of gap-filling techniques, there
is a need to improve the quality and reliability of the results,
which are still highly dependent on meteorological condi-
tions, on methods, and on the characteristics of the data set.
In this paper, we aim at disentangling between three methods
that can be used for gap filling and to find the most reliable
method that could be used for a set of given meteorological
conditions, based on a defined set of available data. We com-
pare results obtained with three methods: multiple regression
(MR), artificial neuronal network (ANN), and multiple im-
putation (MI), which were applied to data basis consisting of
hourly eddy covariance measurements collected from Lutje-
wad, The Netherlands, during 2008.

2. Data and Methods

2.1. Experimental Data. The measurements are taken at the
60-meter-tall atmospheric research tower Lutjewad (6◦21′E,
53◦24′N) located in the north of The Netherlands. Concen-
trations of several greenhouse gases [26] and their isotopes
are measured on a continuous basis and by automated flask
sampling techniques [27]. Meteorological data include wind
speed, air temperature, solar radiation, and relative humidity,
measured at various heights. The wind direction is measured
at 60 meters, precipitation is measured at ground level, and
atmospheric pressure is measured at 7 meters. Starting
with the summer of 2006, a Gill Windmaster Pro 3d-
sonic anemometer/LICOR LI-7500 infrared CO2 and H2O
analyzer combination is running at a height of 50 meters.
The collected raw EC data have a time resolution of 10 Hz.
The 10 Hz data were processed to fluxes with AltEddy soft-
ware, a powerful program written at AltTerra (Wageningen
University and Research Centre). Hourly averaged data were
used in this study because the turbulence has a low frequency
at the height where the CO2 flux is measured [28]. Half-
hourly averaged momentum fluxes were underestimated by
4.4% compared to hourly fluxes.

The site is influenced mainly by winds originating from
southwest and west (about 30% of the time) [29]. Directly
to the north of the tower is a dike with a height of almost
8 meters, running in a direction of about 75◦ from north.
To the north of these lie salt marshes of about 800 meters,
followed by the tidal Wadden Sea of about 8 km, and the
island of Schiermonnikoog, beyond which starts the North
Sea. In all other directions, the region is dominated by arable
land for fetches up to at least 10 km, mostly sown with grain,
sugar beets, and potatoes. Because of the remoteness of the
location, anthropogenic sources of CO2 apart from the arable

land are rather small. Northern winds are influenced by
fluxes from the salt marsh and Wadden Sea, and southern
winds are influenced by the existence of arable crops. In order
to avoid sea influences, we selected only wind direction from
the agricultural area between 95◦ and 215◦.

Each hourly averaged flux measurement is accompanied
by a quality data factor from 1 to 10, where 1 denotes the
highest quality [30]. Only data with quality factor 1 have
been used in the present study. Due to factor quality and
wind-based limitations, about 60% of the existing database
is rejected. Most of the data with a high-quality factor have
been found from June till September. The lowest number
of high-quality measurements of CO2 flux appears to have
been collected in November, when only 69 measurements
were used, compared to an average of around 400 used for
summer months.

2.2. Gap-Filling Methods. Gap filling in the CO2 atmospheric
flux was done by three methods: MR, ANN, and MI, using
the statistical software program SPSS (version 16 and 17 SPSS
Inc., IL, USA). Hourly data, separated for each month, were
used in the analysis, and monthly averages were calculated in
order to account for seasonal changes in plant biomass and
ecosystem exchange.

These data were obtained as follows: all hourly high-
quality measurements obtained during the whole year have
been separated in two equal sets. The first half was kept as a
witness dataset and was considered as unknown. These data
were considered as missing, thus creating artificial gaps. The
second half has been considered as learning data, that is, this
dataset was considered “known” and was introduced as such
in each of the three statistical gap-filling methods. This way
we can compare the CO2 flux that was actually measured
with the gap-filled CO2 flux obtained with the MI, ANN, and
MI models, as if these measurements were not available.

The gap fill methods were used directly on measured CO2

fluxes, in contrast to common methods that fill gaps in NEE
[9, 10]. The difference between CO2 flux and NEE in our
case is mainly due to CO2 storage between the surface and
measurement height. Filling gaps directly in measured CO2

data has the advantage that the results are not deteriorated
by additional scatter from inaccurate estimations of CO2

storage. This is especially important when measurements
are executed at elevated height, where storage may be large.
However, some differences between CO2 flux and NEE
exist: CO2 fluxes depend on wind velocity, whereas NEE
is supposed to be independent of such an atmospheric
variable. Input values for all three gap fill methods in this
study are meteorological parameters (air temperature, wind
velocity, global radiation, and relative humidity) associated
with output data, CO2 flux (Table 1). Wind velocity is closely
related to friction velocity and has the advantage that its
measurement is more reliable.

2.2.1. Multiple Regression. We used a stepwise multiple re-
gression analysis (MR) to predict missing data of CO2 flux
using the hourly data measurements of high quality of flux
and meteorological condition in SPSS software.
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Table 1: Input variables used for gap filling.

No. Input variables Unit Instrument/note Height

(1) CO2 flux µmol m−2 s−1 Licor LI-7500 open path CO2-H2O sensor combined with a Gill
Windmaster Pro 3D sonic anemometer

50 meters

(2) Global radiation Wm−2 Kipp CMA pyranometer 2 meters

(3) Wind velocity ms−1 Three-dimensional sonic anemometer-thermometer 40 meters

(4) Relative humidity % Campbell HMP45C 40 meters

(5) Air temperature ◦C PT-100 resistors 40 meters

Meteorological parameters that influence CO2 fluxes are
global radiation, wind velocity, relative humidity, and air
temperature. Correlation coefficients between hourly CO2

flux and each of the four parameters have been calculated.
The correlation coefficient R2 between global radiation and
CO2 flux is the highest, with a value of 0.96. The other
correlation coefficients are 0.93 for wind velocity, 0.51 with
humidity, and 0.21 with the temperature. The SSPS program
works as follows: global radiation score is entered first
as a basis variable, while wind velocity, relative humidity,
and air temperature would count for the variance. Next,
the algorithm evaluates whether the remaining variables
contributed significantly to the R2 (the part of the variance in
the response variable that the explanatory variables account
for). If they did not, they would not be entered in the
equation, in spite of the fact that initially their correlation
levels were about the same strength. Stepwise regressions can
be done forward, backward, or both ways, and, in all cases,
the computer picks the regression configuration based on
purely statistical information, with no logical or theoretical
assumptions involved [31].

Multiple regressions require a large number of observa-
tions, and the number of input variables must substantially
exceed the number of predictor variables. The equation has
the following form:

y = b1x1 + b2x2 + · · · + bnxn + c, (1)

where b1,b2, . . . ,bn are regression coefficients. The standard
input method is simultaneous because all variables are intro-
duced into the equation at the same time. Each predictor is
analysed and evaluated by the influence it has on the predic-
tion of the dependent variable. Variables can be retained or
deleted on the basis on the associated statistics [32].

2.2.2. Artificial Neural Networks. Artificial neural networks
(ANNs) are purely empirical nonlinear regression. ANNs are
composed of nodes connected by weight that are the regres-
sion parameters [33–35]. The multilayer perceptron (MLP)
is a feed-forward neural network architecture and uses dif-
ferent linear combination functions and nonlinear sigmoidal
activation functions. The MLP architecture contains an input
layer, at least one hidden layer and an output layer. Each unit
from the input layer is connected to a unit from the second
layer, and the output layer is connected to the hidden layer.
The input units are used to predict the values of the target
variable. The hidden units execute an internal nonlinear
transformation, and the output units create predicted values

and then back-propagate errors (compares the difference
between the predicted values with the values of the output
units) adjusting the weights so that the network output
optimally approximates CO2 flux. In the present study, a
network with one hidden layer was used.

The input values pass the network, and the error is cal-
culated by a comparison of the network’s outputs yj with
measured target values mj . The quality of the network is
evaluated on the basis of the mean squared error (MSE). E is
the error as accumulated over all N data records that served
as learning patterns [36]:

E = 1
N

∑N

j=1

(
mj − yj

)2
. (2)

2.2.3. Multiple Imputation (MI). Multiple imputation (MI)
uses a Markov Chain Monte Carlo algorithm to replace miss-
ing value with a range of estimated (imputed) values for each
missing item. MI uses a regression model to predict missing
values. The MI technique consists of three steps: imputation,
analysis, and pooling. First, sets of plausible values for
missing data are created that reflect uncertainty about the
estimated model. Each of these sets of plausible values is
used to impute the missing values and to obtain a complete
data set. Second, each of these data sets is analyzed using
statistical methods. Third, the results are combined, which
allows the uncertainty regarding the imputation to be taken
into account [37]. The observed values are the same as in the
original data set, and only the missing values have different
estimated values [16, 38].

The accuracy of MI can be improved by using the mul-
tiple imputations (5–10 imputations) instead of the single
imputation method that underestimates the error variance
of missing data [39].

2.3. Statistical Performance Measures. Five performance indi-
cators were calculated for describing the accuracy of the three
gap-filling methods: the mean square bias (MSB), maximum
absolute error (MaxAE), and mean absolute error (MAE),
which calculate the magnitude and distribution of individual
errors, and root mean square error (RMSE), R-squared (R2),
which measures the correlation.

MSB is used to evaluate the performance of an estimator
and is given by

MSB = 1
N

∑N

i=1

(
pi(xi, t)− oi(xi, t)

)2, (3)
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Table 2: Monthly averages of the measured CO2 flux and of the CO2 flux gap filled MR, ANN, MI for cold season.

Month
Measured MR ANN MI

[µmol m−2 s−1] [µmol m−2 s−1] [µmol m−2 s−1] [µmol m−2 s−1]

January 1.83 1.69 1.89 1.88

February 0.61 0.48 0.61 0.55

November 1.26 0.90 0.89 1.08

December 0.84 0.86 0.81 1.06

Average 1.13 0.98 1.05 1.14

where oi is individual observed CO2 flux data, pi is the pre-
dicted values, N equals the number of hourly predicted ob-
servation pairs.

MaxAE represents the largest forecasted error, expressed
in the same units as the dependent series. MaxAE is useful
for analyzing the worst-case scenario for forecasts data:

MaxAE = max
(∣∣pi − oi

∣∣). (4)

MAE measures how much the series varies from its
model-predicted level:

MAE = 1
N

∑N

i=1

∣∣pi − oi
∣∣. (5)

RMSE is a measure of the difference between the ob-
served and predicted CO2 flux data, and it was used to pro-
vide the average error of model:

RMSE =
(

1
N

∑N

i=1

[
pi − oi

]2
)1/2

. (6)

R2 was used to estimate the proportion of the total varia-
tion in the series that is explained by the model:

R2 =
{∑(

pi − p
)
(oi − o)

}2

∑(
pi − p

)2∑(oi − o)2 , (7)

where oi is individual observed CO2 flux data, pi the pre-
dicted values, p and o their means.

3. Results and Discussion

3.1. Diurnal Variation. Diurnal variations of measured and
gap-filled hourly fluxes are shown in Figure 1 for each
month. The diurnal cycle of the measured flux from March
to October is nicely reproduced by all three methods, but
MR and MI underestimate the negative peak during daytime,
especially during the summer months. Higher differences
between measured and gap-filled data seem to occur in
daytime, when the average CO2 flux is negative and large,
compared to the night time, when CO2 flux is positive and
small. In all months, the ANN line is the closest to the mea-
sured values, suggesting that the ANN method gives more
accurate results than MR and MI.

The highest differences are observed in November, when
an hourly mean of the measured flux (at 9 AM) is about
2 times higher than the gap-filled data. Further analysis
showed that the value at 9 AM is the average of only two
measurements, so all random errors are already included in
this value.

3.2. Seasonal Effects. The results for monthly averages of
gap-filled CO2 fluxes are shown in Figure 2, together with
measured values. The plot shows that, most of the time, gap-
filled values are close to the measured ones. However, some
departing results can be noticed, for instance, in July, August
for MR, or April for MI. The highest difference between
measured and all gap-filled data exists in November.

Data were grouped by season in order to observe a
possible seasonal effect on the accuracy of gap-filling results.
Winter seasons consist of November–February, March, April,
September, October are considered to be part of the equinox
season, while summer months are May–August.

In winter, there is less sunlight and air temperature is
lower. Most fields are bare except maybe for winter wheat
with some above ground biomass, so photosynthesis is
expected to be very small and soil respiration may explain
the positive CO2 flux. The highest positive CO2 fluxes are
observed in January. The averages of measured and gap-fill
data of CO2 flux for the entire cold season (January, Febru-
ary, November, and December) are presented in Table 2. The
ANN method is the closest to the measured flux, with dif-
ferences between gap-filled and observed data ranging from
−0.06 to 0.03 µmol m−2 s−1 (except November). MR differ-
ences are between 0.02 to 0.14 µmol m−2 s−1, and MI differ-
ences range from −0.18 to 0.05 µmol m−2 s−1. Concluding,
all gap-filled methods provide good results for winter time.

The equinoctial season consists of data from March,
April, September, and October. The equinoctial average of
the measured and gap-fill data of CO2 flux is presented in
Table 3. Differences range from 0.31 to −0.42 µmol m−2 s−1

for MI, while ANN departs from measured results with
values from −0.02 µmol m−2 s−1 to 0.05 µmol m−2 s−1.
Differences between MR-gap-filled and measured data
are in between, varying from –0.23 µmol m−2 s−1 to
0.14 µmol m−2 s−1. Concluding, the best fill for equinox
months is obtained using the ANN method.

The warm season is considered to last from May to
August. The average of measured CO2 flux and gap-fill data
by MR, ANN, MI is presented in Table 4. Again, ANN gives
the best results out of the three methods for the warm season
as well.

Atmospheric conditions and the assimilation/respiration
of plants change with the seasons. During the summer
season, the absolute value of the CO2 flux is higher because
photosynthesis occurs most rapidly in summer, thus CO2

exchange is more intense. Peaks of the negative CO2 flux in
May and June might be explained by an increased uptake
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Figure 1: Diurnal variation of the four fluxes for each month, represented as follows: measured flux: red, continuous line; MR filled: black,
dash line; ANN filled: green, dotted line; MI filled: blue, dash line. The month is identified by corresponding roman numerals in the right
corner of each plot.

of the vegetation in the growing season. Such effects of the
vegetation during the main growing season are reported in
other studies of CO2 fluxes [36]. Also, respiration increases
with temperature.

3.3. Statistical Analysis. In order to have a better view of the
accuracy of each gap-fill method, we compared the monthly

variation of MR, ANN, and MI using five statistical parame-
ters (Figure 3). The MSB is a handy criterion for the evalua-
tion of the gap-filling techniques, determining the systematic
error for a long dataset. Its monthly value is computed by
the average square root of biases for every hour of the day
during a specific month. Averaging over all observations
during a month of a certain time of day reduces the impact of
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Table 3: Monthly averages of the measured CO2 flux and of the CO2 flux gap filled MR, ANN, MI for equinoctial season.

Month
Measured MR ANN MI

(µmol m−2 s−1) (µmol m−2 s−1) (µmol m−2 s−1) (µmol m−2 s−1)

March 0.76 0.75 0.75 0.86

April −1.36 −1.50 −1.41 −1.67

September −1.15 −0.92 −1.13 −1.01

October 0.54 0.46 0.50 0.56

Average −0.31 −0.30 −0.32 −0.31

Table 4: Monthly averages of the measured CO2 flux and of the CO2 flux gap filled MR, ANN, MI for warm season.

Month
Measured MR ANN MI

(µmol m−2 s−1) (µmol m−2 s−1) (µmol m−2 s−1) (µmol m−2 s−1)

May −3.22 −3.11 −3.22 −2.80

June −2.76 −2.72 −2.78 −2.67

July −1.06 −0.82 −0.95 −0.87

August −0.22 −0.48 −0.37 −0.18)

Average −1.82 −1.78 −1.83 −1.63
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Figure 2: Monthly variations of the measured CO2 flux (red) and of
the CO2 flux gap filled by multiple regression (MR: black), artificial
neural network (ANN: green), and multiple imputation (MI: blue).
Number of measurements is also shown as a pink dotted line.

statistical uncertainties in the measurements and thus should
give a better focus of the performance of the gap filling
method but less focus on the uncertainty in observations.

Higher biases are observed in summer, especially for the
MR method. Lower differences between measurements and
gap fill occur in winter, except for November, when the
mean square bias is high for all three methods. The best
results are obtained at equinox, when day and night periods
are of similar length and CO2 uptake during day time is
almost equal by release during the night. ANN performs
better than MI every month and better than MR in 11 out
of 12 months. A clear seasonal effect is seen in the MR and
MI methods: the poor result of MR and MI during months

with high irradiation might be partly caused by the use of
linear regression on irradiation. In reality, photosynthesis
saturates with high irradiation because the vegetation cannot
photosynthesize more quickly. This might indicate that MR
and MI calculations are dominated by the radiation monthly
budget: the method gives poor results when the radiation is
high and good results when the radiation is low.

One explanation for the poor result in November might
be the fact that the amount of data used for gap-fill is too
small (only 69 measurements) to give reliable results, regard-
less of gap-fill method. Figure 3 shows that results are good
in March, although the number of data that has been used is
also relatively small (128, compared to 200–500 for the rest
of months). On the other hand, the flux in March is 60%
from the November one. This might suggest that any gap-fill
method will become unreliable when the number of high-
quality measurements is below a certain threshold.

MaxAE confirms the results described above, with a high-
er accuracy for all gap-filling techniques for autumn and
winter months (except November) and a lower accuracy for
June and July. MAE measures the average magnitude of the
errors in a set of forecasts, and the same pattern was obtained
for all three gap filling methods. The best performance
is given by ANN in equinox months, with a MAE of
0.86 µmol m−2 s−1 in October. Low values of RMSE indicate a
good fit of the model to measurements. Again, ANN is overall
the best method while the worst gap-fill method is the MR
method.

The highest values of R2 are obtained for ANN, sup-
porting that, indeed, ANN is the best gap-fill technique. All
methods give good results in December for all three methods,
with R2 ranging from 0.80 (MR) to 0.88 (ANN). A low
accuracy of all methods is seen in September, when the lowest
R2 is 0.49 (MR) and the highest is 0.63 for ANN.

A concise view of gap-filling methods is given in Table 5,
where annual averages of all statistical parameters is given
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Table 5: Yearly average of statistical performance for MR, ANN, and MI gap-filling techniques.

Statistical parameters MR ANN MI

Mean bias (µmol m−2 s−1)2 0.97 0.62 0.77

MaxAE (µmol m−2 s−1) 9.21 6.57 8.72

MAE (µmol m−2 s−1) 4.64 2.68 3.71

RMSE (µmol m−2 s−1) 4.13 2.60 3.48

R2 0.66 0.78 0.70
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Figure 3: Monthly variation of the performance of gap-filling
techniques MR (black line, stars), ANN (green line, circles) and MI
(blue line, squares) measured by statistical parameters.

for all three gap-filling techniques. Bold digits show the best
result, and it is clear that the best response at each statistical
test is given by the ANN method. Only meteorological
parameters have been considered in our calculations; thus,
it might be necessary to take into account some indicators of
specific spring biological processes. The large bias in April,
compared to other equinox months, might be due to the fact

Table 6: Correlation coefficients between the biases (MSB) of the
three gap-filling methods and meteorological parameters involved
in the analysis. Values written in bold are significant at the 0.01 level.

Parameter MR ANN MI

Global radiation 0.65 0.23 0.37

Air temperature 0.39 −0.19 0.39

Wind velocity −0.04 0.05 0.16

Relative humidity −0.52 −0.45 0.51

Number of
measurements

0.20 −0.27 0.16

that the CO2 uptake by the agriculture area is strong or to the
fact that large differences exist in the CO2 uptake between
day and night. Good results are obtained in autumn which
might be explained by the fact that effects of global radiation
and air temperature on ecosystem cause the reduction of the
potential for agriculture area carbon sequestration.

Correlation coefficients between biases (MSB) of each
gap-fill method and each meteorological parameter are given
in Table 6, which shows that the ANN method is independent
of the meteorological parameters. The performance of MR
gap-fill method is strongly influenced by the global radiation
and by the relative humidity, while the performance of MI
depends on relative humidity. None of the three methods is
sensitive to the number of measurements, although a possi-
ble limitation to a minimum number might be necessary for
getting reliable results (see the case of November).

To find which statistical indicator is the best for the deter-
mination of the optimal gap fill method, we add a test. Based
on the above results, that is, that ANN in the best gap-fill
technique, we calculated the difference between other meth-
ods and ANN and the scatter in that difference, measured
by the variance. The ratio between scatter and the mean
difference is a measure of the probability that ANN is actually
better than another method. The ratio between mean and
scatter is a measure of the probability that the results are
caused by statistical uncertainty; the larger the number, the
smaller the probability.

The results of the test, shown in Table 7, show that the
largest ratio is found forR-squared for the difference between
MR and ANN, but this is not valid for the difference between
MI and ANN, for which MaxAE seems to have the highest
value. However, MaxAE, R2, and MAE are very close, without
any clear difference. All ratios are relatively close to each
other, suggesting that all indicators can be used in evaluating
the relative performance of a method compared to others.
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Table 7: Statistical parameters.

MR-ANN MI-ANN

MSB (µmol m−2 s−1)2

Average 0.35 0.14

Sigma (n− 1) 0.25 0.13

Ratio 1.41 1.11

R2

Average −0.12 −0.08

Sigma (n− 1) 0.04 0.04

Ratio 3.21 1.88

RMSE (µmol m−2 s−1)
Average 1.54 0.88

Sigma (n− 1) 1.14 0.75

Ratio 1.35 1.17

MAE (µmol m−2 s−1)
Average 1.96 1.03

Sigma (n− 1) 0.93 0.61

Ratio 2.09 1.70

MaxAE (µmol m−2 s−1)
Average 2.64 2.15

Sigma (n− 1) 1.56 1.13

Ratio 1.69 1.90

4. Conclusions

Three gap-filling methods, MR, ANN, and MI, were used
for estimating atmospheric CO2 flux, and their accuracy
was studied using an hourly dataset covering one whole
year (2008) from an agricultural area. Poor weather and/or
northern wind conditions led to large gaps in data. Errors
may be introduced also by a nonrandom distribution of
data set gaps. Each of these statistical methods gives a good
estimation of atmospheric CO2 flux, when number of gaps
of original dataset was small and had a random distribution.
The small biases that were found in this study imply that gap
fill methods could be used directly on CO2 measurements.

The first general conclusion is that, overall, ANN gives
better results than MR and MI at yearly, monthly, and
diurnal scale. ANN has hardly any diurnal variation, while
the MR and MI methods perform better during night time
than during day time. The ANN performance indicators are
better for almost every month. The efficiency of the gap-
filling methods depends on the season, especially for MR
and MI. Higher biases are met during warm seasons (April–
August), when CO2 fluxes are negative and their absolute
values are higher. All three methods give low errors in colder
seasons (September–March), when CO2 flux is positive and
smaller. The decrease of biases towards August (especially
in ANN results) coincides with a decrease in the absolute
value of the CO2 flux. An exception occurred in November
when very few high-quality measurements were available as
learning dataset. We conclude that sufficiently high-quality
measurements might be needed to reduce the impact of
random errors in the results of the gap-fill methods and
a minimum critical number of measurements is needed in
order to reduce random errors and obtain reliable results.
Negligible errors were obtained for the year average flux,
but the good overall result for the MR and MI methods was
caused by compensating errors in summer and winter and
compensating errors in day and night time.

The ANN produced the best results, having the lowest
annual average for RMSE and the highest R2 values. The
accuracy of the method has a small seasonal and diurnal vari-
ation, which means that this method is almost independent
on environmental conditions. In contrast, the accuracy of the
MR and MI methods varies significantly with the season and
with the time of day.

The ecosystem exchange with the atmosphere influenced
the results of gap filling CO2 flux for each of the three
methods. This is related to two causes: large difference in
CO2 exchange during day and night and strong temporal
change throughout a month because increasing soil cover
of the vegetation. Since only meteorological parameters
have been considered in the calculations, this might be an
indication that biological proxies should be also taken into
account.

Gaps were filled on CO2 measurements instead of NEE
calculations because CO2 measurements lack additional
noise from inaccurate storage measurements. A possible
drawback of using CO2 data as input might be that relations
between CO2 flux and biological processes are less clear
compared to NEE data, but this argument does not hold
when the empirical ANN method is used to fill gaps.

Therefore, we conclude that all three methods could
be used to calculate year-round average flux, but ANN is
clearly preferred when shorter timescale data sets are anal-
ysed.
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