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Abstract Acute megakaryoblastic leukemia (AMKL) constitutes ∼5%–15% of cases of non–
Down syndromeAML in children, and in themajority of cases, chimeric oncogenes resulting
from recurrent gene rearrangements are identified. Based on these rearrangements, several
molecular subsets have been characterized providing important prognostic information.
One such subset includes a group of patients with translocations involving the KMT2A
gene, which has been associated with various fusion partners in patients with AMKL.
Here we report the molecular findings of a 2-yr-old girl with AMKL and t(11;17)(q23;25)
found to have a KMT2A–SEPT9 fusion identified through targeted RNA sequencing. A
KMT2A–SEPT9 fusion in this subset of patients has not previously been reported.

[Supplemental material is available for this article.]

CASE PRESENTATION

A previously healthy 2-yr-old female was initially seen for recurrent fevers and decreased
appetite. She was treated for suspected otitis media but continued to experience a poor
appetite and fevers. A complete blood count showed anemia (Hb 7.2 g/dl) and thrombocy-
topenia (plt 60 k/µl), with a white blood cell count in the normal range (6.54 k/µl, ANC 2500/
ml). A bone marrow biopsy and aspiration were performed that demonstrated a normocel-
lular marrow with left-shifted granulopoiesis, progressive erythroid maturation, and atypical,
hypolobulated megakaryocytes. Reticulin staining demonstrated variable increase in reticu-
lin fibrosis from mild to marked (1–3+). The specimen contained an expanded blast popula-
tion (30%), with blasts that were variable in size and had round nuclei, fine chromatin, variable
nucleoli, and agranular cytoplasm. Some blasts showed cytoplasmic blebs with some of the
larger blasts having vacuolated cytoplasm. Flow-cytometric analysis showed the blast pop-
ulation had expression of CD4, CD33, CD38, CD41, CD45, CD61, CD71, CD117, and
CD123. The findings were consistent with a diagnosis of AMKL.

Cytogenetic analysis showed 46, XX, t(11;17)(q23;q25) in nine of 20 metaphase cells and
the presence of a rearrangement involving KMT2Awas confirmed by FISH in 8% of 300 cells.
Targeted RNA sequencing identified a corresponding KMT2A–SEPT9 fusion transcript.

The patient received induction chemotherapy consisting of daunorubicin, cytarabine,
and etoposide (ADE) in combination with gemtuzumab ozogamicin. Repeat bone marrow
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analysis at the end of induction demonstrated an MRD-negative complete remission.
Because of the poor outcomes associated with KMT2A rearrangements in pediatric patients
with AMKL, the decision was made to proceed to bone marrow transplantation in first com-
plete remission. After completing two additional cycles of consolidative therapy, she
received an allogeneic bone marrow transplant from an HLA-matched unrelated donor
and has no evidence of disease more than 2 months after her transplant.

TECHNICAL ANALYSIS

The presence of the translocation involving Chromosomes 11 and 17 was identified by
standard karyotype analysis and confirmed by a break-apart FISH probe (Abbott Molecular)
(Fig. 1A,B). Targeted RNA sequencing using a customized 199-gene Archer FusionPlex
panel identified the KMT2A–SEPT9 transcript involving exon 7 and exon 2 of KMT2A and
SEPT9, respectively (Table 1; Fig. 1C).

SUMMARY

KMT2A–SEPT9 fusions are rare events that have been most commonly described in various
myeloid leukemias exhibiting monocytic differentiation (Taki et al. 1999; Yamamoto et al.
2002; Shih et al. 2006; Strehl et al. 2006; Kurosu et al. 2008). They have infrequently been
described in M0/M1/M2 AML, t-AML, and de novo myelodysplastic syndrome (Supplemen-
tal Table 1; Osaka et al. 1999; Strehl et al. 2006; Kreuziger et al. 2007; Saito et al. 2010;

A

B

C

Figure 1. (A) Chromosome analysis reveals a balanced chromosome translocation between Chromosomes 11
and 17—that is, t(11;17)(q23;q25) (arrows). (B) FISH analysis with a KMT2A break-part probe set (Abbott
Molecular) shows a split KMT2A signal pattern—that is, t(11;17). The 5′ KMT2A and 3′ KMT2A were labeled
with green and orange, respectively. (C ) Schematic illustration of the protein structure, bidirectional RNA
sequencing reads, and transcript sequence of the KMT2A (NM_005593)–SEPT9 (NM_006640) in-frame fusion
product detected by Archer FusionPlex with exons 1–7 of KMT2A fused to exons 2–9 of SEPT9.

KMT2A–SEPT9 fusion in AMKL

C O L D S P R I N G H A R B O R

Molecular Case Studies

Forlenza et al. 2018 Cold Spring Harb Mol Case Stud 4: a003426 2 of 6

http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a003426/-/DC1
http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a003426/-/DC1


Santos et al. 2010). To our knowledge, this is the first report of KMT2A–SEPT9 fusion–asso-
ciated AMKL, as well as the first reported occurrence of any KMT2A–SEPTIN fusion occurring
in AMKL (Cerveira et al. 2011). In this case the fusion is located at the intron 7 breakpoint.
KMT2A–SEPT9 fusions may have a propensity to involve the intron 7 or 8 breakpoint, as
the majority of reported cases involve this region. This contrasts with more common
KMT2A fusion partner genes, which most frequently involve the region between exon 9
and intron 11 (Meyer et al. 2018). However, the limited number of cases prevents any defin-
itive conclusions.

AMKL is a subtype of AML with bimodal age distribution, with peaks occurring in early
childhood before the age of 3 and later in adulthood (Tallman et al. 2000; Athale et al.
2001). In patients with Down syndrome (DS), AMKL is the most frequently occurring form
of AML and is characterized by the presence of mutations involving GATA1 (Wechsler
et al. 2002). In patients with non-DS pediatric AMKL, several molecular subsets have recently
been characterized and provide valuable prognostic information (de Rooij et al. 2016, 2017;
Hara et al. 2017). Commonly reoccurring rearrangements include RBM15–MKL1, CBF2T3–
GLIS2, NUP98–KDM5A, and KMT2A (de Rooij et al. 2016, 2017; Hara et al. 2017).
Patients with fusions involving KMT2A make up 7%–17.4% of pediatric patients with non-
DS AMKL (de Rooij et al. 2016, 2017; Hara et al. 2017). Numerous KMT2A fusion partners
have been identified in children with AMKL such as MLLT1, MLLT3, MLLT6, MLLT9, and
MLLT10 (de Rooij et al. 2016, 2017; Hara et al. 2017). Although little is known about the prog-
nostic implications of the various KMT2A fusion partners, collectively it appears the presence
of these rearrangements is a high-risk feature associated with a greater risk of relapse and
worse overall survival, indicating a role for allogeneic transplantation in first remission, which
was recommended for the patient discussed in this case (de Rooij et al. 2016, 2017).

The KMT2A gene located on Chromosome 11 band q23 is a frequent target of translo-
cation events with more than 100 recurrent rearrangements having been identified (Meyer
et al. 2018). KMT2A rearrangements are commonly seen in both adult and pediatric acute
leukemias but have particularly strong associations with infant ALL (Meyer et al. 2018),
M4/M5 AML (Cimino et al. 1995; Schoch et al. 2003; Meyer et al. 2018), and therapy-related
AML (t-AML) (Smith et al. 1994; Meyer et al. 2018), where it typically is found in patients
exposed to topoisomerase II inhibitors. The KMT2A gene product is a DNA-binding protein
capable of positively regulating gene expression, including the Hox family of genes, which
play an important role in hematopoiesis and lymphoid cell development (Caslini et al. 2000;
Milne et al. 2002). Chimeric proteins resulting from KMT2A rearrangements can efficiently
transform hematopoietic precursors into leukemic stem cells (Krivtsov and Armstrong
2007). However, the fusion partner appears to play an important role in transformation
because simply enhancing KMT2A promoter activity is not sufficient to induce leukemogen-
esis (Corral et al. 1996).

The septin family of genes is an evolutionarily conserved GTP-binding, filament-forming
protein believed to be involved in polarity determination, cytoskeletal reorganization,

Table 1. KMT2A–SEPT9 fusion detected in patient

Gene 1 Gene 2 Position 1 Position 2 Transcript 1

Exon

number 1

Transcript

strand 1 Transcript 2

Exon

number 2

Transcript

strand 2

Fusion junction

sequence

Frameshift

class

KMT2A SEPT9 Chr 11:

118482092

Chr 17:

77402059

NM_005933 7 + NM_006640 2 + AAAAGCAGCCTCCA

CCACCAGAATCAG|

CCTTGAAAAGATCT

TTTGAGGTCGAGGA

In-frame
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membrane dynamics, vesicle trafficking, and exocytosis (Kartmann and Roth 2001). Aside
from SEPT9, several human septin genes have been identified as partners for translocation
events with KMT2A including SEPT5, SEPT6, and SEPT11 (Hall and Russell 2004). The role of
SEPT9 in leukemogenesis has not been clearly elucidated. However, studies have shown that
variants of SEPT9 interact with both α and ɣ tubulin, and cells with enhanced expression of
SEPT9 experienced defects in both cytokinesis and mitotic spindle defects, contributing to
genomic instability (Peterson et al. 2011). The role of SEPT9 in malignant transformationmay
not be restricted to AML/MDS, as alterations in expression or deletion of SEPT9 are fre-
quently observed in breast and ovarian cancer, indicating its potential role as a tumor sup-
pressor (Kalikin et al. 2000; Burrows et al. 2003).

Themechanism by which the KMT2A–SEPT9 fusion drives leukemogenesis has not been
firmly established. For many KMT2A fusion partner genes, it is believed that rearrangement
events result in the fusion of transcriptional activation domains to KMT2A and are capable of
driving leukemogenesis (So and Cleary 2003; Zeisig et al. 2003). However, as is the case with
SEPT9, several KMT2A partners are localized to the cytoplasm and unlikely to have nuclear
function. In a number of these partners dimerization of fusion oncoproteins has been iden-
tified as an alternative mechanism of transcriptional activation of KMT2A (Martin et al. 2003;
So et al. 2003). Likewise, homo-oligomerization of KMT2A–SEPT6 fusion products proved to
be capable of immortalizing stem cell progenitors (Ono et al. 2005). Drawing from sequence
homology across the septin family of proteins and the ability of SEPT9 to form homodimers,
it is reasonable to hypothesize that KMT2A–SEPT9 fusion protein dimerization is a key step in
leukemic transformation (Abbey et al. 2016).

In summary, this report describes the first documented case of KMT2A–SEPT9 fusion–
associated AMKL and is also the first report of any KMT2A–SEPTIN fusion occurring in
AMKL. This rearrangement was first detected by conventional cytogenetics and confirmed
by targeted RNA sequencing. Despite the numerous documented cases of the KMT2A–
SEPT9 fusion, the mechanism of its role in leukemic transformation and its prognostic impact
are unclear.
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