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Abstract: Cancer is a life-threatening disease and is the second leading cause of death worldwide.
Although many drugs are available for the treatment of cancer, survival outcomes are very low. Hence,
rapid development of newer anticancer agents is a prime focus of the medicinal chemistry community.
Since the recent past, computational methods have been extensively employed for accelerating the
drug discovery process. In view of this, in the present study we performed 2D-QSAR (Quantitative
Structure-Activity Relationship) analysis of a series of compounds reported with potential anticancer
activity against breast cancer cell line MCF7 using QSARINS software. The best four models exhibited
a r2 value of 0.99. From the generated QSAR equations, a series of pyrimidine-coumarin-triazole
conjugates were designed and their MCF7 cell inhibitory activities were predicted using the QSAR
equations. Furthermore, molecular docking studies were carried out for the designed compounds
using AutoDock Vina against dihydrofolate reductase (DHFR), colchicine and vinblastine binding
sites of tubulin, the key enzyme targets in breast cancer. The most active compounds identified
through these computational studies will be useful for synthesizing and testing them as prospective
novel anti-breast cancer agents.

Keywords: coumarin; QSARINS; docking; DHFR; tubulin

1. Introduction

Cancer is the second leading cause of death worldwide [1]. For decades, conventional
cytotoxic chemotherapy has been a key component of advanced cancer treatment in the
cancer therapeutic arsenal [2]. However, only a minor improvement in survival rates has
been achieved. Recent anticancer drug development is heavily reliant on drug targets,
such as proteins, enzymes and receptors, and mechanism-based drug discovery would
considerably accelerate the process. [3–5]. Various targets reported for anti-cancer activities
include ribonucleotide reductase [6], estrogen receptors (ERs) [7,8], aromatase enzymes [9],
type I and type II topoisomerases [10], microtubules [11] and dihydrofolate reductase,
among others. Although many targets are well-known and validated, still they offer
various opportunities.
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Dihydrofolate reductase (DHFR) and tubulin proteins of microtubules are of great
interest to medicinal chemists, since the inhibition of these sites is an important action of
the marketed anticancer drugs methotrexate and vinca alkaloids. The inhibition of DHFR
is imparted by compounds with antibacterial [12–14], antimalarial [15,16], antifungal [17]
and anticancer effects [18,19]. Further, DHFR is an excellent template for enzyme selectivity
and antiproliferative effects of antifolates for cancer chemotherapy [20]. DHFR enzyme con-
verts dihydrofolate to tetrahydrofolate by means of NADPH in microbial and eukaryotic
cells [21]. Accordingly, it is tangled in the combination of crude material for cell expansion,
in both prokaryotic and eukaryotic cells. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-
trimethoxybenzyl) pyrimidine) is the renowned dihydrofolate reductase inhibitor used in
urinary tract infections [22–24]. Tubulin is an important protein involved in cell division. It
contains the α- and β- families, which polymerize to produce microtubules during cell divi-
sion. These subunits are highly conserved and ubiquitous in eukaryotic cells. Microtubules
are manipulated into separate daughter chromosomes during mitosis by rapid construction
and disassembly. They are crucial for cellular replication. Furthermore, microtubules
support cell morphology and material transport. The interference of microtubules causes
cell death by apoptosis. Hence, the mitotic microtubules are novel platforms for cancer
chemotherapy. Anticancer drugs halt cell division during mitosis, slowing cell proliferation
by inhibiting or promoting tubulin polymerization. Vinca alkaloids such as vincristine and
vinblastine, in addition to colchicine and paclitaxel, are well-known tubulin-interactive
anticancer drugs [25–28].

The major challenges with the drugs acting on single targets are drug resistance
and innumerable side effects [29,30]. Molecular hybridization technique maces the active
pharmacophores with a linker that could simultaneously address more than one sole target.
This is a very useful approach for the design of novel drugs against a complex disease
such as cancer. In drug development, one of the rational and successful methods is the
quantitative structure-activity relationship, which is a crucial step in the development
and optimization of lead compounds, and consequently to improving their biological
activity. Natural products bind with biomolecular drug targets more readily, as they are the
metabolites of living organisms. Thus, they serve as an ideal resource for drug development.
It is obvious to choose coumarin, a widely distributed secondary metabolite in plant
kingdom and pyrimidine, a common component of nucleic acids, for the present study.
Previously, Mohit Sandhuja et al. reported the anticancer activity for uracil–coumarin-based
bifunctional molecular hybrids connected with 1,2,3-triazole moiety [31]. By considering
the above facts and the report by Sandhuja et al., in the present investigation we utilized
QSAR and conducted a detailed QSAR study using “QSARINS” software [32–34] for
accelerating the drug discovery process for the identification of novel lead compounds
with anti-breast cancer activity.

2. Results
2.1. D-QSAR
2.1.1. Development of Model and Descriptors

Mohit Sandhuja et al. synthesized a series of uracil–coumarin conjugates and reported
their anticancer activity [31]. This series was selected for carrying out 2D-QSAR studies in
the present study. Table 1 indicates the compounds synthesized by Mohit Sandhuja. The
anticancer activity was reported in IC50 by Mohit Sandhuja. They were converted to pIC50
for carrying out 2D-QSAR studies and included in Table 1.

2.1.2. Generation of 2D-QSAR Models

For practical use of the QSAR model, robustness (cross validated performance) and
predictability (external predictive capacity) are the parameters that determine the superior-
ity of the QSAR model. Four models were selected for QSAR study.
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Model 1

pIC50 = −4.3799 + 0.8065(MAXDP) + 14.2488(SIC0) + 35.9491(JGI7) (1)

ntr = 18, npred = 10, R2 = 0.9700, R2adj = 0.9635, R2−R2 adj = 0.0064, LOF = 0.0060,
RMSEtr = 0.0515, MAEtr = 0.0422, RSStr = 0.0478, CCCtr = 0.9848, s = 0.0584, F = 150.7739,
Q2 LOO = 0.9495, Q2LMO = 0.9449, R2Yscr = 0.1763, Q2Yscr = −0.3864, RMSEcv = 0.0668,
MAEcv = 0.0549, PRESScv = 0.0804, CCCcv = 0.6865, R2ext = 0.0983, MAEext = 0.0856,
PRESSext = 0.0966, RMSEext = 0.0983, CCCext = 0.6865, Q2 F1 =0.4530, Q2 F2 =0.4375,
Q3 F3 = 0.8908 (Equation (1)).

Model 2

pIC50 = 17.6885 - 0.0831 (AATS7s) − 3.6745 (MATS2c) − 8.2998 (SpMin3_Bhi) + 0.2438(MDEC-33) (2)

Ntr = 20, npred = 6, R2 = 0. 0.9883, R2 adj = 0.9851, R2−R2 adj = 0.0031 LOF = 0.0016,
RMSEtr = 0.0236, MAEtr = 0.0192, RSStr = 0.0112, CCCtr = 0.9941, s = 0.0273, F = 315.6856,
Q2 LOO = 0.9796, Q2LMO = 0.9740, R2Yscr = 0.2090, Q2Yscr = −0.4425, RMSEcv = 0.0312,
MAEcv = 0.0256, PRESScv = 0.0194, CCCcv = 0.9897, R2ext = 0.9726, MAEext = 0.0448,
PRESSext = 0.0121, RMSEext = 0.0450, CCCext = 0.9754, Q2 F1 = 0.9698, Q2 F2 = 0.432,
Q3 F3 = 0.9575 (Equation (2)).

Model 3

pIC50 = 18.2893 − 3.1558 (MATS2c) − 8.6164 (SpMin3_Bhi) − 0.3147 (ETA_EtaP_F) + 0.2471 (MDEC-33) (3)

ntr = 20, npred = 6, R2 = 0.9875, R2adj = 0.9842, R2–R2 adj = 0.0033, LOF = 0.0016.
RMSE tr = 0.0244 MAE tr = 0.0198 RSS tr = 0.0119 CCC tr = 0.9937s = 0.0281F

= 296.9651 Q2loo = 0.9789 RMSE cv = 0.0316 MAE cv 0.0260 PRESS cv = 0.0200 CCC
cv = 0.9894 Q2LMO = 0.9738 R2Yscr = 0.2095 Q2Yscr = −0.4288 RMSE ext = 0.0527
MAE ext = 0.0512 PRESS ext = 0.0167 R2ext = 0.9665 Q2-F1 = 0.9586 Q2-F2 = 0.9220
Q2-F3 = 0.9416CCC ext: 0.9677 (Equation (3)).

Model 4

MATS2c and ETA_EtaP_F were included in equation 3 along with MATS2c, Sp-
Min3_Bhi MDEC-33. MATS2c and ETA_EtaP_F and contributed negatively to the activity.

pIC50 = 20.1355 − 2.8197 (MATS2c) − 9.3329 (SpMin3_Bhi) − 0.3066 (IC1) + 0.2710 (MDEC-33) (4)

R2 = 0.9874, R2adj = 0.9840, R2-R2adj = 0.0034, LOF = 0.0017, RMSE tr = 0.0245,
MAEtr = 0.0199, RSS tr = 0.0120, CCC tr = 0.9937, s = 0.0283, F = 293.8200, Q2loo = 0.9777,
R2-Q2loo: 0.0097, RMSE cv = 0.0326, MAE cv = 0.0270, PRESS cv = 0.0212, CCC cv = 0.9888.

Q2LMO = 0.9733, R2Yscr = 0.2098, Q2Yscr = −0.4428, RMSE ext = 0.0488, MAE
ext = 0.0433 PRESS ext = 0.0143, R2ext = 0.9703, Q2-F1 = 0.9644, Q2-F2 = 0.9330, Q2-F3 = 0.9499
CCC ext = 0.9720 (Equation (4)).

IC1 parameter is newly included in model 4 and it had a negative contribution to the
activity.

2.1.3. Validation of 2D-QSAR Models

The correlation matrix for the best model (model 2) obtained is provided in Table 2.
A scatter plot of data set compounds obtained from experimental values and the final

model equation is presented in Figure 1. Figure 2 represents the LMO scatter plot. The
Y-scramble plot of Kxy versus R2 Yscr and Q2 Yscr is shown in Figure 3, which shows
that correlation coefficients of the final model are much higher than those after endpoint
scrambling, and a broken relationship can be evidenced between structure and responses.
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Table 1. GI50 (mM) values of synthesized hybrids.

Code R n pIC50

1 H 1 10.99

2 F 1 1.55

3 Cl 1 2.57

4 Br 1 3.34

5 I 1 3.96

6 CH3 1 5.16

7 NO2 1 4.25

8 H 2 13.57

9 F 2 3.34

10 Cl 2 4.23

11 Br 2 4.71

12 I 2 5.73

13 CH3 2 9.88

14 NO2 2 6.41

15 H 3 16.63

16 F 3 5.15

17 Cl 3 5.99

18 Br 3 6.88

19 I 3 7.75

20 CH3 3 11.33

21 NO2 3 9.77

22 H 4 19.55

23 F 4 6.05

24 Cl 4 6.71

25 Br 4 7.29

26 I 4 9.33

27 CH3 4 14.75

28 NO2 4 12.24

Table 2. Descriptor correlation matrix for the best model.

AATS7s MATS2c SpMin3_Bhi MDEC-33
AATS7s 1.000
MATS2c −0.6597 1.000

SpMin3_Bhi 0.2951 0.1291 1.000
MDEC-33 0.5981 −0.5151 0.3539 1.000
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Figure 1. Scatter plot of data set compounds obtained from experimental values and the final
model equation.

Figure 2. The LMO scatter plot (plot of Kxy vs. Q2 LMO).

pIC50 = 18.2893 − 3.1558 (MATS2c) − 8.6164 (SpMin3_Bhi) − 0.3147 (ETA_EtaP_F) + 0.2471 (MDEC-33)

The applicability domain of the model was explained by William’s plot, standardized
residuals versus leverage values shown in Figure 4, and it illustrates the prediction and
expression. William’s plot indicated that all the molecules are located in the applicability
domain of the model, with leverage values lower than the warning h* of 0.750.
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Figure 3. Y-scramble plot (plot of Kxy vs. R2 and Q2 LOO from Y-scrambling procedure).

Figure 4. William’s plot of the best model. The dashed lines are the cut-off 3σ and the warning value
of HAT (h*, 0.750).

From the four models, model 2 was found to be the best equation. The predicted
activities calculated from the best model were found to be closest to observed activities
(Table 3). Twelve new compounds were designed using ChemSketch software. The novelty
of the compounds was confirmed by Scifinder search (Table 4).
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Table 3. pKi values of the original data set predicted by the best model equation.

S.No AATS7s MATS2c SpMin3_Bhi MDEC-33 Observed
Activity

Predicted
Activity Residual

1 3.373101 0.041687 1.704602 10.0791391 5.59 5.564453 0.025547

2 3.351496 0.048774 1.70672 10.0791391 5.476 5.522631 −0.04663

3 3.348425 0.062204 1.709487 10.0791391 5.402 5.450572 −0.04857

4 3.357474 0.075511 1.729188 10.0791391 5.287 5.237408 0.049592

5 4.110095 0.03852 1.723253 10.0791391 5.372 5.360054 0.011946

6 2.850694 0.09839 1.701321 7.7983348 4.867 4.870679 −0.00368

7 3.455229 0.044554 1.698517 9.42319018 5.476 5.437684 0.038316

8 2.985512 0.06304 1.705109 9.42319018 5.374 5.354074 0.019926

9 2.965686 0.070285 1.707205 9.42319018 5.27 5.311702 −0.0417

10 2.962868 0.083909 1.709945 9.42319018 5.242 5.23913 0.00287

11 2.996642 0.097217 1.729488 9.42319018 5.005 5.025225 −0.02022

12 3.68196 0.059358 1.723591 9.42319018 5.193 5.156333 0.036667

13 2.867544 0.104709 1.695475 7.32266243 4.779 4.778616 0.000384

14 3.304386 0.043052 1.698914 8.86256391 5.288 5.315756 −0.02776

15 2.884113 0.061294 1.705445 8.86256391 5.222 5.229445 −0.00745

16 2.866374 0.068444 1.707524 8.86256391 5.162 5.187387 −0.02539

17 2.863853 0.081897 1.710244 8.86256391 5.11 5.115595 −0.0056

18 2.900165 0.095095 1.729668 8.86256391 4.946 4.90286 0.04314

19 3.51431 0.057675 1.723799 8.86256391 5.01 5.038041 −0.02804

20 2.794935 0.100075 1.695788 6.91156492 4.709 4.698848 0.010152

21 3.201797 0.03936 1.699197 8.37672004 5.218 5.217054 0.000946

22 2.810367 0.057278 1.705677 8.37672004 5.173 5.12996 0.04304

23 2.793845 0.06431 1.707742 8.37672004 5.137 5.088354 0.048646

24 2.791497 0.077555 1.710444 8.37672004 5.03 5.017453 0.012547

25 2.829475 0.09062 1.729779 8.37672004 4.831 4.80581 0.02519

26 3.40173 0.053783 1.72393 8.37672004 4.912 4.942162 −0.03016

27 3.373101 0.041687 1.704602 10.0791391 5.59 5.564453 0.025547

28 3.351496 0.048774 1.70672 10.0791391 5.476 5.522631 −0.04663

29 3.348425 0.062204 1.709487 10.0791391 5.402 5.450572 −0.04857

30 3.357474 0.075511 1.729188 10.0791391 5.287 5.237408 0.049592

31 4.110095 0.03852 1.723253 10.0791391 5.372 5.360054 0.011946

32 2.850694 0.09839 1.701321 7.7983348 4.867 4.870679 −0.00368

33 3.455229 0.044554 1.698517 9.42319018 5.476 5.437684 0.038316

34 2.985512 0.06304 1.705109 9.42319018 5.374 5.354074 0.019926

35 2.965686 0.070285 1.707205 9.42319018 5.27 5.311702 −0.0417

36 2.962868 0.083909 1.709945 9.42319018 5.242 5.23913 0.00287

37 2.996642 0.097217 1.729488 9.42319018 5.005 5.025225 −0.02022

38 3.68196 0.059358 1.723591 9.42319018 5.193 5.156333 0.036667

39 2.867544 0.104709 1.695475 7.32266243 4.779 4.778616 0.000384

40 3.304386 0.043052 1.698914 8.86256391 5.288 5.315756 −0.02776

41 2.884113 0.061294 1.705445 8.86256391 5.222 5.229445 −0.00745

42 2.866374 0.068444 1.707524 8.86256391 5.162 5.187387 −0.02539

43 2.863853 0.081897 1.710244 8.86256391 5.11 5.115595 −0.0056

44 2.900165 0.095095 1.729668 8.86256391 4.946 4.90286 0.04314

45 3.51431 0.057675 1.723799 8.86256391 5.01 5.038041 −0.02804

46 2.794935 0.100075 1.695788 6.91156492 4.709 4.698848 0.010152

47 3.201797 0.03936 1.699197 8.37672004 5.218 5.217054 0.000946

48 2.810367 0.057278 1.705677 8.37672004 5.173 5.12996 0.04304

49 2.793845 0.06431 1.707742 8.37672004 5.137 5.088354 0.048646

50 2.791497 0.077555 1.710444 8.37672004 5.03 5.017453 0.012547

51 2.829475 0.09062 1.729779 8.37672004 4.831 4.80581 0.02519

52 3.40173 0.053783 1.72393 8.37672004 4.912 4.942162 −0.03016
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Table 4. Structures of the predicted compounds a–l.

S.NO Compound Code Substituents
R3 R4 R5

1 a 5-fluoropyrimidinyl -H -H

2 b 5-fluoropyrimidinyl -CH3 -H

3 c 5-fluoropyrimidinyl -H -OCH3

4 d 2-(trifluoromethyl)pyrimidinyl -H -H

5 e 2-(trifluoromethyl)pyrimidinyl -CH3 -H

6 f 2-(trifluoromethyl)pyrimidinyl -H -OCH3

7 g 2,4-bis(trifluoromethyl)pyrimidinyl -H -H

8 h 2,4-bis(trifluoromethyl)pyrimidinyl -CH3 -H

9 i 2,4-bis(trifluoromethyl)pyrimidinyl -H -OCH3

10 j 4-cyclopropyl-2-(trifluoromethyl)pyrimidinyl -H -H

11 k 4-cyclopropyl-2-(trifluoromethyl)pyrimidinyl -CH3 -H

12 l 4-cyclopropyl-2-(trifluoromethyl)pyrimidinyl -H -OCH3

Physicochemical properties of designed compounds were predicted using the PaDEL
descriptor. Their anticancer activity against MCF7 cells was predicted using the generated
QSAR models.

The novel designed compounds exhibited very high inhibitory activity compared
to the most active compound of the original data set. The most active compound in the
original data set had an IC50 value of 1.55. Its pIC50 value was found to be 5.809. All the
predicted compounds exhibited pIC50 values of more than 9.0 except one compound which
had a pIC50 value of 8.007. The predicted activities against MCF7 cells using the generated
QSAR equation for the compounds g, h, i and j were found to be 7.9, 7.80, 8.59 and 8.33,
respectively (Table 5).

Table 5. pKi values of designed compounds predicted by the best model equation.

Compound Code AATS7s MATS2c SpMin3_Bhi MDEC-33 Predicted Activity
a 4.65426 −0.08643 1.422487 8.99956 8.007063

b 4.887336 −0.06669 1.422521 13.38021 8.982861

c 4.686847 −0.06804 1.473045 15.7691 9.167553

d 4.620868 −0.0867 1.422633 15.7691 9.660035

e 4.385983 −0.08759 1.472606 11.30879 8.180639

f 4.254474 0.042657 1.415929 11.30879 8.18336

g 5.166064 −0.07107 1.420907 8.99956 7.921204

h 4.912833 −0.01094 1.478859 11.30879 7.803298

i 4.755541 −0.09143 1.421056 11.30879 8.591879

j 5.677675 −0.05352 1.422787 11.1857 8.331555

k 5.329807 −0.05452 1.473214 13.54342 8.520435

l 4.755541 −0.09143 1.421056 11.30879 8.591879

2.2. Docking Studies

A molecular docking study was performed in order to study possible interactions
between the protein complex and the ligand for the designed compounds. In the present
manuscript, we attempted to study the interactions of novel pyrimidine-coumarin-triazole
hybrids with DHFR. In order to study the binding efficacy of all the designed compounds
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a–l, molecular docking studies were performed in the binding pockets of S. aureus dihy-
drofolate reductase [PDB ID:3SRQ]. All the designed compounds exhibited better binding
scores ranging from −6.9 to −9.3 kcal/mol. Binding energies of compounds which target
colchicine binding site (PDB ID 1SA0) and vinblastine binding site of tubulin (PDB ID
5J2T) and Staphylococcus aureus dihydrofolate reductase [PDB ID: 3SRQ] are presented
in Table 6. Docking interactions of the best active compounds are shown in Figures 5–9
whereas Figures 10 and 11 represents the binding interactions of designed compounds b
and h on the vinblastine binding site of tubulin and DHFR of human proteins.

Table 6. Binding energies of compounds targeting colchicine binding site (PDB ID 1SA0) and vinblas-
tine binding site of tubulin (PDB ID 5J2T) and S. aureus dihydrofolate reductase [PDB ID: 3SRQ].

Binding Energy (kcal/mol)
Compound Code

Tubulin-Colchicine Tubulin-Vinblastine DHFR

a −8.7 −7.9 −7.4

b −9.4 −9.2 −7.7

c −8.8 −8.6 −8.7

d −8.8 −8.5 −6.9

e −8.7 −7.6 −7.4

f −8.9 −8.3 −8.9

g −9.1 −8.7 −8.7

h −8.5 −8 −9.0

i −7.9 −7.1 −9.1

j −9.6 −6.9 −8.6

k −9.8 −6.4 −8.5

l −9 −7.1 −8.4

Figure 5. Docking interactions of designed compound g with DHFR enzyme.
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Figure 6. Docking interactions of designed compound h with DHFR enzyme.

Figure 7. Docking interactions of designed compound i with DHFR enzyme.
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Figure 8. Docking interactions of designed compound k with colchicine binding site of tubulin enzyme.

Figure 9. Docking interactions of designed compound b with vinblastine binding site of tubulin enzyme.
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Figure 10. Docking interactions of designed compound b with vinblastine binding site of tubulin
enzyme of human.

Figure 11. Docking interactions of the designed compound h with DHFR enzyme of human.

2.3. Effects of Predicted Compounds on Nuclear Signaling Pathways were Predicted
Using ProTox-II

The compounds were found to be active against three nuclear signaling pathways,
namely aromatase, estrogen receptor alpha and estrogen receptor ligand-binding domain
(Table 7).

2.4. In Silico Studies Using SwissADME Pathways

The prediction of key physicochemical, pharmacokinetic, drug-like and related pa-
rameters for one or multiple molecules can be performed by SwissADME. Thus, the
SwissADME studies for the designed compounds were carried out (Table 8).
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Table 7. Effect of predicted compounds on nuclear signaling pathways predicted using ProTox-II.

S.No Aryl Hydrocarbon Receptor Androgen Receptor Androgen Receptor Ligand
Binding Domain Aromatase Estrogen Receptor Alpha (ER) Estrogen Receptor Ligand

Binding Domain (ER-LBD)

Peroxisome Proliferator
Activated Receptor Gamma

(PPAR-Gamma)

1 Inactive Inactive Inactive Active Active Active Inactive

2 Inactive Inactive Inactive Active Active Active Inactive

3 Inactive Inactive Inactive Active Active Active Inactive

4 Inactive Inactive Inactive Active Active Active Inactive

5 Inactive Inactive Inactive Active Active Active Inactive

6 Inactive Inactive Inactive Active Active Active Inactive

7 Inactive Inactive Inactive Active Active Active Inactive

8 Inactive Inactive Inactive Active Active Active Inactive

9 Inactive Inactive Inactive Active Active Active Inactive

10 Inactive Inactive Inactive Active Active Active Inactive

11 Inactive Inactive Inactive Active Active Active Inactive

12 Inactive Inactive Inactive Active Active Active Inactive

Table 8. SwissADME results of the predicted compounds.

Compound Number ESOL Log S No. of H Bond Acceptors No. of H Bond Donors GI Tract Absorption Lipophilicity Q log Po/w Lipinski Drug- Likeness

a −3.51 8 2 Low 2.55 0 violation

b −3.53 8 2 Low 2.66 0 violation

c −4.2 10 2 Low 1.95 0 violation

d −4.21 10 2 Low 2.17 0 violation

e −3.57 9 2 Low 2.07 0 violation

f −4.26 11 2 Low 2.19 0violation

g −5.07 13 2 Low 2.67 1 violation

i −5.09 13 2 Low 2.5 1 violation

j −5.15 14 2 Low 2.73 1 violation

k −4.69 10 2 Low 3.56 0 violation

l −4.71 10 2 Low 2.91 0 violation

m −4.76 11 2 Low 3.23 1 violation
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3. Discussion

In the present study, a series of compounds reported by Mohit Sandhuja et al. were
taken for QSAR analysis. In QSAR model 1 MAXDP is a dimensionless maximal elec-
trotopological positive variation, which correlates the molecule’s electrophilicity and is
a measure of the electronic distribution in the topological graph. MAXDP contributes
positively to the activity. In previous research, also MAXDP contributed positively to the
anticancer activity of coumarin analogs [35]. Information indices are best associated with
cytotoxic activity [36]. A positive contribution to the activity was observed for structural
information content index (neighborhood symmetry of 0-order) contributes JGI7. The
topological charge parameter also contributes positively to the activity. Since two outliers
(A2 and A5) were observed in William’s plot, they were removed and QSAR models were
again generated. In model 2, AATS7s, MATS2c and SpMin3_Bhi contributed negatively
to anticancer activity while MDEC-33 contributed positively. Similar values were found
for Q2 F1, Q2F2 and Q2F3, along with elevated CCC (concordance correlation coefficient)
parameter values (Figure 1). The results clearly indicate that the best model obtained was
not by chance and truly there is a relationship between structures of pyrimidine-coumarin-
triazole based trifunctional molecular hybrid analogs with corresponding MCF 7 cell line
inhibitory activity.

In model 3, no outliers in William’s plot were observed. The scatter plot of the
experimental versus the calculated MCF7 cell line inhibitory activities of pyrimidine-
coumarin-triazole based trifunctional molecular hybrids is shown in Figure 1; it shows
that predicted values are similar to corresponding experimental values. Figure 2 describes
the correlation between the resulting Kxy (the inter-correlation among descriptors and
response) versus Q2 LMO of the final model, which shows the LMO parameter values were
around the model parameters, meaning the model is robust and stable.

IC1 parameter was newly included in model 4 and it had a negative contribution
to the activity. The applicability domain of the model was explained by William’s plot,
standardized residuals versus leverage values shown in Figure 4, and it illustrates the
prediction and expression. William’s plot indicated that all the molecules are located in the
applicability domain of the model with leverage values lower than the warning h* of 0.750.

All four models showed good statistical values for the training group with R2 values
greater than 0.9 (equation 1, R2 = 0.9700; equation 2, R2 = 0.9883; equation 3, R2 = 0.9875;
equation 4, R2 = 0.9874). The cross-validated Q2 must be higher for the models to be statis-
tically significant. In all four models Q2 value was more than 0.9 (equation 1, Q2 = 0.9495;
equation 2, Q2 = 0.9796; equation 3, Q2 = 0.9789; equation 4, Q2 = 0.9777,). The difference
between R2 and Q2 should not be more than 0.3. In all four generated models the differ-
ence between R2 and Q2 was found to be 0.009. All of these parameters suggest that the
generated QSAR equations have good predictive power. The predicted activities calculated
from the best model were found to be close to observed activities.

Twelve new compounds were designed using ChemSketch software. The novelty of
the compounds was confirmed by Scifinder. Physicochemical properties of the designed
compounds were predicted using the PaDEL descriptor. Their anticancer activity against
MCF7 cells was predicted using the generated QSAR models.

The novel designed compounds exhibited very high inhibitory activity compared
to the most active compound of the original data set. The most active compound in the
original data set had an IC50 value of 1.55. Its pIC50 value was found to be 5.809. All the
predicted compounds exhibited pIC50 values of more than 9.0 except one compound which
had a pIC50 value of 8.007. The predicted activities against MCF7 cells using the generated
QSAR equation for compounds g, h, i and j were found to be 7.9, 7.80, 8.59 and 8.33,
respectively. Hence, it was proven that all the predicted compounds are found to be more
active against MCF7 cells and could serve as lead compounds for treating breast cancer.

To study the binding efficacy of all the designed compounds a–l, molecular docking
studies were performed in the binding pockets of S. aureus dihydrofolate reductase [PDB
ID:3SRQ]. All the designed compounds exhibited better binding scores, ranging from
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−6.9 to −9.3 kcal/mol. A dock score with a high negative value represents minimum
binding energy for the formation of the complex between protein and ligand. The docking
study reveals that introduction of an electron-withdrawing group at the second and fourth
positions of the pyrimidine ring had a better affinity of the ligand to the protein DHF
reductase complex. These compounds exhibited H bond interaction with Ile X-51 and Leu
X-21. The Ile formed an H bond with NH of triazole while Leu formed an H bond with
the trifluoromethyl group of the pyrimidine nucleus. The two trifluoromethyl groups also
formed halogen bonds with Trp X-23, Leu X-21 and Ser X-50. Phe X-93 forms pi-pi stackings
with the coumarin nucleus. Ala X-8, Val X-32, Leu X-21, IsoLeu X-51 and Lys 46 are bonded
through alkyl interaction. Gly X-20 and His X-24 are linked with the nucleus through
van der Waals attraction. Compounds g, h, i and j showed excellent binding energies.
Their binding energy values were found to be −8.7, −9.0, −9.1 and −8.6, respectively. The
binding affinity of novel compounds towards colchicine binding sites of tubulin were in
the range of −7.4 to −9.8. The designed compound k showed the highest affinity with a
binding value of −9.8.

Conventional hydrogen bonds are formed between designed compound k and Leu-
248, Gly-179, Asn-143 and Gln-11 groups of enzymes at distances of 5.40, 4.47, 4.47 and
4.54 angstroms, respectively. Three halogen bonds were formed between the trifluo-
romethyl group of compounds and Ala-247 at a distance of 5.43 Å. Pi-sigma bonds and pi-pi
stacked bonds were formed between the pyrone nuclei of Cys-12 and Gln-11 at distances of
4.80 and 6.95 Å, respectively. Pi anion bonds were formed 6.95 Å away from the triazole
fragments of nuclei with Glu-254 of enzymes (Figure 8).

The binding affinity of novel compounds towards vinblastine binding sites of tubulin
were in the range of −9.2 to −6. The designed compound b showed a binding energy
of −9.2. The designed compound b binds with the target by forming two conventional
hydrogen bonds with Gln-394 and Val-181 at distances of 4.42 and 2.56 Å, respectively. Two
pi-alkyl bonds were formed between the coumarin nucleus and Pro-175 of the target at
5.37 Å. (Figure 9). On comparing the binding affinities between the colchicine binding site
and vinblastine binding site of tubulin, it was found that compound k with 4-cyclopropyl-
2-(trifluoromethyl)pyrimidinyl substitution showed binding affinity towards the colchicine
binding site, while compound b with 5-fluoropyrimidinyl substitution showed binding
affinity towards the vinblastine binding site of tubulin. The interactions of the compounds
g, h, and i with the DHFR for protein are presented in Figures 5–7.

By comparing the different forms of bond interactions between the protein and ligand
among both tubulin targets, interatomic lengths for hydrogen bonds were found to be
2.56 and 5.40 Å, respectively. The hydrogen bonds in both the high- and low-resolution
targets of tubulin were found to be at a distance of 4.4 Å. In addition, pi-interaction was
identified in both tubulin proteins at a distance of 4.8 to 6.9 Å. Despite the fact that proteins
5J2T and 1SA0 have resolutions of 2.2 and 3.58 Å, respectively, the docking of the ligands
showed the same distance range. This illustrates the ligand’s capability of binding to targets
of various resolutions. The docking studies were carried out with human tubulin (e.g.,PDB
id 6O5N) and DHFR (4KD7) for a comparative study. The results were quite surprising. The
amino acid sequence was totally different for human tubulin and rat tubulin. Although the
amino acid sequence is different between human and rat, the binding energy of designed
compound b was found to be −9.0 kcal/mol for human tubulin and −9.4 kcal/mol for
rat tubulin (Figure 10). The binding energies for the designed compounds were similar
in human tubulin and rat tubulin. In addition, the docking with human DHFR enzyme
PDB ID 4KD7 was also carried out for the compounds that exhibited best in the rat DHFR
enzyme (PDB ID: 3SRQ). The compounds g, h and i exhibited good binding energies of
−9.0, −10.1 and −8.9 kcal/mol, respectively, for human DHFR (Figure 11). The binding
sites of the compounds g, h and i vary in both the rat and the human DHFR enzymes, but
they bind effectively through hydrogen, van der Waals and pi-stacking interactions in both.
By this comparison, we can conclude that the best compounds b and h can serve as the lead
for anti-cancer activity in both rat and human breast cells.
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The compounds were found to be active against three nuclear signaling pathways,
namely aromatase, estrogen receptor alpha and estrogen receptor ligand-binding domain,
which was determined by ProTox-II. Aromatase inhibitors work by inhibiting the enzyme
aromatase. Aromatase converts the hormone androgen into small amounts of estrogen
in the body. Thus, aromatase inhibitors reduce estrogen levels that stimulate the growth
of hormone-receptor-positive breast cancer cells [37]. The effects of estrogen are largely
mediated by estrogen receptors ER-α and ER-β, which are members of the nuclear receptor
superfamily of transcription factors. Estrogen receptor alpha (ER-α) is expressed in ap-
proximately 65% of breast cancer cases [38]. Estrogen receptor α is mainly responsible for
breast cancer initiation and progression. Since the predicted compounds act as ligands that
selectively bind to the estrogen alpha receptor and inhibit estrogen-dependent proliferative
activity, they are expected to show anticancer activity. The characterization of estrogen
provided a molecular basis for the regulation of estrogen receptors and, thereby a basis to
describe the mechanism of the hormone therapy in treating breast cancer [39]. Tamoxifen,
a well-known anticancer agent, interferes with all three pathways in ProTox-II, similarly
to the designed compounds. Tamoxifen is a stilbenoid. The designed compounds contain
coumarin. In general, coumarins are biosynthesised from coumaric acid, which is also a
stilbenoid. Thus, coumarins are structurally related to tamoxifen and both of them interfere
with aromatase, estrogen receptor alpha and estrogen binding domain.

By the above facts, it was very clear that the predicted compounds could act as lead
compounds for breast cancer treatment, and that they can act through all three nuclear
signaling pathways. The prediction of key physicochemical, pharmacokinetic, drug-like
and related parameters for one or multiple molecules can be performed by SwissADME.
Thus, SwissADME studies for the designed compounds were carried out. Qualitative
estimation of the class of solubility was conducted according to the following log S scale:
insoluble < −10 < poorly < −6 < moderately < −4 < soluble < −2 < very < 0 < highly. The
log S scale of the predicted compounds was found to be in the range of −6 to −2. Thus, the
designed compounds were found to be moderately soluble to very soluble in water. The
compounds were not permeable to the blood-brain barrier. This indicates that they were
devoid of CNS side effects.

Cytochrome P4501A2 (CYP1A2) is a key enzyme in the cause of breast cancer (BC).
It plays a role in activation of breast carcinogen, in the production of beneficial estro-
gen [2-hydroxyestrone (2-OHE1)] and in converting arachidonic acid (AAc) to epoxye-
icosatrienoic acids (EETs), which have anti-inflammatory properties. All the designed
compounds were inhibitors of CYP1A2 which would further enhance their anticancer ac-
tivity [40]. CYP3A4 causes the oxidation of compounds that are usually used as chemother-
apeutic agents for the treatment of osteosarcomas such as etoposide, ifosfamide, cyclophos-
phamide and doxorubicin, suggesting that the response to these drugs could be worse
in tumors with high CYP3A expression, increasing the risk of metastasis. All the de-
signed compounds were inhibitors of CYP1A2 which would further enhance the anticancer
activities of other drugs, such as etoposide [41]. The synthetic accessibility (SA) score
suggests to us the ease of synthesis. The score can be between 1 and 10, where 1 is very
easy, while 10 denotes difficulty in synthesizing. The predicted compounds had scores
of 3.16–3.71. Thus, these compounds can be synthesized easily. A bioavailability score of
0.55 or 0.56 means a compounds has good pharmacokinetic properties. All the designed
compounds showed values of more than 0.55.

The overall results of the above research indicated that the designed compounds
exhibited promising results in MCF 7 cell inhibition prediction. The ProTox-II results
further confirmed their anticancer activity. The SwissADME results also indicated that the
designed compounds are inhibitors of two important enzymes, CYP1A2 and CYP3A4, and
thus are predicted to possess anticancer activity.
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4. Materials and Methods

Multiple linear regression models by ordinary least squares were developed by
“QSARINS”, carefully verified and validated in detail according to the chemometric ap-
proach. A series containing 28 compounds (Table 1) of uracil–coumarin based bifunctional
molecular hybrids linked by 1,2,3-triazole moiety with MCF7 inhibitory values were se-
lected from reported literature. pKi was calculated from observed Ki values and considered
as the dependent variable.

4.1. Molecule Structure Preparation and 3D Geometry Optimization

The molecular structures were drawn by ACD/labs ChemSketch freeware 2017.2.116
and converted to mol2 format. Geometry optimization was performed by Avogadro
V1.2.018 on adding hydrogens. MMFF94, Merck molecular force field, was employed,
along with the steepest descent algorithm. The best conformer with global minimum
energy was used throughout the study.

4.2. Data Setup

The molecular descriptor values for the compounds were calculated from PaDEL
descriptor. All zero values, missing values and constant value (>50%) descriptors were
excluded from variables. Descriptors with values greater than 0.85 were filtered out using
pair-wise correlation. All twenty-eight compounds were divided into training set and
prediction set in a 5:1 ratio. Many trials and models were developed, a few best models are
presented in this manuscript.

4.3. Variable Selection and Model Calculation

QSARINS software considers all combinations of selected descriptors defined by user
options. Descriptor selection relational to biological activities of molecules and Friedman’s
“lack-of-fit” (LOF) function was calculated by genetic algorithm. LOF smoothness level is
kept at the default level of 1.0. Along with the genetic algorithm, more combinations and
maximum generations (user-defined value:2000) were explored by parameters including
mutation probability (0.1), population size (200).

4.4. Model Validation

Internal validation and external validation, in addition to applicability domain of the
model, were performed. Internal validation was performed by cross-validation leave-one-
out (Q2LOO), cross-validation leave-many-out (Q2LMO), root mean squared error (RMSE),
Y-scrambling, and external validation by Q2 F1, Q2 F2, and Q2 F3,22; CCC was applied
on selected models. Q2LMO was repeated 2000 times with 30% of objects left from the
training set each time. Y-scrambling was performed by 2000 iterations method in order
to exclude chance correlation in the original model. R2 and Q2LOO of the model must be
reasonably higher than scrambled ones, and RMSE of the model underprediction must be
reasonably smaller than scrambled ones. The concordance correlation coefficient (CCCext)
was analyzed. The leverage (hat) was calculated by hi = xi (XT X)-1 xTi (I = 1, 2, . . . m),
where xi is the descriptor row-value of the query compound i, and m is the number of
query compounds. X is n × p matrix of the training set, where n is the number of training
set samples and p is the number of model descriptors. The leverage cut-off value h* is
3(p + 1)/n. Leverage greater than h* for the training set means that the sample is highly
influential in determining the model, whereas in the test set (X outlier) the prediction is
extrapolation of the model. Any compound with a standardized residual of more than 3σ
(3 standard deviation units) is identified as a Y outlier.

4.5. Molecular Docking Study

Molecular docking protocols are widely used for predicting the binding affinities for
a number of ligands. Intermediary steps, such as PDBQT files for protein and ligands
preparation and grid box creation, were completed using the graphical user interface
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program AutoDock Tools (ADT). ADT assigned polar hydrogens, united atom Kollman
charges, solvation parameters and fragmental volumes to the protein. AutoDock saved the
prepared file in PDBQT format. AutoGrid was used for the preparation of the grid map
using a grid box. The grid size was set to 60 × 60 × 60 xyz points with a grid spacing of
0.375 Å and grid center was designated at dimensions (x, y and z): −1.095,−1.554 and 3.894.
A scoring grid is calculated from the ligand structure in order to minimize computation
time. AutoDock Vina was employed for docking using protein and ligand information
along with grid box properties in the configuration file. AutoDock Vina employs iterated
local search global optimizer. During the docking procedure, both the protein and ligands
are considered as rigid. Results less than 1.0 Å in positional root-mean-square deviation
(RMSD) were clustered together and represented by the result with the most favorable free
energy of binding. The pose with the lowest energy of binding or binding affinity was
extracted and aligned with receptor structure for further analysis.

Hydrogen bonds and Gasteiger–Huckel charges were assigned to the protein of interest
and designed compounds using Chimera software. The cofactors and water molecules
were also eliminated from the protein. A molecular docking study was performed using
PyRxAutodock Vina in the binding site of Staphylococcus aureus dihydrofolate reductase
[PDB ID:3SRQ]. The grid box of dimensions in Å were: center (X, Y, Z) = (−2.5, 0.32,−21.67),
dimensions (X, Y, Z) = (88.31, 88.31, 88.31), with an exhaustiveness of 8. The docking poses
for protein–ligand interactions were chosen on the basis of docking scores. The pose with
the highest docking score was selected. The binding interactions were developed using the
Molegro molecular viewer software.

4.6. In Silico Studies

Effect of predicted compounds on nuclear signaling pathways was predicted using
ProTox-II. The effect of compounds on aryl hydrocarbon receptor (AhR), androgen receptor
(AR), androgen receptor ligand binding domain (AR-LBD), aromatase, estrogen receptor
alpha (ER-α), estrogen receptor ligand b inding domain (ER-LBD) and peroxisome prolifer-
ator activated receptor gamma (PPAR-Gamma) nuclear signaling pathways were checked.
SwissADME Web determines physicochemical, pharmacokinetic, drug-like and related
parameters for multiple molecule; thus, SwissADME studies for the designed compounds
were carried out.

5. Conclusions

In continuation of our research on coumarin derivatives [42,43], we report in this study
the 2D-QSAR studies on pyrimidine-tethered coumarin–triazole derivatives. The models
developed with 2D descriptors were found to be robust, stable and predictive. A study
to discover the role of 2D descriptors in tubulin and dihydrofolate reductase inhibiting
activity was carried out by developing a good statistical model. Model validation was
performed internally and externally. The model was tested on designed compounds for
predicting bioactivity. The best predicted active compounds were subjected to molecular
docking studies for structural and interaction information supporting our QSAR model.
The compounds c, d, h, i and j were found to have potential DHFR inhibitory activity and
are being considered for further synthesis and biological screening.
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