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ABSTRACT: A major goal in computational chemistry has been to discover the
set of rules that can accurately predict the binding affinity of any protein-drug
complex, using only a single snapshot of its three-dimensional structure. Despite
the continual development of structure-based models, predictive accuracy
remains low, and the fundamental factors that inhibit the inference of all-
encompassing rules have yet to be fully explored. Using statistical learning theory
and information theory, here we prove that even the very best generalized
structure-based model is inherently limited in its accuracy, and protein-specific
models are always likely to be better. Our results refute the prevailing assumption
that large data sets and advanced machine learning techniques will yield accurate, universally applicable models. We anticipate
that the results will aid the development of more robust virtual screening strategies and scoring function error estimations.

■ INTRODUCTION

The accurate prediction of protein−ligand affinity remains one
of the great challenges in computational chemistry.1 A fast and
generally applicable method would greatly benefit the
pharmaceutical industry by speeding up the discovery of new
drugs and reducing reliance on expensive wet lab experiments.
In principle, one can calculate the binding affinity of any

protein−ligand complex using molecular simulations and
rigorous statistical mechanics techniques.2,3 These methods
have been successfully applied in lead-optimization, especially
when calculating the relative affinities of congeneric ligands.4,5

Despite their general applicability, these techniques remain too
time-consuming to assay the vast chemical libraries used in
pharmaceutical research. As a result, very rapid models, called
scoring functions, are typically used in virtual screens. Scoring
functions predict affinity using only a single snapshot of a
molecular complex, so that the objective of scoring function
research is to elucidate any emergent laws that operate above
the physical laws of atomic motion. They are designed to be
applicable to all proteins and ligands, in contrast to quantitative
structure−activity relationship (QSAR) models. Unlike a
QSAR model, the ideal scoring function would not need to
be optimized for any particular protein or a set of ligands and
could accurately predict hits early in a drug discovery project.
Despite decades of development, however, the performance

of scoring functions varies greatly between different protein
systems, and predictions often correlate poorly with exper-
imental data.6−9 The cause of scoring function error remains as
yet uncertain and has been attributed to a number of different
factors. Physical arguments, for instance, have highlighted the
poor treatment of explicit solvent effects and protein−ligand
flexibility.10−12 On the other hand, recent efforts have sought to

improve scoring functions by empirical means, employing
advanced machine learning techniques, many protein−ligand
interaction descriptors, and large training sets.13−16 However, it
is still not clear whether such approaches significantly improve
accuracy.8 A technique known as ‘consensus scoring’ has been
been shown to reliably lower error by combining the
predictions of different scoring functions, although accuracy
still remains far below that of experiment.7,17−19

Given the potential impact on drug discovery and the
substantial effort in scoring function development, it is vital to
understand the fundamental uncertainties in these rapid affinity
models. Recently, Faver et al. investigated the systematic and
random errors associated with the interaction energies of
protein−ligand complexes.20 Using a fragment based ap-
proach,21 they found that the random error in electrostatic
interaction calculations rises with the system size. Protein
targeted scoring functions have also been observed to be more
accurate than generalized models,22 challenging the utility of a
universal scoring function, yet questions still remain with
regards to the limits of scoring function accuracy. For instance,
is it possible for a particular set of descriptors and functional
form of a model to achieve a negligible error? Also, can a
universally applicable scoring function ever be better than a
targeted one? Without a formal analysis of the structure-based
modeling process, questions such as these cannot be answered
fully.
In this work, we investigate the inherent uncertainties in

empirical structure-based models with a rigorous mathematical
analysis utilizing statistical learning theory and information
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theory. As statistical learning theory is implicitly applied
whenever one trains a model using regression or classification,
we establish the statistical relationship between a structural
snapshot of a protein−ligand complex and its affinity. By doing
so, we find that a critical assumption of statistical learning
theory is often violated when training and applying empirical
structure-based models. An implication of this is that a scoring
function that performs optimally on one set of protein−ligand
complexes necessarily performs poorly on another set. Also, we
prove that even the very best universal structure-based model is
significantly limited in its accuracy, and protein-specific models
are always likely to be better. Throughout, we use an
information theoretic measure to quantify scoring function
error to ensure that our analysis is independent of how the
protein−ligand interactions are modeled, so that our results
apply to any set of descriptors and regression method. We
verify our theoretical predictions with our own scoring models.

■ THEORY

To understand empirical scoring function error we must first
appeal to the theory that underpins regression analysis:
statistical learning theory.23 We denote the structural features
of a protein−ligand complex as x and the binding affinity as y.
Statistical learning theory formalizes the process of elucidating
the functional relationship between x and y by assuming there
is a probabilistic process that generates the data used to train
and test a model. We denote the probability distribution
function (PDF) over x and y as p(x,y). The functional
relationship between structure and affinity is encoded in the
conditional PDF p(y|x), as with this PDF, one can find the
most likely binding affinity for a given structural description of
a protein−ligand complex. A further, critical assumption in
statistical learning theory is that the data used to train a model
are generated by the same probabilistic process as the data
found in the predictive setting.
The quantitative performance of a model is assessed using a

loss function. A popular measure, for instance, is the mean
squared error between the affinity predictions of a model and
their experimental values. For our loss function, we utilize the
cross (Shannon) entropy between the true and modeled
probability distributions. The cross entropy, denoted C(Y|X), is
given by

∫ ∫| = − |C Y X p x y q y x x y( ) ( , ) ln ( ) d d
(1)

and is a quantification of the uncertainty in the affinity given a
set of structural descriptors sampled from p(x,y), and a model,
denoted q(y|x). With this loss function, the task in scoring
function development is to find the model that lowers the
uncertainty as much as possible. Cross entropy is a very general
loss function,24,25 and while commonly used in classification,23

judicious selection of specific forms of q(y|x) allows for more
familiar measures of regression error. Indeed, if q(y|x) encodes
for a scoring function that minimizes C(Y|X), then the same
scoring function also minimizes the mean squared error (see
Supporting Information Section 2.1). In a well-known
information theoretic result,26 cross entropy expands to

| = | + | || |C Y X h Y X D p y x q y x( ) ( ) ( ( ) ( )) (2)

where h(Y|X) is the conditional entropy of the true distribution,
given by

∫ ∫| = − |h Y X p x y p y x x y( ) ( , ) ln ( ) d d
(3)

and D(p(y|x)||q(y|x)) is the Kullback−Leibler divergence or
relative entropy between the true and modeled distributions. It
is given by

∫ ∫| || | =
|
|

D p y x q y x p x y
p y x
q y x

x y( ( ) ( )) ( , )ln
( )
( )

d d
(4)

Relative entropy is a convex function for the two conditional
distributions; it is zero only when the distributions are the
same, and positive otherwise. Equation 2 can be understood as
representing the minimum uncertainty, or error, of the binding
affinity given the structure, plus the uncertainty due to our
model; choosing the wrong model only increases our
uncertainty of the system. In our information theoretic
perspective, h(Y|X) is the minimum achievable error, which is
irreducible for a given set of descriptors, and D(p(y|x)||q(y|x))
is the bias for assuming the structure-affinity relationship is
encoded in q(y|x) when in reality it is encoded in p(y|x). This
bias is a type of random error, as opposed to a systematic error.
Any bias ensures that the minimum error is not achieved for the
wrong model, and borrowing a term from financial decision
theory27 and signal processing,28 we shall refer to the positive
deviation from the minimum error as regret.
Many factors can cloud the reasons for an empirical model's

inaccuracy. In structure-based affinity models one has to choose
the representation of a complex - a possible description might
be the surface complementarity between a drug bound to a
protein - and the functional form of the model. Both choices
may introduce errors that are difficult to disentangle from the
fundamental uncertainties arising from rapid affinity prediction.
The benefit of using C(Y|X) to quantify a error is that all the
confounding factors that hinder a scoring function's accuracy
unravel, and we need only consider the relationship between a
protein−ligand's affinity and a complete structure of the
complex obtained from solution at equilibrium. First, the
minimum error, h(Y|X), is a property of the data and its
underlying PDF only, and thus is independent of the functional
form of a scoring model. Second, the mere process of selecting
a subset of structural features of a protein−ligand complex to
use in a model means some data about the complex is
discarded. Discarding data can either maintain or increase h(Y|
X),26 so to analyze the minimum achievable error of a typical
scoring function, we use x to denote snap-shots of entire
complexes of structures in solvent, thereby avoiding any
reduction in information. Third, we use conditional PDFs
and their corresponding optimal models so as not to consider
the variance that occurs in when fitting a scoring function in
practice.23 Thus, we focus on an idealization of a structure-
based model, the error of which is a lower bound of what can
be achieved in practice.

■ METHODS
Analysis. Our analysis begins by placing the training and

testing of an empirical structure-based scoring function in a
statistical framework. Using this framework, we derive an upper
bound for the regret of a model that is trained and applied to
protein−ligand complexes sampled from different distributions,
a common occurrence in virtual screening. We also analyze and
compare the bias and minimum error of a universal structure-
based model to those of protein-targeted models. Regret due to
scoring function optimization is also considered.
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Scoring Function Development. We verified our analytic
predictions by fitting and testing a scoring function that is
archetypal of popular empirical models.29−32 Described in more
detail in the Supporting Information, it comprises of five
protein−ligand interaction terms including shape complemen-
tarity and electrostatic energy, and the number of rotatable
bonds in the ligand. As is typical, the functional form of the
scoring function is linear. We use elastic net regularization as
our fitting procedure.33 This method improves model robust-
ness by controlling for the L1 and L2 norms of the regression
coefficients23 at the cost of having two free parameters that can
be optimized on a validation data set or by using cross-
validation. We tested L1 fractional penalty between 0 and 1 in
0.1 increments, and following Zou and Hastie,33 we tested L2
penalties of 0, 0.01, 0.1, 1, 10, and 100. Regression was
performed using the statistical programing language R34 and
the ‘elasticnet’ package.
As our analysis is an idealization of the structure-based

modeling process, we trained and tested our canonical scoring
function using data sets of protein−ligand complexes with
known binding affinities and whose structures had been
resolved by X-ray crystallography. We used 10 data sets in
total which were constructed using the 24th September 2010
version of the CSAR high quality data set of protein−ligand
complexes9 and the 2011 version of the PDBbind data set.7 The
CSAR data set was used to construct one training set (207
complexes) and one test set (83 complexes) that both consist
of a diverse range of protein−ligand complexes. The CSAR data
set was provided with a list that contained all of the complexes
assembled into groups of 90% protein sequence identity. One
complex from each group was selected at random to form the
training set. The complexes that did not share 90% sequence
identity with any other protein were also selected for the
training set. From the complexes that remained, another
random selection was made to form the diverse test set, so it
too was composed of proteins with less than 90% sequence
identity. This test set is labeled as data set A in Table 1 and in

the Results section. The PDBbind data set was used to
assemble 8 single-protein test sets which are labeled as B−I and
are listed in Table S1 of the Supporting Information. Additional
complexes were added to the HIV1 protease (labeled A),
trypsin (C), carbonic anhydrase II (E), and thrombin (E) data
sets, in order to match the single-protein data sets in the 2009
study by Cheng et al.7 In that study, the predictive performance
of thirty-three variants of popular scoring functions (including
GOLD, GlideScore and X-Score) was evaluated. This allowed
us to test how representative our scoring function is of these

popular models. No single complex appeared in more than one
data set.
We created a diverse scoring function by fitting our canonical

model on the training set of diverse protein−ligand complexes
optimizing the free parameters to data set A. Our model was
also fitted to data sets B−I and optimized using leave-one-out
cross-validation to create 8 single-protein scoring functions. All
of these scoring functions were then applied across the data sets
listed in Table 1, and their accuracy was measured using the
mean absolute error and the Spearman rank coefficients of the
affinity predictions against the experimental values.

■ RESULTS

Protein−Ligand Structures Have Unique Probability
Distributions. We now prove, by construction, that the PDF
of a protein−ligand’s structure x, and affinity y, is in general
different for each complexes. This means that the fundamental
condition in regression analysis for the training and test set to
be sampled from the same probability distribution is often
violated for structure-based scoring functions.
In rigorous free energy calculations,2,3 a control parameter,

denoted λ, is often used to define a molecular system or set of
constraints on that system. In ligand binding free energy
calculations, the control parameter associated with the bound
state, denoted λb, is switched over the course of possibly many
simulation windows to the value associated with the unbound
state, denoted λu. As free energy is a state function, the binding
affinity y depends only on λb and λu. Experimental error gives
rise to uncertainty in the value of the ‘true’ free energy
difference between the two states. We represent this intrinsic
uncertainty in the free energy between the states via the PDF
s(y|λb,λu).
In contrast to rigorous methods, scoring functions use a

single snapshot of the protein−ligand complex to predict
affinity. As sampled from the bound state, any such snapshot is
dependent only on λb. For instance, if the snapshot is sampled
from the equilibrium distribution of the complex in solvent,
then from statistical mechanics, the PDF of a structure x given
λb, denoted r(x|λb), is equal to the Boltzmann distribution

λ β λ β λ| = Λ −r x F E x( ) exp( ( ) ( , ))b b b (5)

where F(λb) is the free energy of the bound state, E(x,λb) is the
potential energy of the structural snapshot, Λ is the integral
over all momenta, and β is equal to the reciprocal of the
Boltzmann constant multiplied by the temperature. As
discussed, our information theoretic approach to scoring
function error means that x represents a particular snapshot
of a protein ligand complex, without any loss of information.
To understand scoring function error, we consider the

probabilistic relationship between structure x and affinity y. For
a given protein ligand complex θ, we denote the PDF of
observing x and y as p(x,y|θ). The question “what is the binding
affinity of a particular protein-ligand complex θ?” is implicitly
asking “what is the free energy difference between states
defined by λb and λu?”. In other words, θ is really a surrogate
label for λb and λu. From the above discussion, x and y are
dependent on λb and λu and not on each other. Thus, x and y
are conditionally independent for a given complex, so that

θ λ λ

λ λ λ

| = |

= | |

p x y p x y

r x s y

( , ) ( , , )

( ) ( , )

b u

b b u (6)

Table 1. Data Sets Used for Training and Testing of the
Scoring Functions in Order of Data Set Size

data set label # of complexes

diverse training set - 207
diverse test set A 83
HIV1 protease B 108
trypsin C 66
factor Xa D 43
carbonic anhydrase II E 40
PTP F 38
thrombin G 36
OppA H 32
urokinase I 31

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4004228 | J. Chem. Theory Comput. 2013, 9, 4266−42744268



Critically, by sampling the structure x from the equilibrium
distribution as in eq 5, it is apparent that each p(x,y|θ) is unique
for a particular θ. This follows by acknowledging that altering
either the protein or the ligand will change the Boltzmann
distribution. Therefore, as r(x|λb) is not the same for different
protein−ligand complexes, neither is p(x,y|θ).
The Transferability of Structure-Based Models. We

have shown that the PDF of structures and affinities for a
particular protein−ligand complex, p(x,y|θ), is different for each
molecular pair. Yet structure-based scoring functions are fitted
and applied to many different protein−ligand complexes. By
using regression to train a model, one implicitly assumes that
the complexes in a data set set have been sampled in a
probabilistic manner. We denote the probability for selecting a
complex θ for a particular data set as α(θ). A scoring function is
not trained on the complexes themselves, but on their
structures and affinities sampled from the weighted sum

∑ θ α θ= |α
θ

p x y p x y( , ) ( , ) ( )
(7)

where the sum is over all protein−ligand complexes, and we
have made the dependency of pα(x,y) on α(θ) explicit with a
subscript. The optimal scoring function for complexes sampled
from α(θ) is encoded in the conditional PDF

θ α θ
θ α θ

| =

=
∑ |
∑ |

α
α

α

θ

θ

p y x
p x y

p x

p y x

p x

( )
( , )

( )

( , ) ( )

( ) ( ) (8)

By inserting the PDFs defined in eqs 6 and 5 into the above,
it is apparent that pα(y|x) contains contributions from all the
individual Boltzmann distributions of each complex, so that
different protein−ligand sampling probabilities will, in general,
result in distinct optimal models.
Using the above definitions, we now investigate the error of a

scoring function that occurs when it is applied to a set of
complexes sampled from α(θ) but is trained on complexes
sampled from a dif ferent distribution, denoted as β(θ).
Following the Theory section, the bias incurred by applying
the scoring function that is optimal on data sampled from β(θ),
which is encoded in pβ(y|x), to complexes sampled from α(θ) is
given by D(pα(y|x)||pβ(y|x)). Our first main result (proven in
Supporting Information Section 3.1) is that

α θ β θ| || | ≤ ||α βD p y x p y x D( ( ) ( )) ( ( ) ( )) (9)

Thus, the relative entropy between the complex selection
probabilities is an upper bound to the bias of a misapplied
scoring function. Scoring function bias is minimized when α(θ)
= β(θ), so that the protein−ligand complexes in the training
and test sets of a scoring function have been sampled from the
same probability mass function. However, if α(θ) and β(θ) do
not overlap, then D(α(θ)||β(θ)) is unbounded, implying that
scoring function error can be arbitrarily large. This can occur
when the probability of finding any complex from the training
set in the test set is zero, such as when a protein-specific QSAR
model is applied to another protein.
A universally applicable structure-based model should, by

definition, have the lowest possible error when applied to the
widest conceivable range of protein−ligand complexes. If a
training set is composed of a diverse range of proteins and

ligands, we know from eq 9 that for a scoring function’s bias to
be zero, the test set should be similarly diverse. In a typical
virtual screen, however, scoring functions that have been
trained on a diverse range of protein−ligand complexes are
applied only to ligands binding to a single protein, implying
different complex selection probabilities between the training
and test sets and a potentially large bias.

The Errors of Generalized Structure-Based Models. To
investigate the error of a universal scoring function, we consider
N different proteins that one can use to construct data sets of
protein−ligand structures x and affinities y. Protein-specific
complexes are sampled according to αi(θ), i = 1,2,3,...,N, with
corresponding joint PDFs pi(x,y). Many samples from pi(x,y)
results in a data set of bound structures and affinities of
different ligands bound to protein i. To model the creation of a
data set composed of a diverse range of protein−ligand
complexes, we select which pi(x,y) to sample from with
probability ωi. Similar to eq 6, the appropriate joint PDF for
this diverse scoring function is given by the weighted sum

∑

∑ ∑

ω

ω θ α θ

=

= |

ω

θ

p x y p x y

p x y

( , ) ( , )

( , ) ( )

i
i i

i
i i

(10)

The corresponding conditional PDF, pω(y|x), encodes for the
optimal diverse scoring function. If N is sufficiently large and ω
suitably broad, then pω(y|x) represents a ‘universally’ applicable
structure-based model. However, it is important to note that
this generalized optimality is defined only for its particular
sampling probabilities.
From the previous section, we know that a scoring function

that has been designed for a diverse range of protein−ligand
complexes will have a nonzero regret when applied to a protein-
specific data set. A relevant question is, therefore, how large is
the average bias incurred by applying a scoring function defined
from pω(y|x) to complexes sampled from αi(θ). Our second
main result (see Supporting Information Section 3.2 for the
proof) is that for an arbitrary scoring function encoded by
q(y|x)

∑ ∑ω ω| || | ≥ | || |ωD p y x q y x D p y x p y x( ( ) ( )) ( ( ) ( ))
i

N

i i
i

N

i i
(11)

meaning the generalized model has the lowest average bias over
all the protein−ligand complexes sampled by ω. Although the
universal model pω(y|x) is optimal over the all N proteins, we
now show, perhaps counterintuitively, that it is not optimal for
each specific protein. In our information theoretic perspective
(see eq 2), the minimum error of the general model pω(y|x)
over the N proteins is given by its conditional Shannon
entropy, denoted hω(Y|X). Also, the minimum achievable error
of an optimal protein-specific model pi(y|x) on protein i is
denoted hi(Y|X). Our third main result (see Supporting
Information Section 3.3 for the proof) is that

∑ ω | < |ωh Y X h Y X( ) ( )
i

N

i i
(12)

Hence, the minimum error of a generalized structure-based
model is greater than the average minimum error for protein
specific models. Thus, on average, a scoring function targeted
for a specific protein will outperform a scoring that has been
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designed for a diverse range of protein−ligand complexes. This
result explains previously reported studies.22 Eq 12 also shows
that a universal model has a broader error distribution than the
average single-protein model.
For a given model, there is an unavoidable trade-off between

accuracy over a broad spectrum of complexes and accuracy for
certain individual cases. It is important to highlight that the
generalized PDF, pω(y|x), and the PDF for a specific data set
pi(y|x) are, in general, different. As these conditional
distributions encode their own optimal functional relationships
between structure and affinity, the model that best predicts the
binding affinities for many proteins may be very different from
the best model for specific proteins.
The Optimization of Scoring Functions. The previous

section showed that regret is integral to a generalized empirical
scoring function. There is a similar trade-off in accuracy when
optimizing a scoring function for any set of complexes.
As described, the relative entropy quantifies the error cost of

misapplying a scoring function to a data set. This cost is a bias,
and as it ensures that the minimum error is not achieved, it
contributes to the regret of a model. The bias can be reduced
for a particular sampling regime of protein−ligand complexes
by refitting a scoring function for those complexes. However,
when the regret for those complexes decreases, the regret
between the scoring function and another sampling regime may
increase. This occurs by virtue of the fact that different complex
sampling probabilities results in distinct structure-affinity PDFs
and that the relative entropy is a convex function of two
distributions. This means that a structure-based model that
achieves the lowest possible error on a group of protein−ligand
complexes will necessarily perform poorly on another group.
This represents a ‘no free lunch’35 scenario for structure-based
models: without any a priori information, no structure-based
model can be said to outperform another on any particular data
set.
In conceptualizing the practical implications of this, it is

fruitful to consider two protein-specific conditional PDFs, pα(y|
x) and pβ(y|x), as normal distributions with variances
approximately equal to σ2 and corresponding optimal scoring
functions fα(x) and fβ(x) respectively. Following from Heskes,36

we show in the Supporting Information section 2.2 that

∫
σ

| || | ≈ −α β α α βD p y x p y x p x f x f x x( ( ) ( ))
1

2
( )( ( ) ( )) d2

2

(13)

This equation implies that we can represent the theoretically
optimal scoring functions fα(x) and fβ(x) as being embedded in
a space that preserves the mean squared distances between
them. Optimizing a scoring function to a particular protein can
then be considered as moving through this space toward the
optimal model, increasing the distance from another model
which is optimal on a different protein. A schematic diagram of
this hypothetical scoring function space is shown in Figure 1.

■ VERIFICATION OF ANALYTICAL RESULTS
Four of our test sets were chosen to match the single-protein
tests sets used by a study by Cheng et al.,7 so that we could
compare our scoring function to the thirty-three popular
scoring functions they tested. Our scoring function achieved a
higher Spearman rank coefficient than 79%, 61%, 39%, and
100% of the thirty-three models on the HIV1 protease (B),
trypsin (C), carbonic anhydrase II (E), and thrombin (G) data
sets respectively. A full comparison between our model and the

best and worst models evaluated in the study by Cheng et al. is
shown in Table S2 of the Supporting Information. These
results show our model is a relatively good scoring function,
and we take the following results to be representative of the
state of the art.
In 2010, a study by Kramer and Gedeck showed that while

the scoring function, RF-score,16 performed well on a diverse
range of protein−ligand complexes, its accuracy was highly
variable on single-protein data sets.8 Our information theoretic
analysis indicates that this behavior is independent of the
functional form of the model and the protein−ligand complex
descriptors. To verify this assertion, we assessed the perform-
ance of our own diverse scoring function on the data sets
shown in Table 1. Our own scoring function is linear and uses
interaction terms such as hydrogen bond strengths. As Figure 2
demonstrates, our diverse scoring function correlates well with
experimental affinities on the diverse protein−ligand data set
and worse on average on the single-protein data sets, in
agreement with what has been observed in previous scoring
functions.7,8

Figure 2 shows that, also like many popular scoring
functions,6,7 the performance of our diverse model is heavily
dependent on the data set it is applied to. This ultimately
follows from the ‘no free lunch’ theorem for supervised
learning;35 a scoring function that performs well on one
sampling regime of protein−ligand complexes necessarily
means it will perform poorly on others. Also, we know from
eq 9 that the regret of a misapplied scoring function can be
arbitrarily large if the complexes in the training and test sets
have been sampled in a significantly different manner. We
further illustrate this difficulty in scoring function optimization

Figure 1. Schematic representation of a hypothetical scoring function
space (circle). Every location in the space corresponds to a scoring
function, and each colored protein represents the optimal model for a
particular set of protein−ligand complexes. Beginning with a fitted
model, shown as the lightest gray cross, that performs close to
optimally on the green data set, its large distance from the purple
model means that the bias on this data set is also large. Optimizing this
model for the latter, shown by darkening gray crosses, increases the
distance from the green and hence the error of the model on this data
set. Having a low error on one set of complexes necessarily means a
scoring function performs poorly on others.
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by calibrating the free parameters (see Methods) of the diverse
scoring function for each protein-specific data set. Changing
these parameters can be thought of as moving through a
hypothetical scoring function space as depicted in Figure 1
toward the location of an optimal protein-specific model. The
relative mean absolute error of the scoring function for each
free parameter pair on each data set is shown in Figure 3. No
single choice of parameter pair yields the minimum error on all
of the sets, and Figure 3 shows that optimizing the scoring
function for a data set can increase the error on others.
Equation 11 shows that, for a particular sampling regime, the

conditional PDF that encodes for the scoring function with the
lowest error over a diverse range of complexes also has the
lowest average bias than any other. Yet eq 12 shows that this
comparatively low bias is compensated by an intrinsic error that
is larger than the average minimum error for specific protein
models. This implies that protein-specific scoring functions will
have a lower error when applied to their respective protein than
the general model. Similarly, misapplying a protein-specific
model to the wrong protein will have a higher average error

than a generalized scoring function. These analytical results
explain the results observed with our own single-protein and
diverse scoring functions (see Methods). The average error
from cross-validation of each single-protein model is 1.2 kcal/
mol compared to an average error of 1.8 kcal/mol of the diverse
scoring function. By applying each single-protein scoring
functions to the other data sets, we found the average
misapplied error to be 2.7 kcal/mol. The relative sizes of
each of these errors are in complete agreement with our
analytical results. The mean absolute errors of these models on
each data set are shown in Figure 4.
By assuming that the cross-validation error of the single-

protein models is the minimum error achievable for our scoring
function descriptors, we can approximate the regret of the
diverse scoring function on a single-protein data set by the
difference between the error it achieves and the cross-validation
error. On the carbonic anhydrase II data set (E), the diverse
scoring function has an exceptional large regret of around 4
kcal/mol. Removing this data set from the analysis, the diverse-
scoring function has an apparently encouraging average regret

Figure 2. The predictions of the diverse scoring function on each of our test sets (see Table 1). The dashed red line indicates the line of perfect
prediction and the Spearman rank coefficient, ρ, for each data set is shown. In Table S2 of the Supporting Information, these rank coefficients along
with the Pearson correlation coefficients and standard deviations from a linear fit are shown for data sets B, C, E, and G and compared against the
performance of the scoring functions tested by Cheng et al.7 While the rank order of the ligand affinities is well predicted for the diverse range of
complexes (A), the accuracy varies dramatically for the single-protein data sets (B−I). This behavior is similar to what has been observed previously
with other scoring functions6−8 and is explained by our analysis.
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of 0.3 kcal/mol. In actuality, a truly protein-specific scoring
function would be have to be designed from the bottom up,
and may include descriptors designed especially for the protein,
have a particular functional form, and have the method of
regression chosen after experimentation. Our own protein-
specific scoring functions are simply recalibrations of our own
diverse scoring function. Thus, the regret of our diverse model
is likely to be larger when truly protein-specific models are
considered.
We attribute the large error on carbonic anhydrase II to the

relative infrequency of complexes with metal−ligand inter-
actions appearing in the diverse training set. Carbonic
anhydrase II has a catalytic zinc ion in its binding site that
interacts with its inhibitors. In the diverse training set, only 37
out of the 207 ligands are within a hydrogen bonding distance
to a metal ion. Thus, the data set contains relatively little
information about metallic interactions and a correspondingly
large regret for these type of complexes is to be expected.
Metalloproteins are notoriously difficult to account for in
scoring functions, and further optimization or extra protocols
are typically required for specific systems.37−41 The substan-
tially lower error our scoring function attains when recalibrated
for carbonic anhydrase II is indicative of this general trend. As
our analytical results show, the accuracy of an empirical
structure-based scoring function depends on the degree of
informational overlap between the training and test sets, such
that specific scoring functions have a lower error on average
than generalized models.

■ CONCLUSIONS
By formally analyzing the structure-based modeling process, we
have conclusively proven that protein-specific scoring functions
will on average achieve a lower error than the very best
universal model. We have shown how training and applying a
scoring function on different sets of protein−ligand complexes
can result in an arbitrarily large error and that a model which
performs optimally on one set of complexes necessarily
performs poorly on another set by virtue of the ‘no free
lunch theorem’ for supervised learning.
Our results follow from the fact that data sets of protein−

ligand structures and affinities are, in general, governed by
distinct probability distributions, so that there may be a cost in
transferring empirical scoring functions between data sets. This
cost is a bias that contributes to the regret of a model. Regret
would typically occur in a virtual screening context, where a
scoring function that is trained on a diverse range of complexes
is used to predict affinities of ligands binding to a single protein.
We employed an information theoretic analysis to demonstrate
that this error is independent of the way protein−ligand
interactions are modeled and is a property of the data itself.
Thus, error via bias is fundamental to the nature of protein−
ligand scoring. While previous research into the sources of
scoring function error has focused on errors from energetic
calculations,20 bias-derived error has remained unreported and
explains the variability of scoring function performance on
different protein data sets.
Our work demonstrates that there is no ‘one size fits all’

empirical scoring function and nor will there be. In contrast,
techniques based on statistical mechanics that utilize well
sampled molecular simulations - in principal - represent
universally applicable methodologies. However, even these
methods are not free from error, as their accuracy hinges on the
type of forcefield used and its parametrization; understanding

Figure 3. Grid of heatmaps showing the mean absolute error for our
own scoring function when applied to data sets A−I (see Table 1).
Data set A is composed of many different protein−ligand complexes,
while data sets B−I are single-protein data sets. Each heatmap shows
the relative error of the model on the data set as the two free
parameters of the scoring function - trained using elastic net
regularization - are varied (x- and y-axis). The color gradation
indicates parameter-pair choices that give rise to the lowest (white)
through to the highest (red) error for that data set. Coloring by
relative error highlights that no single parameter-pair choice achieves
the lowest error on all nine data sets, so that a model that has the
lowest average error over all data sets will not be the best on each
individual data set. To compare the absolute values of the errors,
Figure S3 of the Supporting Information utilizes an absolute coloring
scale, and Table S3 shows the absolute values of the highest and lowest
errors on each data set.

Figure 4. The mean absolute errors of our scoring model on our test
sets (see Table 1) when fitted in three different ways. Yellow bars
show the cross-validation error of the model when it is fitted to each
specific data set; green bars show the error of the model when it is
fitted to a diverse range of protein−ligand complexes; blue bars show
average errors of the protein-specific scoring functions when
misapplied to that data set. In agreement with our mathematical
analysis, the error of a protein-specific scoring function is on average
less than the error of a general scoring function, which itself is more
accurate than the average error of a misapplied protein-specific scoring
function.
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forcefield errors is an active area of research.44−46 As atomic
resolution simulations represent a ‘bottom-up’ approach to free
energy calculations and empirical scoring functions a ‘top-
down’ approach, some of the sources of error in both methods
may be fundamentally different. As such, the extent to which
both approaches are complementary merits investigation.
The speed of empirical models mean they remain ideal for

virtual screens. Although generalized empirical models are often
used, prior knowledge often exists that may help optimize the
scoring function to the protein. One may know some of the
active ligands and may be fortunate to have a three-dimensional
structure of the target available. A fruitful way forward may be
to develop scoring functions that are able to robustly
incorporate any prior information one has of the protein into
the model. Bayesian methods are ideal for such an approach,
and while they have previously been applied to predict ligand
activity and protein selectivity,42,43 the formal exploitation of all
prior information, to our knowledge, has not yet been explored.
Indeed, rigorous physics-based approaches and empirical
models could be combined within a Bayesian framework. If
one has extremely limited data of the protein, the development
of protein class or family specific models may be a sufficient
compromise between generality and accuracy. When fitting to
small data sets, these generalized models can also provide the
prior distributions on the regression coefficients for Bayessian
regression, as it is well established that Bayesian regression
greatly stabilizes fitted models in such cases.23

Given that model regret is intrinsic to protein−ligand
scoring, it remains of paramount importance to be able to
estimate its magnitude in a predictive setting and is the subject
of our ongoing research. Any further understanding regarding
the limits of scoring function accuracy is vital for a more
informed and efficient synergy between theoretical affinity
predictions and experimentally driven drug development.
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