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Purpose: Drug resistance is a major challenge for epidermal growth factor receptor

(EGFR)-tyrosine kinase inhibitors (TKIs) treatment of lung cancer. Ferumoxytol (FMT)

drives macrophage (MΦ) transformation towards a M1-like phenotype and thereby inhibits

tumor growth. CpG oligodeoxynucleotide 2395 (CpG), a toll-like receptor 9 (TLR9) agonist,

is an effective therapeutic agent to induce anticancer immune responses. Herein, the effect of

co-administered FMT and CpG on MΦ activation for treating non-small cell lung cancer

(NSCLC) was explored.

Methods: The mRNA expression levels of M1-like genes in RAW 264.7 MΦ cells stimu-

lated by FMT, CpG and FMT and CpG (FMT/CpG) were evaluated by quantitative reverse

transcription PCR (qRT-PCR). Then, the effects of FMT/CpG-pretreated MΦ supernatant on

apoptosis and proliferation of H1975 cells were detected by flow cytometry, and the expres-

sion of EGFR and its downstream signaling pathway in H1975 cells were explored by

western blotting. Finally, a H1975 cell xenograft mouse model was used to study the anti-

tumor effect of the combination of FMT and CpG in vivo.

Results: FMT and CpG synergistically enhanced M1-like gene expression in MΦ, including

tumor necrosis factor-α, interleukin (IL)-12, IL-1α, IL-1β, IL-6 and inducible nitric oxide

synthase (iNOS). FMT/CpG-pretreated MΦ supernatant inhibited proliferation and induced

apoptosis of H1975 cells, accompanied by down-regulation of cell cycle-associated proteins

and up-regulation of apoptosis-related proteins. Further studies indicated that the FMT/CpG-

pretreated MΦ supernatant suppressed p-EGFR and its downstream AKT/mammalian target

of rapamycin signaling pathway in H1975 cells. Furthermore, FMT/CpG suppressed tumor

growth in mice accompanied by a decline in the EGFR-positive tumor cell fraction and

increased M1 phenotype macrophage infiltration.

Conclusion: FMT acted synergistically with CpG to activate MΦ for suppressed prolifera-

tion and promoted apoptosis of NSCLC cells via EGFR signaling. Thus, combining FMT and

CpG is an effective strategy for the treatment of NSCLC with EGFRL858R/T790M mutation.

Keywords: ferumoxytol, CpG oligodeoxynucleotide, macrophages, non-small cell lung

cancer, epidermal growth factor receptor

Introduction
The incidence of lung cancer has been increasing yearly with a mortality rate ranking

first among malignant tumors.1 EGFR-tyrosine kinase inhibitors (TKIs) are effective

for the treatment of lung cancer patients with EGFR mutation,2–4 however, drug
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resistance develops in most cases after 9–13 months.5

Although molecular targeted therapy improves patient survi-

val as compared to conventional treatment approaches such

as radiotherapy, chemotherapy, and surgery, the 5-year over-

all survival rate is still <15%.6 Therefore, there is an urgent

need to develop alternative treatment strategies for non-small

cell lung cancer (NSCLC) harboring resistance mutations.

Immunotherapy has shown great potential for cancer

treatment.7–9 Macrophages (MΦ) are heterogeneous immu-

nocytes accounting for a significant proportion in the tumor

microenvironment (TME).10 Activated MΦ can be divided

into two subtypes according to function:11,12 M1, which

mediates inflammation and the anti-tumor immune response

by producing pro-inflammatory factors such as tumor

necrosis factor (TNF)-α and IL-12; and M2, which secretes

high levels of immunosuppressive mediators to promote

tumor growth, invasion, and metastasis. NSCLC is asso-

ciated with greater infiltration of MΦ than other cancers13

and the density of M2 MΦ was negatively correlated with

the survival of lung cancer patients who had undergone

surgery.14 In addition, M2 MΦ infiltration reduces the sen-

sitivity of EGFR-TKIs in lung adenocarcinoma.15,16

Whereas gefitinib inhibits M2-like polarization of MΦ in

Lewis lung cancer,17 which represents a promising

approach in modulating the TME for lung cancer treatment.

However, although restoring the immunological activity

of MΦ has substantial antitumor effects, treatment of

NSCLC with EGFR mutation—particularly T790M—by

steering MΦ to M1 phenotype has not been reported.

Ferumoxytol (FMT) is a versatile nanoparticle that has

been widely used as a drug carrier.18–21 However, its poten-

tial as an immune-activator to treat tumors has been over-

looked. A recent study has showed that iron released by lysed

red blood cells induces the conversion of MΦ into a pro-

inflammatory phenotype capable of directly killing tumor

cells; besides, an abundant of iron-loaded MΦ is correlated

with reduced tumor size in NSCLC patients.13 In addition,

FMT synergized with TLR3 agonist poly (I:C) significantly

suppressed the growth of melanoma by shifting macrophages

to a tumoricidal phenotype in our previous work.22 This

suggests that activation of MΦ by FMT may be an effective

strategy for the treatment of lung cancer, although it has not

been investigated in NSCLC with EGFRT790M mutation.

CpG oligodeoxynucleotide 2395 (CpG) is an artificially

synthesized oligodeoxynucleotide containing unmethylated

CpG motifs that triggers a pro-inflammatory immune

response by interacting with Toll-like receptor (TLR) 9

in MΦ.23,24 The antitumor effect of CpG has been

demonstrated in several malignancies including stage I/II

melanoma,25 glioblastoma,26,27 and non-Hodgkin’s

lymphoma.28 However, not all clinical studies on CpG

reported the improved patient outcomes. For instance, CpG

did not enhance the therapeutic effect of erlotinib in patients

with advanced recurrent EGFR-positive NSCLC.29Whereas,

on the other hand, CpG in combination with the first-line

drug taxane and platinum chemotherapy prolonged survival

in patients with advanced NSCLC30 indicating that CpGmay

potentially maximize the benefits of immunotherapy in

patients with EGFRT790M mutation by combined therapy.

In this study, we investigated the above possibility in

the present study using the human NSCLC cell line H1975

with EGFRL858R/T790M mutations and a xenograft mouse

model. Although treatment with FMT and CpG alone or in

combination did not have an inhibitory effect on tumor

cells, the supernatant of MΦ pretreated with both FMT and

CpG (FMT/CpG) promoted apoptosis and inhibited prolif-

eration in tumor cells by suppressing the expression of

EGFR signaling pathway components. These results pro-

vide the first demonstration that in addition to traditional

chemotherapy and molecular targeted therapy, MΦ activa-

tion by FMT/CpG is an effective strategy for the treatment

of NSCLC with EGFRL858R/T790M mutations.

Materials and methods
Cell culture and reagents
The TLR9 agonist CpG (class C ODN 2395) was pur-

chased from InvivoGen (San Diego, CA, USA; #tlrl-

2395–5). FMT was a gift from Prof. Ning Gu.31,32 The

RAW 264.7 MΦ cell line was obtained from the Type

Culture Collection of the Chinese Academy of Sciences

(Shanghai, China). H1975 cells with EGFRL858R/T790M

mutation were provided by Prof. Yongqian Shu (The

First Affiliated Hospital of Nanjing Medical University,

Nanjing, China) and the use of H1975 cells are approved

by the Ethics Committee of the First Affiliated Hospital of

Nanjing Medical University for the experimental study.

The cells were cultured in Dulbecco’s Modified Eagle’s

Medium (Thermo Fisher Scientific, Waltham, MA, USA)

supplemented with 10% (v/v) fetal bovine serum and 1%

(v/v) penicillin/streptomycin (Thermo Fisher Scientific) at

37°C in a humidified atmosphere of 5% CO2.

The cells were passaged at 70–80% confluence. RAW

264.7 cells were seeded in 24-well plates and FMT

(100 μg/mL) and CpG (2.5 μg/mL) were added to the med-

ium; the MΦ supernatant was collected after stimulation for

Wang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:144504

http://www.dovepress.com
http://www.dovepress.com


12 h. H1975 cells were seeded in a 24-well plate. When the

cells were attached, the supernatant was discarded and the

cells were treated with FMT (100 μg/mL), CpG (2.5 μg/mL),

or the supernatant of MΦ grown for 12 hrs with or without

FMT/CpG. H1975 cells were cultured for 48 hrs at 37°C in

a 5%CO2 incubator and used for cell proliferation, apoptosis,

and Western blotting experiments.

RNA isolation and quantitative reverse

transcription-PCR (qRT-PCR)
Total RNAwas extracted from harvested cells using TRIzol

reagent (Thermo Fisher Scientific; #15596018). The mRNA

was reverse transcribed into cDNA using HiScript II 1st

Strand cDNA Synthesis Kit (Vazyme Biotech Co., Ltd,

Nanjing, China; #R211) according to the instructions. QRT-

PCR was performed in SYBR Green PCR Master Mix

(Thermo Fisher Scientific; #4309155) on a Step One Plus

system (Bio-Rad, Hercules, CA, USA) according to the man-

ufacturer’s instructions. The relative expression levels of

target genes were calculated with the 2−ΔΔCt method relative

to the endogenous control glyceraldehyde 3-phosphate dehy-

drogenase (GAPDH). Primer sequences are shown in Table 1.

Cell viability assay
The effect of FMT and CpG on NSCLC progression was

examined using Cell Counting Kit (CCK)-8 (Dojindo

Laboratories, Kumamoto, Japan; #CK04). The cells

were seeded at a density of 5×103/well in 96-well plates

and incubated overnight at 37°C in an atmosphere of 5%

CO2. The cells were then treated with fresh medium

containing different concentrations of FMT, CpG, and

FMT/CpG for 48 h. The supernatant was discarded and

replaced with fresh medium containing 10% CCK-8 solu-

tion, followed by incubation for 1–4 h. The absorbance at

450 nm was measured using a multi-well spectrophot-

ometer (BioTek, Winooski, VT, USA). There were six

replicate wells for each sample and the experiment was

repeated three times.

Flow cytometry (FCM) analysis of cell

apoptosis
Cell apoptosis was detected by FCM using the Annexin

V-Alexa Fluor 488/PI Apoptosis Assay kit (FcMACS,

Nanjing, China; #FMSAV488-100). H1975 cells were col-

lected, washed twice in phosphate-buffered saline at 4°C,

and resuspended in binding buffer. A 100-μL of the cell

suspension was transferred to a flow tube, and 5 μL

Annexin V-Alexa Fluor 488 and 10 μL propidium iodide

(PI) were added, followed by mixing and incubation at 4°

C for 15 mins in the dark. The cell suspension was sorted

on a FACS Calibur instrument (BD Biosciences, San Jose,

CA, USA). Early and late apoptotic cell fractions

(Annexin V-positive and Annexin V/PI double-positive,

respectively) were quantified.

FCM analysis of cell proliferation
H1975 cells were labeled with 10 μM 5(6)-

carboxyfluorescein diacetate N-hydroxysuccinimidyl ester

(CFSE; Thermo Fisher Scientific; #65-0850-84) and incu-

bated in CFSE staining solution for 15 mins at 37°C. An

equal volume of culture medium (containing serum) was

added to the cells along with CFSE staining solution, fol-

lowed by incubation for 5 mins. The CFSE-containing solu-

tion was removed and the cells were washed twice with an

equal volume of culture medium. The fluorescently labeled

cells were used for subsequent experiments. Cell prolifera-

tion was detected by FCM. The proliferation index was

calculated using ModFit LT software (Verity Software

Table 1 Sequences of forward and reverse primers used for qRT-

PCR

Gene Gene ID Primer sequence

GAPDH 14,433 5ʹ-TGACCTCAACTACATGGTCTACA-3ʹ

5ʹ-CTTCCCATTCTCGGCCTTG-3ʹ

TNF-α 21,926 5ʹ-CAGGCGGTGCCTATGTCTC-3ʹ

5ʹ-CGATCACCCCGAAGTTCAGTAG-3ʹ

IL-12p40 16,160 5ʹ-GTCCTCAGAAGCTAACCATCTCC-3ʹ

5ʹ-CCAGAGCCTATGACTCCATGTC-3ʹ

IL-1α 16,175 5ʹ-AGTATCAGCAACGTCAAGCAA-3ʹ

5ʹ-TCCAGATCATGGGTTATGGACTG-3ʹ

IL-1β 16,176 5ʹ-GAAATGCCACCTTTTGACAGTG-3ʹ

5ʹ-TGGATGCTCTCATCAGGACAG-3ʹ

IL-6 16,193 5ʹ-CTGCAAGAGACTTCCATCCAG-3ʹ

5ʹ-AGTGGTATAGACAGGTCTGTTGG-3ʹ

CD86 12,524 5ʹ-TCAATGGGACTGCATATCTGCC-3ʹ

5ʹ-GCCAAAATACTACCAGCTCACT-3ʹ

iNOS 18,126 5ʹ-ACATCGACCCGTCCACAGTAT-3ʹ

5ʹ-CAGAGGGGTAGGCTTGTCTC-3ʹ

Abbreviations: CD86, cluster of differentiation 86; GAPDH, glyceraldehyde

3-phosphate dehydrogenase; iNOS, inducible nitric oxide synthase; qRT-PCR,quan-

titative reverse transcription-PCR; TNF-α, tumor necrosis factor-α.
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House, Topsham, ME, USA) as the total number of divisions

divided by the number of proliferating parent cells.33,34

Colony formation assay
H1975 cells were seeded at a density of 1×103/well in 12-

well plates and incubated overnight at 37°C in an atmo-

sphere of 5% CO2. The supernatant was discarded, and the

cells were cultured for 2 weeks under different treatment

conditions. The medium was refreshed at appropriate

intervals, which was determined according to the pH of

the culture supernatant. The experiment was terminated

when macroscopic clones appeared in the culture plates,

which were then washed twice with PBS, fixed in 4%

formalin for 10–15 mins, dried, and stained with 0.1%

crystal violet for 15 mins. The number of colonies was

counted under a microscope and those with >50 cells were

defined as positive.

Western blotting
Cells subjected to different treatments were lysed in ice-

cold radioimmunoprecipitation assay buffer (Beyotime,

Shanghai, China; #P0013K), and protein concentration

was determined using a bicinchoninic acid protein quanti-

tation kit (Vazyme Biotech Co., Ltd; #E112-01). Equal

amounts of protein were separated by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and transferred

to a polyvinylidene difluoride membrane (Bio-Rad) that

was blocked in 5% bovine serum albumin for 1 hrs at

room temperature and then incubated overnight at 4°C

with primary antibodies. After washing three times with

Tris-buffered saline with 0.1% Tween 20, the membrane

was incubated with secondary antibody (Thermo Fisher

Scientific; #A16110SAMPLE; #A16078SAMPLE) for 1

hrs at room temperature. Protein expression was visualized

by enhanced chemiluminescence Western blotting detec-

tion reagent (Millipore, Billerica, MA, USA;

#WBULS0500), and protein band intensity was quantified

using ImageJ software. Primary antibodies against B-cell

lymphoma-2-associated X protein (Bax; #5023), Cleaved

Caspase-3 (Asp175; #9661), Cleaved poly(ADP ribose)

polymerase (PARP,Asp214; #5625), Cyclin A2 (#4656),

Cyclin B1 (#12231), EGFR (#4267), phospho-EGFR

(p-EGFR,Tyr1068; #3777), AKT (#4691), p-AKT

(Ser473; #4060), mammalian target of rapamycin

(mTOR; #2983), p-mTOR (Ser2448; #5536) and

GAPDH (#5174) were purchased from Cell Signaling

Technology (Beverly, MA, USA).

Tumor xenograft studies
H1975 cells were resuspended in 100 μL sterile PBS, and

2×106 cells were subcutaneously injected into the right flank

of 5–6 weeks old female BALB/c nude mice (Shanghai

Laboratory Animal Research Center, Shanghai, China).

When the tumors reached a volume of 100 mm3, the animals

were randomly divided into two groups (n=5 each) that were

intratumorally injected with PBS or FMT (10 mg/kg) and

CpG (2.5 mg/kg) every 2 days for 10 days. Body weight,

maximum tumor length (L), and minimum tumor width (W)

were recorded every 3 days. The tumor volume was calcu-

lated with the following formula: V = (L ×W2)/2. At the end

of the experiment, the mice were euthanized and the tumors

were excised, washed with PBS, and fixed in formalin for

immunohistochemistry. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the

Nanjing medical University and conformed to the

Guidelines for the Care and Use of Laboratory Animals.

Immunohistochemistry
Tumor tissue specimens were fixed with 4% paraformal-

dehyde, embedded in paraffin, and cut into 4 μm-thick

sections that were deparaffinized with xylene, rehydrated

in a graded series of ethanol for 5 mins, washed three

times with PBS, and then blocked with serum for 30

mins. The sections were incubated overnight at 4°C with

primary antibody, washed three times with PBS, incubated

with biotinylated secondary antibody for 30 mins at 37°C,

and then washed with PBS, followed by staining with 3,3′-

diaminobenzidine at room temperature for 10 mins in the

dark. After staining with hematoxylin for 2 mins, the

sections were subjected to hydrochloric acid/alcohol dif-

ferentiation, dehydrated with ethanol and xylene, dried,

and photographed under a microscope.

Statistical analysis
Statistical analyses were performed using SPSS 19.0 soft-

ware (SPSS Inc, Chicago, IL, USA). Data were compared

by one-way ANOVA or Student’s t-test. All statistical

analyses were conducted at the significant level of

α=0.05 and the Least Significance Difference or

Dunnett’s test were used for post hoc of ANOVA analysis.

Results
Characterization of FMT
The polymer coating the outer layer of FMTwas synthesized

by terminal aldehyde group reduction and
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hydroxycarboxymethylation of dextran T10. As indicated in

Figure 1A, the average diameter of synthesized dextran T10-

coated FMT was about 7 nm and dynamic light scattering

showed that the hydration particle size of FMT was 35 nm

(Figure 1B). The molecular formula of the FMT external

material is shown in Figure 1C, with H or COOH as the

R group.31,32

FMT and CpG synergistically promote

M1-like gene expression in MΦ
To investigate the effects of FMT,CpG, and FMT/CpGonMΦ
activation, the mRNA expression levels of M1-like genes in

RAW264.7 cells stimulated for 12 hrs were examined by qRT-

PCR. FMT/CpG synergistically enhanced the expression of

the M1-like genes of TNF-α, IL-12, IL-1α, IL-1β and IL-6

compared to either agent alone or the lipopolysaccharide

(LPS)-stimulated positive control group (Figure 2). Among

these altered genes, IL-12 was upregulated to the greatest

degree following co-stimulation (Figure 2B), with

a transcript level that was 109 times higher than that in

control MΦ. FMTor CpG treatment alone had a similar albeit

less potent effect (15- and 36-fold higher expression, respec-

tively, as compared to the control. In contrast, in MΦ stimu-

lated with LPS as a positive control, IL-12 mRNA expression

was increased by only 20 fold relative to the control. In
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Figure 2 FMT synergizes with CpG ODN 2395 to promote M1-like gene expression in MΦ. Relative mRNA expression was analyzed by qRT-PCR in RAW 264.7 cells
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addition, the mRNA level of the M1-related co-stimulatory

molecule cluster of differentiation 86 (CD86) and inducible

nitric oxide synthase (iNOS) was also enhanced by FMT/CpG

as compared to treatment with each agent alone. Thus, FMT

and CpG synergistically promote MΦ activation towards

a tumoricidal phenotype, with upregulation of M1-like genes.

FMT/CpG-pretreated MΦ supernatant

reduce NSCLC cell viability
To determine whether FMT and CpG directly suppress

NSCLC growth, H1975 cells were treated with FMT, CpG,

and a combination of both for 48 hrs. FMTshowed no obvious

toxicity to H1975 cells (Figure 3A). CpG reduced cell viability

in a dose-dependent manner, although the effect was non-

significant at low doses (Figure 3B). In addition, the rate of

inhibition upon treatment with FMT combined with CpG was

only 13% (Figure 3C). These results demonstrate that FMT/

CpG shows negligible cytotoxicity towards H1975 cells.

As demonstrated previously,co-treatment with FMT and

CpG synergistically induced MΦ activation towards

a tumoricidal phenotype. To investigate whether this pheno-

typic switch can lead to inhibition of tumor cell growth,H1975

cells were treated with FMT/CpG, the supernatant of MΦ
grown for 12 hrs without any stimulation (−FMT/

CpG MΦS), or the supernatant of MΦ pretreated with FMT/

CpG for 12 hrs (+FMT/CpGMΦS). After 48 hrs, cell viability
was detected. As shown in the Figure 3C, the cell viability of

H1975 exposed to +FMT/CpG MΦS was only 58.9% com-

pared with the control group, while that in the −FMT/

CpG MΦS group was 80.48%. Altogether, FMT/CpG-

pretreated MΦ supernatant has a significant inhibitory effect

on H1975 cell viability.

FMT/CpG-pretreated MΦ supernatant

induces apoptosis of NSCLC cells
The decrease in cell viability of H1975 may be a combined

effect of tumor cell apoptosis and inhibited proliferation.

First, H1975 cells were treated with FMT/CpG, −FMT/

CpGMΦS or +FMT/CpGMΦS for 48 hrs and cell apoptosis

was analyzed by FCM. The results of Figure 4A

and B showed that FMT/CpG and −FMT/CpGMΦS induced
a low level of apoptosis in H1975 cells (9.18% and 10.6%,

respectively). In comparison, the rate of apoptosis was sig-

nificantly higher in cells exposed to FMT/CpG-pretreated

MΦ supernatant than in control cells (46.2% vs 5.01%). To

investigate the mechanism underlying this effect, we exam-

ined the expression of several apoptosis-related proteins by

Western blotting and found that FMT/CpG-pretreated MΦ
supernatant increased the expression levels of the apoptosis-

related proteins Bax, Cleaved Caspase-3, and Cleaved PARP

in H1975 cells (Figure 4C and D).

FMT/CpG-pretreated MΦ supernatant

suppresses NSCLC cell proliferation
Next, the proliferation of H1975 cells pre-labeled with CFSE

and subjected to different treatments was analyzed by FCM.

As indicated in Figure 5A and B, the proliferation rate of

H1975 cells in the control group was retarded in the fourth

generation, with an average proliferation index of 7.2. There

was no change in the index of H1975 cells treated with FMT/

CpG. The proportion of cells in the fourth generation

decreased upon treatment with −FMT/CpG MΦS, yielding
an average proliferation index of 5.62 while the proliferation

of H1975 cells in the +FMT/CpG MΦS group was markedly

blocked in the third generation, with a proliferation index of
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4.5, indicating that FMT/CpG-pretreatedMΦ supernatant sup-

pressed NSCLC cell growth. In addition, we verified the effect

of +FMT/CpG MΦS on H1975 cell proliferation and clump

development by colony formation assay. The results showed

that FMT/CpG-pretreatedMΦ supernatant significantly inhib-

ited tumor growth and interfered development of tumor-like

cell clumps (Figure 5C and D). A Western blotting analysis

further revealed that the cell cycle-associated S/G2 phase

regulatory protein Cyclin A2 and the G2/M phase regulatory

protein Cyclin B1 were both downregulated to a greater extent

in H1975 cells treated with +FMT/CpG MΦS as compared to

the other three groups (Figure 5E and F), suggesting that the

cells were arrested in the S35,36 and G2/M37,38 phases of the

cell cycle. Collectively, these results confirm that FMT/CpG-

pretreated MΦ supernatant inhibits the proliferation of H1975

cells.

FMT/CpG-pretreated MΦ supernatant

downregulates p-EGFR and its

downstream AKT/mTOR signaling in

H1975 cells
Activation of EGFR and its downstream AKT-mTOR

signaling pathway leads to increased proliferation and

A B

C

D

100 101 102 103 104

100

101

102

103

104

100 101 102 103 104

100

101

102

103

104

100 101 102 103 104

100

101

102

103

104

100 101 102 103 104

100

101

102

103

104

Con

0

Bax

PARP

Cleaved PARP

GAPDH

Cleaved caspase-3

20

A
po

pt
os

is
 ra

te
 (%

)

40

60Q1
1.51%

Q1
1.39%

Q2
4.17%

Q2
6.80%

Q4
93.6%

Q4
89.3%

Q3
2.38%

Q3
0.841%

Q1
1.51%

Q2
8.28%

Q4
87.9%

Q3
2.32%

Q1
3.99%

Q2
25.6%

Q4
49.9%

Q3
20.6%

FMT/CpG

-FMT/CpG MΦs

PI

Annexin V

+FMT/CpG MΦs

Con
FM

T/
CpG

-F
MT/

CpG
 M

Φs
+F

MT/
CpG

 M
Φs

0.0 0.0

0.1

C
le

av
ed

 c
as

pa
se

-3
/G

A
P

D
H

C
le

av
ed

 P
A

R
P

/G
A

P
D

H
0.2

0.3

0.4

0.2

0.4

B
ax

/G
A

P
D

H 0.6

0.8

Con
FM

T/
CpG

-F
MT/

CpG
 M

Φs
+F

MT/
CpG

 M
Φs

Con
FM

T/
CpG

-F
MT/

CpG
 M

Φs
+F

MT/
CpG

 M
Φs

0.0

0.1

0.2

0.3

0.4

Con
FM

T/
CpG

-F
MT/

CpG
 M

Φs
+F

MT/
CpG

 M
Φs

Con FM
T/

CpG
-F

MT/C
pG

 M
Φs

+FMT/C
pG

 M
Φs

Figure 4 FMT/CpG-pretreated MΦ supernatant induces apoptosis of H1975 cells. (A) H1975 cells were treated with FMT/CpG, −FMT/CpG MΦS or +FMT/CpG MΦS.

After 48 hrs, cells were stained with Annexin V/PI and cell apoptosis was analyzed by FCM. (B) Quantitative analysis of apoptotic H1975 cells. (C) Protein levels of Bax,

Cleaved Caspase-3, and Cleaved PARP were evaluated by Western blotting in H1975 cells treated as indicated for 48 hrs. (D) Protein levels were quantified with ImageJ

software and normalized to that of GAPDH. Results are expressed as mean ± SDof three independent experiments. *P<0.05, ** P<0.01, ***P<0.001 vs control.

Abbreviations: Bax, B-cell lymphoma-2-associated X protein; FCM, flow cytometry; FMT, ferumoxytol; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MΦ,
macrophages; PARP, poly(ADP-ribose) polymerase; PI, propidium iodide.

Dovepress Wang et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
4509

http://www.dovepress.com
http://www.dovepress.com


decreased apoptosis of tumor cells.39 Next, Western

blotting was used to detect whether the FMT/CpG pre-

treated macrophage supernatant affects the expression

of EGFR and its downstream signaling pathway pro-

teins in H1975 cells. As shown in Figure 6A and B, in

contrast to the control group, the expression levels of

p-EGFR, p-AKT, and p-mTOR proteins in H1975 cells

treated with −FMT/CpG MΦS were partially inhibited,

but not as potently as levels of the +FMT/CpG MΦS
group. Compared to the FMT/CpG group, incubated

with FMT/CpG pre-treated macrophage supernatant

more considerably downregulated the levels of above

proteins. Collectively, the results indicated that FMT/

CpG pre-treated macrophage supernatant significantly

promoted cell apoptosis and inhibited cell proliferation

by downregulating phosphorylation of EGFR and its

downstream AKT/mTOR protein in H1975 cells.

FMT and CpG synergistically inhibit

tumor growth in a xenograft mouse

model

We next investigated whether the combination of FMT and

CpG has anti-tumorigenic effects in vivo using an H1975

cell xenograft mouse model. As showed in Figure 7A and

B, co-administration of FMT and CpG significantly sup-

pressed the tumor growth in tumor-bearing mice. Ki-67, an

antigen present in the nuclei of proliferating cells, is

widely used to evaluate the proliferative activity of

tumors.40 The immunohistochemical analysis revealed

that the percentage of Ki-67- and EGFR-positive tumor

cells in the FMT/CpG group was markedly lower than that

in the control group (Figure 7D and E), whereas the

percentage of M1 macrophages stained with F4/80 and

iNOS in tumor tissues was significantly up-regulated
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(Figure 7F). In addition, the mice showed no obvious

weight loss or treatment-related death, indicating that the

combined treatment was non-toxic (Figure 7C). Thus,

FMT acts synergistically with CpG to suppress tumor

growth in vivo.

Discussion
Osimertinib, a third-generation EGFR-TKI that has been

approved for the treatment of EGFRT790M-positive

NSCLC patients, acts by inhibiting p-EGFR and down-

stream signaling.41 However, with changes in the TME
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and the continuous transformation of cancer cells, the

emergence of new drug-resistant mutations is

inevitable.42 Various strategies have been developed to

overcome resistance to EGFR-TKI treatment including

combination chemotherapy,43 antitumor vascular

therapy,44 and immunotherapy based on inhibitors of

programmed cell death-1 and its ligand.45 However, the

toxicity of standard drugs and the high cost of the latter

two approaches limit their universal application. As such,

there is an urgent need for safer, more effective, and

affordable therapeutic strategies to improve the outcome

of NSCLC patients with EGFR mutation.

NSCLC is characterized by a large number of MΦ in the

TME.13 Given their diversity and plasticity, treatment

approaches that induce a phenotype switch in tumor-

associated MΦ can be effective against NSCLC.

Although MΦ are known to be affected by EGFR-TKIs,
15,16 it is unclear whether inducing their transformation can

inhibit the progression of NSCLC with EGFRT790M muta-

tion. FMT is a nanomaterial with good biocompatibility and

low toxicity that has been approved by the US Food andDrug

Administration for the treatment of anemia.46,47 CpG has

been used for cancer therapy in clinical trials.30 Many studies

have demonstrated the advantages of combined immunother-

apy over monotherapy in cancer treatment,48,49and our pre-

vious studies also showed that the combined treatment of

FMT and TLR3 agonist poly (I:C) induced synergistically

induces macrophage activation for melanoma regression.22

Since they are both activators of MΦ, in this study we

investigated whether FMT and CpG used in combination

can suppress NSCLC by inducing MΦ activation.

IL-12 blocked the migration and invasion of lung ade-

nocarcinoma cells50 and suppressed lung tumor growth,

thereby prolonging the survival of lung cancer-bearing

mice51 while TNF-α is a cytotoxic protein produced

by MΦ that can directly induce apoptosis in NSCLC

cells.52,53 In the present study, we found that FMT/CpG

was relatively non-toxic to H1975 cells, whereas FMT/

CpG-pretreated MΦ supernatant inhibited H1975 cell pro-

liferation and induced apoptosis, which would be related

to the anti-tumor effects of IL-12 and TNF-α as well as

other cytotoxic cytokines generated by MΦ induced by

FMT/CpG. The caspase family plays critical regulatory

roles in cell apoptosis51,54 In our study, FMT/CpG-

pretreated MΦ supernatant significantly upregulated the

protein levels of apoptosis-related Cleaved Caspase-3 and

its substrate Cleaved PARP in H1975 cells, indicating that

the cell apoptosis of H1975 was through activating cas-

pase-3 pathway. As abnormal activation of EGFR signal-

ing pathway leads to sustained growth of lung cancer

cells.39 We also observed that p-EGFR and the down-

stream factors p-AKT and p-mTOR were downregulated

in H1975 cells exposed to FMT/CpG-pretreated MΦ
supernatant. In addition, the growth of subcutaneous
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xenograft tumors in mice was inhibited by treatment with

FMT/CpG, which was accompanied by a decline in the

EGFR-positive tumor cell fraction and increased M1 type

macrophage infiltration. Thus, the combination of the two

agents synergistically activated MΦ through upregulation

of tumoricidal genes and induction of apoptosis, which

was achieved by inhibiting the phosphorylation of EGFR

and its downstream signaling in NSCLC cells (Figure 8).

Although systemic administration of TLR-9 agonists

has been unsuccessful,55,56 local intratumoral injection

of CpG ODN is still an effective strategy for tumor

treatment by activation of innate responses.28 Gallotta

et al found that delivery of a TLR9 agonist through the

airways could effectively render lung tumors permissive

to PD-1 blockade by promoting optimal CD4+ and

CD8+ T-cell Interplay,57 which characterizes a strategy

to apply localized TLR9 stimulation to a tumor type not

accessible for direct injection. Our previous studies have

showed that, compared with combined treatment with

FMT/PIC, systemic administration of FP-NPs surface

functionalized with poly (I:C) showed a better inhibition

of lung metastasis.22 Based on the above findings, we

are here to initially explore the effects of FMT com-

bined with CpG on NSCLC with EGFR T790M muta-

tion. Interestingly, similar to the previous results, we

found that the combination of FMT and CpG signifi-

cantly inhibited tumor growth in mice by synergistically

activating macrophages. Although this route of adminis-

tration has some limitations in clinical application it

provides a good reference for us to explore novel meth-

ods for CpG delivery in the future.

Conclusion
FMT combined with CpG induced the activation of MΦ
towards a tumoricidal phenotype; this was accompanied

by increased apoptosis and suppression of cell prolifera-

tion and EGFR signaling in NSCLC cells. Our findings for

the first time provide evidence of FMT/CpG as a novel and

effective treatment for NSCLC with EGFRT790M mutation.
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