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Magnetic Resonance Imaging 
and Bioluminescence Imaging 
for Evaluating Tumor Burden in 
Orthotopic Colon Cancer
M. K. Ravoori1, O. Margalit2, S. Singh1, Sun-Hee Kim3, W. Wei4, D. G. Menter5, R. N. DuBois6 & 
V. Kundra1,7

Quantifying tumor burden is important for following the natural history of orthotopic colon cancer 
and therapeutic efficacy. Bioluminescence imaging (BLI) is commonly used for such assessment and 
has both advantages and limitations. We compared BLI and magnetic resonance imaging (MRI) for 
quantifying orthotopic tumors in a mouse model of colon cancer. Among sequences tested, T2-based 
MRI imaging ranked best overall for colon cancer border delineation, contrast, and conspicuity. 
Longitudinal MRI detected tumor outside the colon, indistinguished by BLI. Colon tumor weights 
calculated from MRI in vivo correlated highly with tumor weights measured ex vivo whereas the BLI 
signal intensities correlated relatively poorly and this difference in correlations was highly significant. 
This suggests that MRI may more accurately assess tumor burden in longitudinal monitoring of 
orthotopic colon cancer in this model as well as in other models.

Animal models, specifically murine models, are widely used in cancer research and contribute critically to 
expanding our knowledge of cancer biology and assessing the efficacy of potential treatments before performing 
clinical trials. Tumor development is affected by many factors, including interactions between cancer cells and 
their environment1–3; thus, orthotopic locations are preferred among tumor models4–7.

To gain a proper understanding of tumor development and the effects of interventions, longitudinal analyses 
are desirable8. Unlike subcutaneous tumors, most orthotopic tumors, such as colon cancer, are not amenable 
to measurement by calipers6,8 and colon tumors, particularly in the cecum, are commonly difficult to reach for 
direct observation by mouse colonoscopy. Instead, non-invasive imaging is needed. Light-based methods such 
as BLI require gene insertion; thus, they are useful in most cell lines, but not in xenograft models, and may affect 
the immunogenicity of the modified cells9. MRI does not require gene transfer and is useful for both cell lines 
and xenograft models8,10–12. BLI has been promulgated as a method of quantifying tumor load in animals and is 
reasonably valid when performed in a standardized manner6,9; it is also relatively rapid, inexpensive, and easy to 
perform. It has been applied to multiple tumor types. Signal can be influenced by various factors such as pH and 
hypoxia and signal can be attenuated by tissue and hair13–16.

The utility of MRI has been demonstrated in different types of orthotopic tumors8,11,17. MRI has high spatial 
resolution, does not require gene transfer into cells or radioactivity, and is generally not limited by tissue depth; in 
addition, hair does not interfere with the signal. Because multiple different sequences can be applied, selecting the 
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appropriate sequences for depicting the tumor is important. The present study relied only on endogenous MRI 
tissue signal and did not use exogenous contrast agents.

For MRI, various sequences may be applied, however, these have not been compared for which best depicts 
orthotopic colon cancer. Further, whether MRI or BLI better depict orthotopic colon cancer needs clarification. 
We compared two of the most widely used imaging modalities, MRI and BLI, for monitoring tumor progression 
in an orthotopic mouse model of colon cancer.

Results
Tumor take rate was 100% with HCT-116-Luc cells, with tumor formation in all 24 animals implanted. One week 
after cell inoculation, BLI and MRI were performed. Tumor growth at the primary site was evident by BLI and 
MRI as early as 1 week after cell inoculation (Figs 1A and 2A). Figure 1A shows BLI of animals longitudinally 
over a period of 6 weeks; and, Fig. 2A shows representative longitudinal MR images using different sequences 
of a tumor from the same mouse. Note that the T2-weighted images separate the tumor from the surrounding 
high-signal-intensity fat and low-signal-intensity air; this sequence ranked the highest among the sequences pre-
sented per mouse (n = 24, p ≤ 0.001) for colon tumor conspicuity, contrast, and margin delineation (Fig. 2B) 
and when sequences were presented randomly rated best for overall tumor conspicuity and margin delineation 
(Fig. 3A). Thus, the T2-based sequence was used to derive the tumor weight.

Quantification of the BLI signal and MRI-derived tumor weight over time demonstrated progressive increase 
in tumor growth (Figs 1B and 3B). The BLI signal intensities correlated with tumor weights measured ex vivo 
(r2 = 0.57, n = 24, p ≤ 0.001; Fig. 1C), but the colon tumor weights calculated from MRI in vivo and the weights 
measured ex vivo were highly correlated with each other (r2 = 0.998, n = 24, p ≤ 0.001; Fig. 3C3). Tumors outside 
the colon were observed in 3 of 24 animals that underwent MRI (Fig. 3D), suggesting metastatic disease versus 
seeding from the initial implantation. Tumors within versus outside the colon were not differentiated by BLI 
(Fig. 3D). The ex vivo tumor weight correlation with MRI-derived tumor weight was similar when mice with 
tumors outside the colon were excluded (r2 = 0.996, n = 21). The correlation between BLI signal intensity and 
MRI-derived tumor weight was similar, whether including the animals with tumor outside the colon (r2 = 0.57, 
n = 24) or excluding them (r2 = 0.58, n = 21). Also, the correlation between ex vivo tumor weight with BLI signal 
intensity was similar, whether including the mice with tumor outside the colon (r2 = 0.57, n = 24) or excluding 
them (r2 = 0.58, n = 21). The Steiger method18 was used to compare the data in Figs 1C and 3C, i.e. the correlation 
of the ex vivo tumor weight with the in vivo BLI-derived tumor signal intensity versus ex vivo tumor weight with 
the in vivo MRI-derived weight; these were statistically significantly different (p < 0.001, n = 24, Fig. 4), indicating 

Figure 1.  Monitoring colon tumors by BLI. (A) Longitudinal BLI of human HCT-116-Luc derived tumors 
in athymic nude mice. (B) BLI radiant efficiency versus time. Increase in BLI total signal intensity over time 
suggests progression of cancer (*compared to week1, n = 6, p ≤ 0.05). (C) Correlation between in vivo radiant 
efficiency (photons/sec/cm2/Sr) and excised tumor weight (r2 = 0.55, n = 24, p ≤ 0.001). (D) Representative 
example of primary colon tumor at necropsy and size of the tumor 6 weeks after cell inoculation in the colon. 
Arrow, tumor.
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that the MRI-derived tumor weight is superior to BLI-measured signal intensity values for estimating tumor 
burden.

Histopathological examination revealed clusters of large cells with a large oval or round acidophilic cytoplasm 
in well-differentiated tumors (Fig. 5A–C). Histological examinations of tumor sections from mice euthanized at 
week 6 revealed small areas of hemorrhage or infarction within the tumor (Fig. 5C).

Discussion
T2-weighted MR imaging better depicted orthotopic colon tumors compared to BLI in the mouse model, ena-
bling longitudinal tumor monitoring in vivo. Rating and ranking studies found the T2-weighted sequence to 
be superior to other MR sequences tested. The findings were supported by the high correlation between in vivo 
MRI-derived tumor weights and ex vivo tumor weights19. In comparison, BLI signal intensities correlated less 
well with ex vivo colon tumor weights. Moreover, unlike BLI, MRI distinguished colonic vs extracolonic tumors. 
Longitudinal BLI and MRI confirmed the progression of orthotopic tumor growth with time. As far as we are 
aware, multiple MRI sequences for imaging colon tumors have not been compared in orthotopic mouse models. 
In the current study, we found that among the MRI sequences, the T2-weighted sequence fared best for lesion 
detection and correlated highly with the excised tumor weight. These findings were supported by reader studies in 
which T2-based sequences ranked higher than other sequences for colon tumor conspicuity, contrast, and margin 
delineation. Intraperitoneal tumor can be seen with cancer metastasis in humans. Two-dimensional BLI, used as 
a semiquantitative tool to measure tumor burden9,20, did not distinguish between tumors inside and outside the 
colon. In addition, BLI tumor signal intensity is dependent on several factors such as the lesion depth and is lim-
ited by its need for tumors to express a luciferase reporter gene9,13–16,20; thus, BLI is possible in cultured cell tumor 
models but can be significantly more challenging in spontaneous, transgenic, or xenograft models. In contrast to 
optical imaging techniques, it should be possible to perform MRI in most colon tumor-bearing mice, including 
spontaneous, transgenic and xenograft models, such as patient-derived xenografts.

Studies comparing BLI and MRI to gold standard excised tumor weight are wanting. Jost et al.21 compared BLI 
and MRI derived tumor volumes in a mouse model of glioblastoma and found a moderate correlation (r2 = 0.78) 

Figure 2.  Monitoring colon tumors by MRI. (A) Representative axial in vivo MRI and coronal in vivo BLI 
longitudinal images of the same mouse colon HCT-116-Luc tumor. (B) Colon tumor conspicuity, contrast, and 
margin delineation of athymic nude mice overall ranked significantly higher on T2-weighted MRI (*p ≤ 0.001, 
n = 24, T2-weighted RARE vs all other sequences).
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among smaller tumors (less than 40 mm3 volume) and a comparative loss of this correlation (r2 = 0.13) with larger 
tumors that grew beyond 40 mm3; they then utilized both BLI and MRI together to measure tumor volumes for 
their preclinical evaluations; the study compared BLI to MRI measured tumor volumes but did not compare to 
gold standard excised tumor weights/volumes. In a hepatocellular carcinoma model, Wu et al.22 found r2 = 0.43 
comparing BLI to tumor size by MRI. Thalhemier et al.23 found r2 = 0.83 comparing BLI vs number of colon can-
cer (HCT-116) liver metastases, Ramasawmy et al. found r2 = 0.98 comparing BLI to MRI tumor burden ((tumor 

Figure 3.  Quantitative measurements of colon tumors by MRI. (A) Colon tumor conspicuity and margin 
delineation rated significantly higher on T2-weighted MRI (*p ≤ 0.001, n = 24). (B) MRI derived tumor weight 
versus time. Increase in MR-derived tumor weight suggests progression of cancer (*compared to week1, n = 6, 
p ≤ 0.05). (C) Tumor weights determined by MRI correlated with tumor weights of excised tumors (r2 = 0.998, 
n = 24). (D) Example of extracolonic and colonic tumors in the same mouse 5 weeks after HCT-116-Luc cell 
implantation in the colon detected by axial T2-weighted MRI (left top) and confirmed at necropsy (left bottom). 
The two tumors were not distinguished by BLI (right).

Figure 4.  Comparison of correlation of tumor burden by MRI and BLI with ex vivo. Correlation of ex vivo 
tumor weight with the in vivo MRI-derived weight (r2 = 0.998, n = 24, solid line) and of ex vivo tumor weight 
with BLI-derived tumor radiant efficiency (r2 = 0.57, n = 24, dashed line). The correlations were statistically 
significantly different (p < 0.0001, n = 24).
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volume/liver volume) × 100) in a SW1222 colon liver metastasis model24 whereas Fleten et al.25 found r2 = 0.55 
comparing BLI of HCT116 colon liver metastases to excised tumor weight.

The ability to visualize and quantify tumor burden before therapy aids evaluation of treatment response. The 
present study demonstrated that to measure tumor growth longitudinally, T2-weighted MRI better depicted the 
orthotopic colon tumors than did the 2D BLI. Currently, nearly all BLI as practiced is performed in 2D. In the 
current study, 2D analysis did not distinguish colonic from extracolonic tumor but instead merged them into one 
global signal. Recently, bioluminescence imaging system have been equipped with software specifically designed 
to run 3D Diffuse Luminescent Imaging Tomography (DLIT) algorithms26,27. Whether these will aid distinguish-
ing colonic vs extracolonic tumors or demonstrate improved correlation with tumor burden needs to be tested.

Relative merits of BLI and MR imaging are presented in Table 1. For 48 mice, the cost of MR may be approxi-
mately ten fold greater than BLI depending on institutional cost structure and number of mice imaged at a time. 
The balance of experiment cost vs time and image sensitivity need to be closely examined for every study. Given 
cost and time, BLI may be appropriate for several applications, particularly when alterations in tumor burden are 
expected to be large. It may also be appropriate for detecting smaller, live tumors expressing luciferase that may 
not be detectable by MR. We found that MR has the advantage of higher correlation with tumor burden than BLI, 
which may be needed in several applications such as assessing response to therapy. Approximately 0.75 correla-
tion between BLI and MR have been found in other models such as glioma28. In the current study, compared to 
ex vivo tumor burden assessment, BLI correlation coefficient was approximately 0.75, whereas, MR was 0.99. MR 
also may be useful in transplantable models and in established genetically modified animal models where gene 
transfer of luciferase is difficult. In some situations, BLI and MR may be complimentary, such as using the former 
for earlier detection of tumors expressing luciferase and the latter for assessing the primary and metastases. Other 
techniques may also have advantages such as high-frequency US for tumor burden assessment29 and functional 
assessment, and may be further compared in the future.

In the present study, orthotopic tumor growth was readily detected and observed over time by serial BLI 
and MRI measurements. BLI is a sensitive semi-quantitative tool for longitudinally monitoring orthotopic colon 
cancer. MRI can longitudinally detect orthotopic colon cancer and more accurately assess tumor burden. MRI 
should provide a safe, non-invasive method for monitoring the effects of new therapeutics, determining the opti-
mal time for the collection of samples for molecular analysis, and correlating growth response with other func-
tional response indicators. Colonoscopy is the primary screening test for colon cancer in patients. Radiologically, 
colon tumor detection has relied on CT colonography, which is commonly used in circumstances such as failed 
or incomplete colonoscopy or patient preference. MR is already used clinically for staging of rectal tumors. The 
current study suggests potential for clinical translation of MRI in the setting of colon tumors.

Conclusion
Among MR sequences tested, the T2-weighted sequence best depicted orthotopic colon tumors. BLI may have 
sufficient accuracy for assessing tumor burden in several scenarios evaluating orthotopic colon cancer and 
has advantages of low cost and ease of use. MRI better depicted the orthotopic colon tumor location and vol-
umes/weights than did BLI; thus, MRI may more accurately assess tumor burden in longitudinal monitoring 
of orthotopic colon cancer in this model as well as in other models, which may be advantageous in a variety of 
applications.

Materials and Methods
Animals.  All mice were housed and treated in accordance with protocols approved by the Institutional 
Animal Care and Use Committee at The University of Texas MD Anderson Cancer Center (Houston, Texas). 24 
(8-to-9-week-old) male athymic nude mice (nu/nu) (body weight, 20–25 g) were purchased from Harlan Sprague 
Dawley, Inc. (Indianapolis, IN, USA).

Figure 5.  Histology of orthotopic colon tumors. (A) One week after tumor cell implantation in the colon; (B) 
2 weeks after tumor cell implantation in the colon; and (C) 6 weeks after tumor cell implantation in the colon. 
Magnification, 4X. Long arrow: normal mucosa, Red outline area: tumor beneath the mucosa, dashed arrow: 
necrosis within the tumor, and short arrow: connective tissue.
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Cancer cell lines.  Human colon cancer HCT-116 cells were purchased from the American Type Culture 
Collection. Cells were maintained in McCoy 5A medium containing 10% fetal bovine serum in a 5% CO2 atmosphere.

Establishment of HCT-116-Luc cells.  293T cells were infected with a lentiviral vector carrying a firefly 
luciferase gene, along with package vectors psPAX2 and pMD2.G, in 60-mm dishes using Lipofectamine 2000 
reagent (Invitrogen, Carlsbad, CA), according to the manufacturer’s protocol. Culture medium containing virus 
particles was collected 48 hours later and added to the HCT-116 cells, which were then selected with 1 μg/ml 
puromycin to eliminate uninfected cells.

Orthotopic animal model.  For the orthotopic xenograft mouse model, 1 × 105 luciferase-expressing 
HCT-116 cells (HCT-116-Luc) were suspended in 30 μl of HBSS medium and injected into the cecal wall of 24 
8-9-week-old male athymic nude mice, as previously described3. To minimize the retrograde leakage of cells into 
the peritoneum, a 1.5-mm diameter fat pad was harvested from the abdominal fat of a donor male nude mouse 
and was adhered using surgical glue (Dermabond; Ethicon, Inc., Somerville, NJ) on top of the injection site. If 
any fluid seepage occurred from the injection site, the mouse was excluded from the study to limit extracolonic 
tumor related peritoneal tumor formation. For tumor monitoring, groups of 3 mice were imaged then sacrificed 
each week to analyze the distribution and weight of tumors for a period of 6 weeks; another 6 mice were imaged 
longitudinally for 6 weeks and then euthanized to analyze tumor distribution and weight.

BLI.  For BLI, mice were injected intraperitoneally with 150 mg/kg of D-Luciferin (Caliper Life Sciences). After 
10 minutes, mice were anesthetized with 2% isoflurane; they were then placed supine, with their abdomen toward 
the camera, and imaged, following the manufacturer’s recommendations, for 10 seconds using the Xenogen IVIS 
200 BLI system (Caliper Life Sciences). Using Living Image 2.5 software, regions of interest (ROIs) were drawn 
around the tumor and total radiant efficiency (in photons/sec/cm2/Sr) of the tumor was measured.

MRI.  For MRI, animals were anesthetized with 2% isoflurane. Body temperature was maintained at 37 °C by 
laying the mice on a bed heated with circulating warm water. The animals were imaged in a prone position. MRI 
data were collected on a Bruker MR (Bruker Biospec, Bruker Biospin, Billerica, MA) with a 7T/200-mm horizontal 
bore magnet and a 150 milli-Tesla/meter (mT/m) gradient insert. After scout images were obtained, the following 
imaging parameters were used to acquire the images: T2-weighted rapid acquisition with relaxation acquisition 
(echo time, 38 ms; echo train length, 8; receiver bandwidth, 101 kHz; repetition time, 2453.85 ms; nex, 4; slice thick-
ness, 0.75 mm; field of view, 4 × 3 cm; matrix, 256 × 192; flip angle, 180°), T1 multi-slice multi-echo (echo time, 
20 ms; repetition time, 905.25 ms; nex, 1; slice thickness, 0.75 mm; field of view, 4 × 3 cm; matrix, 256 × 192; spatial 
resolution, 156 µm), echo planar imaging (echo time, 24.67 ms; echo train length, 1; repetition time, 1684.50 ms; nex, 
6; slice thickness, 0.75 mm; field of view, 4 × 3 cm; flip angle 90°), fast imaging steady precession (echo time, 2 ms; 
echo train length, 128; repetition time, 4 ms; nex, 4; slice thickness, 0.75 mm; field of view, 4 × 3 cm; flip angle, 60°), 
and two-dimensional fast spoiled gradient-recalled echo (echo time, 1.3 ms; echo train length, 1; repetition time, 
123.08 ms; nex, 4; slice thickness, 0.75 mm; field of view, 4 × 3 cm; matrix, 128 × 96; flip angle, 60°, 75°, and 90°).

Imaging Modality Imaging Resolution/level of difficulty

8 hour day 
Imaging 
Capabilities

Clinically 
Translatable

Estimated Material 
& Imaging Cost/
houra Imaging time (minutes)

Magnetic 
Resonance 
Imaging (MRI)

Pros-higher resolution of ~200 µm in plane and accurately assess 
location and the tumor burden within colon.
- easier to identify metastatic disease versus primary tumor.
-3D imaging, can provide accurate quantitative data & response 
to therapy.
-No contrast injection needed, can differentiate endogenous 
tissue contrast
- does not require transfection of cells or radioactivity, and hair 
on the skin does not interfere with the signal.
Cons- limited detection of tumor growth early after 
implantation. May be less sensitive for minute tumors (sub 150 
micron tumors) depending on image resolution.
- may be relatively expensive, somewhat labor intensive
- requires higher technical expertise that may be obtained from 
core facilities.

~48 miceb Yes $160

Core sequences: ~ 7 min. 
Scan + 3–5 min. animal set upb

i.e. Scout- 2 min.
Tripilot-2 min.
T2-RARE-3 min.
Other sequences used in this 
study:
T1-MSME- 3 min.
FISP- 2 min.
2D-FSPGR-2 min.
EPI- 30 sec.
Generally:1 mouse per scanb

Bioluminescence 
Imaging (BLI)

Pros- detect small number of living tumor cells. Detection is 
variable and depends on degree of luciferase expression.
- ease of image acquisition, rapid, high throughput, and relatively 
low cost of operation.
-can be performed with basic training in the technique & 
computer skills requiring less technical expertise.
Cons-2D imaging, provides semi-quantitative data.
-exact location and depth can’t be measured precisely, which can 
limit evaluation of metastases vs primary
- hair on the skin can interfere with the signal.
- Cells have to be genetically modified by luciferase limiting 
applicability to some transplantable and genetically modified 
mouse models.

~288 mice No $50–75

~5–30 min, wait between 
injection & imaging. c
30–60 seconds scan + 4 min 
animal set up
Generally: 3 mice per scan

Table 1.  Relative advantages and disadvantages of the BLI and MRI techniques. aCost will vary by institution. 
We used in house charges at our institution for the example. bScan time can be reduced per mouse if multiple 
animals are imaged at once. cDepends on injection route.
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Interpretation of MRI.  To rate the quality of colon tumor border delineation, contrast, and conspicuity, 
all MRI sequence images were presented randomly; blinded interpretation was performed at different times by 
a board-certified radiologist and a research scientist focused on small animal imaging. The images were rated 
on a scale of 1 to 5, with 1 = not seen, 2 = poor, 3 = fair, 4 = good, and 5 = excellent. In addition, the different 
sequence-derived images for each mouse were presented and ranked in order from 1 to 7, with 1 being the best.

Colon tumor measurements on MRI.  Multiple 0.75-mm slices that spanned the entire colon were used 
to generate the ROIs. These were manually traced around tumors in each slice using the National Institutes of 
Health’s ImageJ software27. The sum of the volumes of contiguous tumor ROIs was tabulated; to control for vol-
ume averaging, ½ the volume of the most cranial or caudal image was added. Assuming a tumor density of 1 g/ml, 
tumor volumes (mm3) were converted to weight (g) for analysis.

Histological examination.  Colon tumors were fixed with 4% formaldehyde, dehydrated in ethanol, and 
embedded in paraffin. Five-micrometer-thick sections were cut, dried, mounted on glass slides, deparaffinized 
in xylene, and rehydrated in a series of ethanol and phosphate-buffered saline28. Sections were stained using 
hematoxylin and eosin.

Statistics.  Pearson correlation coefficients between BLI tumor signal intensity, MRI-derived tumor weight, 
and gold standard ex vivo tumor weight as well as t-tests were performed using spreadsheet software (Microsoft 
Office Excel 2003, Microsoft, Seattle, WA). For comparing rating and ranking scores for MR sequences, linear 
mixed model was performed using SAS version 9 (SAS Institute, Cary, NC). Reader, time, and mice were treated 
as random effects to account for correlations between readings from the same mice. Pairwise comparisons were 
made between all pairs of sequences. Tukey-Kramer adjustment was used to control overall type I error rate at 5%. 
Differences in the correlation between ex vivo tumor weight and BLI signal intensity versus ex vivo tumor weight 
and MRI-derived tumor weight were evaluated using the Steiger method18 and for this, the signal intensity was 
square root transformed while the MRI-derived tumor weight and true weight were log-transformed. All tests 
were 2-sided, and p-values of 0.05 or less were considered statistically significant.
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