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Omega-3 (n-3) fatty acids (FA) play an essential role in human physiology and health. As a

result, a variety of n-3 FA-fortified functional foods have become commercially available

for human consumption. These fortified functional foods are created through various

processes; however, nutri-priming, a potentially promising fortification approach, has not

been utilized to develop plant-based n-3 fortified foods. We sought to determine whether

nutri-priming is a viable option to enrich seeds and sprouts with n-3 FA. Additionally, we

assessed whether n-3 FA nutri-priming would inhibit germination of the primed seeds. To

address these goals, we nutri-primed brown flax in three priming solutions, control [0%

fish oil (FO)], 10% FO and a 20% FO solution, and determined the FA content and profile

of seeds and sprouts and germination percentage of primed seeds. n-3 FA nutri-priming

with FO altered the FA profile in seeds and sprouts, with increases in the absolute content

of 20:5 n-3, 22:6 n-3, 22:5 n3, 18:4 n-3, and 20:4 n-6. However, n-3 FA nutri-priming

did not increase the absolute content of 18:2 n-6, 18:3 n-3, total saturated FA, total

monounsaturated FA, total polyunsaturated FA, total n-6 FA, or total n-3 FA. Our results

also showed that n-3 nutri-priming decreased the germination percentage of primed

seeds, with 10 and 20% FO priming solution reducing germination by 4.3 and 6.2%,

respectively. Collectively, n-3 nutri-priming modified the n-3 FA profile in flax; however, the

process does not increase the total n-3 FA content and inhibits germination of primed

seeds. Further research utilizing different seed types, oil types, and oil concentrations

needs to be conducted to fully determine if n-3 nutri-priming is a commercially viable

approach for n-3 fortification of seeds and sprouts.

Keywords: agronomic, functional food, biofortification, eicosapentaenoic acid, docosahexaenoic acid, alpha-

linolenic acid

INTRODUCTION

Omega-3 (n-3) fatty acids (FA) are polyunsaturated FA (PUFA) that play an important role in
human physiology and health (1). n-3 FA are key components of the cell membrane’s phospholipid
bilayer, which provide protection and structure for cells (1). Additionally, specific n-3 FA have
critical physiological functions; eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic
acid (DHA, 22:6 n-3) are essential for brain development (1–3). Furthermore, the enrichment
of the diets with n-3 FA has been shown to reduce the risk and death from coronary
heart disease and cardiovascular diseases (4). Despite the importance of n-3 FA, the body
cannot, or is inefficient at biosynthesizing n-3 FA, making diet the only meaningful method

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.715287
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.715287&domain=pdf&date_stamp=2021-08-20
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Jana.Kraft@uvm.edu
https://doi.org/10.3389/fnut.2021.715287
https://www.frontiersin.org/articles/10.3389/fnut.2021.715287/full


Marques et al. Omega-3 Fortification of Flax

to obtain certain beneficial n-3 FA. For instance, alpha-linolenic
acid (LNA, 18:3 n-3) is an essential n-3 FA that cannot be
biosynthesized by humans and therefore must be obtained by
diet. Additionally, DHA and EPA can be biosynthesized from
ALA, but this process is inefficient, with 5% of ALA being
converted to EPA and <1% into DHA (1–5). As a result of n-3
FA having a key role in human health, and diet being the primary
source of certain n-3 FA, a wide variety of functional foods (i.e.,
foods that possess positive human health benefits in addition to
basic nutrition) enriched with n-3 FA have become commercially
available (5, 6), such as n-3 fortified milk (7, 8) and eggs (9–11).

There are numerous methods to create functional foods
fortified with n-3 FA (5, 12). For example, n-3-fortified eggs are
produced by supplementing chicken feed with n-3 FA, typically
in the form of flax or linseeds (Linum usitatissimum L.), which
contain a high content of LNA (9–11, 13, 14). As a result of the
n-3 FA supplementation, the produced eggs contain up to 5 to
6 times more n-3 FA (primarily LNA) than conventional eggs
(11, 15–17). However, methods to create plant-based functional
foods fortified with long-chain n-3 FA, are currently limited
(5, 18). This limitation leads to the exclusion of a growing group
of the population who predominately follow a plant-based diet,
such as vegans, vegetarians, pescatarian, and flexiterians from
consuming certain functional foods fortified with long-chain n-3
FA (19–21). One method that may be used to develop plant-
based n-3 FA fortified functional foods on a commercial scale is
nutri-priming, the process of imbibing seeds in a nutrient-rich
solution then redrying to their original weight (22–25). Nutri-
priming ensures micronutrient availability to the seed and has
been shown to improve germination, seedling vigor, resilience,
root development, and productivity in multiple crops (22–25).
Additionally, in some instances, such as in corn (Zea mays L.)
(26), chickpea (Cicer arietinum L.) (27), and wheat (Triticum
aestivum L.) (27, 28), zinc nutri-priming increased the zinc
content of seeds and seedlings (22, 29). Yet, despite the benefits
of this fortification approach, there are currently no known
examples in the scientific literature of using this process to create
n-3 fortified seeds and sprouts.

Therefore, the purpose of this study was to determine whether
nutri-priming is a viable option for n-3 fortification for seeds and
sprouts. A potential limitation to n-3 FA nutri-priming may be
the detrimental effects of n-3 FA on seed germination. Oils, such
as crude oil and sunflower oil, have been shown to inhibit the
germination and growth of various crops (30–32), likely because
the oil forms a hydrophobic film on the seed and its roots, thus,
preventing water and gas exchange (32). Consequently, the n-
3 FA nutri-priming process may reduce germination and may
not be a suitable option for creating n-3 fortified sprouts. The
second aim of this study was therefore to determine whether n-3
nutri-priming inhibits germination of primed seeds.

Abbreviations: FO, fish oil; LA, linoleic acid; LNA, alpha-linolenic acid;

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic

acid; SDA, stearidonic acid; AA, arachidonic acid; FA, fatty acid; MUFA,

monounsaturated fatty acids; n-3 FA, n-3 fatty acids; n-6 FA, n-6 fatty acids; PUFA,

polyunsaturated fatty acids; SFA, saturated fatty acids.

To address these aims, we nutri-primed brown flax in three
priming solutions, control (100% deionized water, no fish oil
(FO) addition), 10% FO (90% deionized water plus 10% FO),
and a 20% FO (80% deionized water plus 20% FO) solution,
and determined the FA content and profile in seeds and sprouts
as well as their germination percentage. We used flax and
FO because they are commonly used to produce n-3 fortified
functional foods (33–35) because they contain a high content of
total n-3 FA (Σn-3 FA), and, in comparison to FO, a different
profile of n-3 FA. Flax is enriched in LNA while FO is enriched
with long-chain n-3 FA such as EPA and DHA (5). The utilization
of these two sources of n-3 FA should create a functional food
with enhanced n-3 FA content and profile that appeals to a wide
range of consumers.

METHODS

Experimental Design
“Brown Flax” (Linum usitatissimum) from King’s Agriseeds Inc.
(Lancaster, PA) was used for the experiment. Eighteen replicates
of 1 (±0.05) g of flax seeds (∼180 seeds) were primed with
either a control, 10%, or a 20% FO-water solution following the
procedure described in Holub and Nagpurkar (36). The nutri-
priming solution was created by mixing the respective ratio of
FO derived from anchovy (Omega-3 Fish Oil EE - 40% EPA
and 20% DHA, Jedwards International Inc. Braintree, MA) and
deionized water (e.g., 1mL of FO and 4mL of deionized water
for the 20% FO treatment) and vortexing for 10 minutes at 2,500
RPM. Seeds were then primed with the nutri-priming solution
using 50mL conical tubes on an orbital shaker set at 220 RPM for
5 hours. The constant movement by the orbital shaker prevented
the separation of the oil and water and ensured that the seeds
were in continual contact with the FO. Subsequently, seeds were
removed and thoroughly rinsed with deionized water.

After seeds were rinsed, they were left to dry for at least 24
hours at room temperature (22◦C). Subsequently, half of the
replicates (n = 9) were placed in petri dishes (FisherbrandTM

Polystyrene, 100mm, Pittsburg, PA) lined with three filter
papers (Cytiva WhatmanTM Qualitative Filter Paper: Grade 1,
90mm, Maidstone, UK) to undergo sprouting. The remaining
9 replicates were used to quantify the FA content and profile in
flax seeds. Filter papers were initially saturated with deionized
water and then re-watered ad libitum for 10 days. Every 24
hours for 10 days, seeds were scored for germination. A seed
was considered germinated if the radicle length reached 3mm
or if cotyledons fully emerged. Once a seed germinated, it was
removed from the petri dish and stored at −20◦C until further
analysis. At the end of 10 days, the total number of germinated
seeds and the total number of seeds that failed to germinate
were calculated. Additionally, germination percentages were
calculated by dividing the number of germinated seeds by the
total number of seeds present in the petri dish.

Fatty Acid Analysis
Fatty acid analysis and calculations of flax seeds and sprouts were
conducted as described in Goosen et al. (37) with the exception
of using 150mg of dried sample instead of 500 mg.
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Data Analysis
Absolute FA measures were analyzed using a two-way ANOVA,
and multiple comparisons were made using a Tukey HSD
test. The two factors used in the analysis were priming
solution (control, 10, 20%) and plant stage (seed or sprout).
Differences were considered significant with an adjusted P <

0.05. Furthermore, a principal component analysis (PCA) was
conducted on the absolute FA data (i.e., mg/g) using the package
“ggfortify” to identify FA that were important in explaining
the variability between treatment groups (38). Germination data
were analyzed using a general linear model with a beta-regression
distribution with the “betareg” function from the R “betareg”
package, and multiple comparisons were made using a Tukey
HSD test (39). Differences were considered significant with an
adjusted P < 0.05. All figures were created using the “ggplot2”
package in R (40), and all statistical analyses were performed in R
version 4.0.2 (41).

RESULTS

Fatty Acid Content and Profile
Absolute FA content and profile in seeds and sprouts was
influenced by the nutri-priming solution, with an increase
of fish-derived FA in the n-3 nutri-primed treatment groups
(Table 1). PCA revealed that absolute FA content and profile
of nutri-primed seeds and sprouts with 10 and 20% FO
addition were similar, with apparent clustering away from the
control (Figure 1). The FA driving clustering differences were
primarily EPA, DHA, docosapentaenoic acid (DPA, 22:5 n-
3), stearidonic acid (SDA, 18:4 n-3), and arachidonic acid
(AA, 20:4 n-6) (Supplemental Figure 1). When comparing these
FA independently, an increase of absolute content of EPA,
DHA, DPA, SDA, and AA was seen in seeds and sprouts
for both 10% and 20% FO groups when compared to the
control group (Table 1, Figure 2). Furthermore, a dose-response
relationship was observed between % FO and EPA, DHA,
DPA, and AA (Table 1). As FO percentage increased in the
nutri-priming solution, so did the absolute content of EPA,
DHA, DPA, and AA; with increases of 34.6, 36.6, 45.5, and
25.8% in seeds, respectively, and 38.8, 37.9, 50, and 33.3% in
sprouts, respectively. The content of SDA in seeds remained
relatively consistent while the amount of SDA in sprouts
increased by 66.7% between treatment groups. Despite increases
in fish-derived FA, the absolute content of LA, LNA, total
FA (ΣFA), total saturated FA (ΣSFA), total monounsaturated
FA (ΣMUFA), ΣPUFA, total n-6 FA (Σn-6 FA), and Σn-
3 FA did not increase as a result of n-3 FA nutri-priming
(Table 1).

Plant stage (i.e., seed and sprout) influenced the absolute
FA content, with sprouts having a consistently lower FA
content than their seed counterparts in all treatment groups
(Table 1, Figure 2). For instance, in the 20% FO treatment
group, EPA, DHA, DPA, AA, SDA, ALA, and LA decreased
by 35.3, 35.5, 43.8, 28.2, 33.3, 13, and 9.1%, respectively.
Similar losses were observed in the control and 10% FO
group (Table 1). T
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FIGURE 1 | Principal component analysis of FA content (mg per g of sample) of flax seeds and sprouts by nutri-priming solution. Samples are color-coded by

nutri-priming treatment (control, 10% fish oil (FO), and 20% FO) and shapes signify plant sage (seed or sprout).

FIGURE 2 | The total content of EPA and DHA (mg per g of sample) by

nutri-priming solution and plant stage. Values are expressed as mean and

standard error. Means without a common letter differ (P < 0.05).

Flax Germination
Germination percentage was affected by the nutri-priming
solution (P< 0.001, Figure 3). As the inclusion of FO% increased
in the nutri-priming solution, germination percentage decreased
(Figure 3). The highest inclusion rate (i.e., 20% FO) resulted in
the lowest germination percentage with 87.7% (±0.6), followed
by FO 10% with 89.5% (±0.7), and then the control group with
93.5% (±0.3) (Figure 3).

DISCUSSION

We sought to determine whether n-3 nutri-priming is a viable
option for the fortification of flax seeds and sprouts. Additionally,

FIGURE 3 | Germination percentage of sprouts by nutri-priming solution.

Values are expressed as mean and standard error. Means without a common

letter differ (P < 0.05).

we assessed whether n-3 nutri-priming inhibits germination of
nutri-primed seeds. We found that n-3 nutri-priming with FO
influenced FA content and profile in seeds and sprouts (Table 1).
Specifically, we observed an increase in the absolute content
of EPA, DHA, DPA, SDA, and AA due to FO nutri-priming
(Figure 2, Table 1). Additionally, as the percent of FO increased
in the nutri-priming solution, so did the absolute content of EPA,
DHA, DPA, and AA in both the seeds and sprouts (Figure 2,
Table 1). This increase was expected, as flax does not contain
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EPA, SDA, DHA, DPA, and AA, while FO contains a moderate
to high amount of each of these FA (5, 33, 34, 42, 43). In contrast,
n-3 FA nutri-priming did not increase the absolute content of LA,
LNA, ΣFA, ΣSFA, ΣMUFA, ΣPUFA, and Σn-6 FA and Σn-3
FA (Table 1). The primary reason for this is that flax is naturally
high in Σn-3 FA, primarily LNA. We found that flax comprised
of approximately 290mg LNA per gram sample, which accounts
for 56% of the total FA content (Supplemental Table 1). This
finding is consistent with other studies that demonstrated flax to
contain 39.9% to 60.4% of LNA (5, 33, 34). Because of flax having
a high amount of LNA, the moderate increase in other n-3 FA,
such as EPA, DHA, DPA, and SDA, did not significantly increase
the overall content of total n-3 FA in seeds or sprouts. Potentially,
n-3 FA nutri-priming with a higher percentage of FO or using
other seeds with a low to moderate total n-3 FA content, such as
mung bean (44), sunflower (45, 46), sesame (46), or lentil (45),
may result in an increased content of ΣPUFA and Σn-3 FA.

The second objective of our study was to assess whether
n-3 FA nutri-priming inhibits germination. We found that n-
3 FA nutri-priming decreased the germination percentage of
primed flax seeds. The decrease in germination percentage, while
significant, is modest when compared to studies that assessed
the effect of the presence of soil oils on crop germination (30–
32). For instance, sunflower oil decreased wheat germination
by 20% (32), and crude oil decreased corn germination by 37.5
to 93.8% (30). Further research utilizing different seed types is
required to determine whether the reduction in germination
percentage is a flax-specific or a general trend associated with n-3
FA nutri-priming.

Our results also indicate that n-3 nutri-primed seeds and
sprouts can be used as a functional food to increase EPA and
DHA in diets. The American Heart Association recommends
consuming two fatty fish servings per week, which amounts to
approximately 250mg of EPA and DHA per day (47). Similarly,
the World Health Organization (48), Food and Agriculture
Organization (48), the Dietary Guidelines for Americans (49),
and the European Food Safety Authority (50) recommend that
adults consume 250mg of EPA and DHA per day. To reach the
international dietary recommended amount of EPA and DHA,
one would need to consume 31.6, 48.9, 42.8, or 67.6 g of the
20% FO-treated seeds, 20% FO-treated sprouts, 10% FO-treated
seeds, and 10% FO-treated sprouts, respectively. For the 20%
FO-treated seed treatment group, which contained the highest
combined EPA and DHA content (Table 1), the consumption
of 31.6 grams of flax seed exceeds the Flax Council of Canada
recommendation of consuming 8–16 g of flax per day and the
daily recommended amount (1.1–1.6 grams per day) of LNA
by Dietary Guidelines for Americans (49, 51). However, the
consumption of more than 16 g of flax is safe and may be
beneficial for human health (52). Cunnane et al. (53) concluded
that consuming 50 g of flax per day was palatable, safe, and
beneficial to human health by increasing n-3 FA in blood plasma
and erythrocytes and reducing postprandial glucose response.
Additionally, the consumption of 30 g of milled flaxseed every
day for 6 months decreased systolic and diastolic blood pressure
in patients with peripheral arterial disease (54), while the daily
consumption of 40 g of milled flax seeds reduced cholesterol
levels (51). Lastly, no clinical trial has reported toxicity due

to dietary supplementation of flax (52). Therefore, the daily
consumption of 30 to 50 g of n-3 nutri-primed flax seeds
and sprouts is most likely a feasible and safe amount of flax
to consume.

Other potential drawbacks including areas of future studies
for n-3 nutri-priming are the sustainability and acceptability
of FO, the cost-effectiveness of this approach, the commercial
application of this process, and the effects of n-3 nutri-priming on
the sensory and nutritional components of flax seeds and sprouts.
The sustainability of FO has been called into question due to
the rapid decline of fish stocks from overfishing and climate
change (55–57). A typical FO supplement contains 1,000mg of
FO, which translates to 300mg of EPA and DHA (58, 59). n-
3 nutri-priming with 20% FO solution would utilize at least
25 times more FO to deliver the same amount of EPA and
DHA as a typical FO supplement. Therefore, the results of this
study indicate that n-3 nutri-priming with FO may be less cost-
effective at increasing EPA and DHA in diets than typical FO
supplements. Another major problem is that FO is animal-based
which makes it unappealing to some consumers, like vegetarians
and vegans, and even to some omnivores due to its fishy taste
and odor (12, 33, 43, 60). Therefore, the effect of n-3 nutri-
priming on the sensory components of flax seeds and sprouts
needs to be thoroughly evaluated through sensory evaluation
studies to gauge consumer acceptability. To alleviate these
potential drawbacks, n-3 nutri-priming with alternative plant-
based sustainable oils, such as echium oil (Echium plantagineum),
may be a possible solution (61). Echium oil is a neutral, plant-
based, and sustainable source of n-3 FA, primarily SDA (13–14%
of total FA) (61, 62). While echium oil does not contain EPA
or DHA, it has a high amount of SDA (an intermediate in the
biosynthetic conversion of LNA to EPA), which the body can
readily convert to EPA (43, 62). Most importantly, echium oil
and specifically SDA show similar health benefits as FO, EPA, and
DHA (43, 63–66). Furthermore, additional studies are required to
understand the long-term functional stability of n-3 FA fortified
seeds and sprouts and to determine if there are any effects
on other nutritional components such as protein, carbohydrate,
fiber, and antinutrient content. The long-term stability of the
n-3 FA primed seeds and sprouts could be a major concern
as n-3 PUFA are highly prone to oxidative degradation (67).
Incorporating an antioxidant, such as vitamin E, into the n-3 FA
nutri-priming process may mitigate this concern and extend the
shelf life of n-3 FA fortified seeds and sprouts.

CONCLUSION

We evaluated the efficacy of n-3 nutri-priming of flax seeds
and sprouts to increase n-3 FA and determined if this process
inhibited germination. We demonstrated that FO nutri-priming
of flax modified the FA profile of flax seeds and sprouts with the
inclusion of beneficial FA, specifically EPA, DHA, DPA, SDA, and
AA. Nutri-priming, however, did not increase the total content
of n-3 FA of flax. This was because the modest increase in
FO-derived n-3 FA, such as EPA, DHA, DPA, and SDA did
not offset the naturally large amount of LNA present in flax.
Additionally, our results also demonstrate that nutri-priming
decreases germination. Therefore, n-3 nutri-priming does not
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seem to be a viable option for n-3 fortification of flax seeds
or sprouts. However, further research utilizing other seed types,
oil types, and oil concentrations is required to fully determine
whether nutri-priming is indeed a viable commercial method for
creating plant-based n-3 fortified functional foods.
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