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THE ROCKY ORIGINS

It is our great pleasure to present this collection of articles on compositional data analysis (CoDA) to the readers of NAR
Genomics and Bioinformatics (NARGAB). CoDA emerged as a discipline in the 1980s when John Aitchison laid out the basis
of a statistical theory dealing with certain kinds of constrained data represented by proportions. Motivated by the geosciences,
where data in the form of mass percentages often occur (e.g. in rock samples), Aitchison proposed a theoretical framework
based on ratios, or rather––for reasons of symmetry––log ratios (1). Log-ratio analysis offered a solution to phenomena such
as the negative bias in correlations that had puzzled researchers for at least a century. It has led to important developments
in both practical analysis and underlying theory ever since.

Although developed within the geosciences, the latest application of CoDA is within the biosciences: the growing impor-
tance of experiments that aim to quantify the presence of hundreds to thousands of molecules has put a new spotlight on
CoDA. Sequencing experiments produce relative count data, and although their nature differs from simple percentages, the
application of CoDA has already shown to be advantageous for the analysis of transcriptome and microbiome data. Recent
applications include reference-aware analysis of microbial compositions (2), their dynamics (3) and phylogenetic scales (4),
reference-aware analysis (5) and simulation (6) of RNA-seq data, PCR bias correction (7), association (8) and differential
network analysis (9) as well as feature selection (10) and model fitting (11). All these techniques apply more generally to
positive-valued signal data, implying they could also be used in fields like proteomics (12) and metabolomics (13). This is
just a small and somewhat arbitrary selection of some recent applications; for further reference, we refer the reader to reviews
like (14,15,16).

Here, we aim to add to this growing corpus by inviting applications to genomics that make use of CoDA methods, either
directly or indirectly. The purpose of this special issue is thus 2-fold: to showcase the utility of CoDA in genomics and to
popularize the techniques among researchers who are not yet aware of them.

To motivate the compositional approach from a genomics perspective, let us discuss here a simplified example. Consider an
experiment where we count the abundances of molecules belonging to a number of ‘species’ (representing, say, transcripts or
bacteria). It is usually impossible to exhaustively count all molecules in an environment, having the (typically unknown) total
N1. If our sample is unbiased and large enough, however, each species’ count reflects the relative proportion of molecules
present in the environment. Thus, up to a factor of proportionality N1/n1 (where n1 is the total number of molecules counted),
we have obtained a useful representation of our environment. While this might be the end of the story for a single sample,
problems can occur when we want to compare this sample with others. For this, we need a common scale.
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THE QUEST FOR A COMMON SCALE

When are two samples of relative count data comparable?

One answer to this question is ‘When they are normalized appropriately’.

However, there are different notions of normalization used to make species counts comparable between samples. Let us
assume we have designed our second experiment such that n2, the number where we stop counting molecules, is identical to
the one in the first experiment. Since n2 = n1, in a certain sense these data are already normalized. When we do not mind
losing data, this type of normalization can also be achieved for the case n2 �= n1 by downsampling the data of the sample with
a greater ni (rarefaction). An alternative strategy can be applied on any samples by dividing each species count in sample i
by the total ni (or, equivalently, by calculating transcripts per million). This yields proportions, the central object of interest
in CoDA. Proportions have much in common with the positive counts of our genomics example. [This becomes clear when
representing compositions as equivalence classes; see (17).] Is a comparison of proportions between experiments valid?

Well, it depends.

For one, it depends on what we want to achieve with our comparison. Although it is possible to compare proportions
directly (or their composite measures like alpha diversity), we often cannot obtain all of the results we want. For example,
as Pearson first noted, the evaluation of correlations between two species is misleading for proportions (18). There are also
methodological problems for even the simplest research questions, such as ‘How did the abundance of a species change
between environments?’ To answer this question without additional information, the two samples would need to have a
common scale, i.e. reflect the scale of their original environments. Simple proportions do not generally have a common scale
in this sense because, although we have control over n1 and n2, we usually do not know how they relate to N1 and N2. As
such, the (unknown) proportionality factors we referred to above, which would be needed to calculate the true abundances
for each species, may not be the same for both experiments. Assuming N1/N2 = n1/n2 could lead an analysis astray and
often did (19).

For comparisons that should not be done on proportions, another normalization technique, called effective library size
normalization, is a popular choice (20). In differential gene expression analysis, this approach compares the (log) ratio of
counts with respect to a reference species known to approximate the same number of molecules in both populations. These
ratios are compared instead of the counts (or their proportions). If such a species is not known, the reference can be replaced
by a suitably robust composite measure (i.e. a pseudo-reference species) obtained from various species assumed not to have
changed en masse. One such measure is the geometric mean over all counts in the sample [see the supplement to (15)], and
the assumption needed to put counts on a common scale can be stated as follows: A suitably defined aggregate of the species
does not change between their original environments. This usually means that the majority of species exhibited only stochastic
change.

Interestingly, effective library size normalization was developed independently of CoDA. Yet, it is analogous to a funda-
mental CoDA technique known as the log-ratio transformation (with the alr transformation using a single reference species
and the clr transformation using the geometric mean of all species instead). While log-ratio transformations can be used
to normalize data to an effective library size, they were not designed for it. Their purpose is first and foremost to remove
the constant-sum constraint from the samples, thus enabling an unconstrained analysis on the real numbers. Put differently,
whenever we consider proportions for a sample i, a fixed ni introduces dependencies between our variables, such that an in-
crease in counts for one species requires a decrease in counts for all other species (i.e. so that ni remains constant). Log-ratio
transformations remove this constraint. When combined with the normalization assumptions mentioned above, they can
also be understood as putting data on a common scale.

Without these assumptions, log-ratio transformations still lead to valid statistical analyses; however, the results are somewhat
harder to interpret because the reference changes the nature of the original variables. But such ratios can also be used for an
alternative strategy that does not need the notion of a reference. Note that comparing pairs of species between samples via
their ratio entirely circumvents the questions of scale and reference. Sometimes species ratios have a direct meaning to the
practitioner, or, in the case of genes, can be interpreted in terms of stoichiometric change.

TO NEW FRONTIERS

Here, we provide a brief glimpse of the 10 papers contained in this special issue. One of the first steps in each data analysis
should be a visualization to explore their most obvious characteristics. Two of the present articles deal with the issue of
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visualizing compositional data. Fedarko et al. (21) present a convenient interface called ‘Qurro’ for ranking features with
respect to their differential abundance according to user-specified log ratios. Among other things, this allows the user to
interactively explore how different features can serve as reference frames for relative data analysis. Hawinkel et al. (22)
present ‘COMBI’, an R package that enables visualizations of multi-omics datasets making use of multi-plots obtained
from latent variable models. Such multi-plots are a generalization of the well-known biplots that are popular in CoDA.
They are an effective way to incorporate covariates in the visualization provided by the latent variables.

As mentioned earlier, the data obtained from sequencing experiments are not compositional in a strict sense; rather, they are
counts whose size contains information about measurement accuracy. There are two articles that explore the implications of
this. Egozcue et al. (23) revisit the distributional modeling of count compositions. While providing a short review of current
approaches, they also make a proposal for a new class of distributions with interesting properties. An emblematic application
is discussed: PCR bias as a bottleneck problem in sequencing library preparation. Lovell et al. (24) show that compositional
measures of association, like proportionality, run into problems when ignoring the discrete nature of the data, especially for
small counts where count size gains greater importance. Measures of proportionality can fluctuate considerably here, and
the deviations from what is obtained using continuous compositions (where exact proportional relationships are possible)
can no longer be ignored. Meanwhile, Badri et al. (25) likewise explore proportionality and other measures of compositional
association. They show how shrinkage estimation, a statistical regularization technique, can improve the detection of true
taxon–taxon associations for sparse microbiome count data. Taken together, these studies further our understanding of how
to model count data using compositional techniques. Such count data differ from the continuous compositional data that
dominated the geosciences.

One of the most important problems when analyzing single-cell RNA-seq data is the correct inference of cell types. Wu et al.
(26) present a new promising clustering algorithm that exploits the merits of the L–∞ distance on clr-transformed RNA-seq
data.

Although the clr transformation allows for an unconstrained analysis, its application in the absence of a normalizing as-
sumption can challenge interpretability. Thus, there exists a strong motivation to find alternatives to the clr. Lin et al. (27)
propose one such alternative, an algorithm that seeks to identify genes that are stably expressed in single-cell RNA-seq data,
and to use them as an internal reference to normalize the data. Two more articles discuss normalization-free alternatives to
the clr that aim to learn interpretable log ratios directly from the data. Susin et al. (28) show how the ‘selbal’ package can
learn a single parsimonious log contrast of species, called a balance, that differentiates samples. Quinn and Erb (29) introduce
a package called ‘amalgam’ that sums species in a data-driven way to construct summed log ratios that likewise differentiate
samples. Since neither method relies on a clr, either could provide an alternative to differential expression analysis in the
case that the majority of genes do change.

Last but not least, Sisk-Hackworth and Kelley (30) present a complete CoDA re-analysis of a multi-omics time-series dataset.
By examining associations within bacterial communities, as well as associations between bacteria and metabolites via multi-
omics integration, their study provides a clear example of how existing clr and non-clr methods can be adopted for real-world
applications.

This special issue is designed in form of an open article collection. This means that it is only the beginning of an ongoing
series within the NARGAB universe, where new CoDA-related research can be contributed at any time. We hope to have
met the interest of our readers with this selection, and look forward to their future contributions to this dynamic and widely
open field.
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17. Barceló-Vidal,C. and Martı́n-Fernández,J.-A. (2016) The mathematics of compositional analysis. Austrian J. Stat., 45, 57–71.
18. Pearson,K. (1897) Mathematical contributions to the theory of evolution––on a form of spurious correlation which may arise when indices are used

in the measurement of organs. Proc. R. Soc. Lond., 60, 489–498.
19. Lovén,J., Orlando,D.A., Sigova,A.A., Lin,C.Y., Rahl,P.B., Burge,C.B., Levens,D.L., Lee,T.I. and Young,R.A. (2012) Revisiting global gene

expression analysis. Cell, 151, 476–482.
20. Robinson,M.D. and Oshlack,A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
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