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Mitochondria being the central organelle for metabolism and other cell signalling 
pathways have remained the topic of interest to tumour biologists. In spite of the wide 
acceptance of Warburg’s hypothesis, role of mitochondrial metabolism in cancer is still 
unclear. Uncontrolled growth and proliferation, hallmarks of tumour cells, are maintained 
when the cells adapt to metabolic reprogramming with the help of altered metabolism of 
mitochondria. This review has focussed on different aspects of mitochondrial metabolism 
and inter-related signalling pathways which have been found to be modified in cancer.
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iNTRODUCTiON

Production of major amount of energy for the cell by oxidative phosphorylation is the most essential 
function of mitochondria. Other mitochondrial functions include apoptosis or programmed cell 
death, Ca2+ homoeostasis, etc. It has its own circular genome [mitochondrial DNA (mtDNA)], which 
codes for protein subunits for oxidative phosphorylation, tRNAs, and rRNAs. Some of the proteins 
involved in mitochondrial structure and functions are encoded by nuclear genome. Mutations in 
mtDNA are being studied and found to be causal for different mitochondrial diseases including 
cancer (1, 2). Implications of mitochondrial function in cancer seem to be well-debated question. 
Manifestation of cancer includes uncontrollable cell proliferation, inhibited cell death, angiogenesis, 
invasion into other tissues, etc. Proper functioning of mitochondria is required to maintain rapid 
growth and proliferation of cancer cells since tumour cell devoid of mitochondria grows very slowly 
(3–5). On the other hand, functional impairment of mitochondria is a common phenomenon in 
cancer cells since they undergo certain changes in metabolic pathways for their survival and main-
tenance (Figure 1). This review highlights metabolic reprogramming in cancer cell due to altered 
mitochondrial signalling.

HYPOXiA AND MiTOCHONDRiA

Hypoxia or oxygen deprivation is one of the key features of solid tumours and plays a significant 
role in different cellular functions including cell proliferation, survival, angiogenesis, metabolism, 
tumour evasion, and metastasis (6). It also regulates tumour cells to have reduced response to 
radiotherapy, resistance to chemotherapy and lower pH than normal cells (7–9). Proliferation rate 
of tumour cells is higher than the growth rate of new blood vessel formation, so newly generated 
cells are supplied with lower amount of oxygen. Depending on the aggressiveness of hypoxia, tumour 
cells either undergo apoptosis or adapt to the low oxygen environment and survive (10). The key 
coordinator of cellular mechanisms to adapt and survive in hypoxic condition is hypoxia-inducible 

Abbreviations: mtDNA, mitochondrial DNA; ETC, electron transport chain; ROS, reactive oxygen species.
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FiGURe 1 | Genes responsible for functional alterations in metabolic 
and signalling pathways of mitochondria in cancer cells.
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factor 1 (HIF-1). It is a transcription factor which consists of two 
subunits: HIF-1α whose expression is regulated by abundance of 
oxygen and HIF-1β which is constitutively expressed. Limited 
oxygen availability induces expression of HIF-1 which regulates 
expression of several other genes (11) functionally involved in 
the pathways of angiogenesis, cell death/survival, metabolism, 
pH regulation, cell adhesion, extracellular matrix remodelling, 
cell migration, and metastasis (9).

In presence of low oxygen in cell, pyruvate is mostly converted 
to lactate instead of acetyl CoA (Figure  2) and HIF-1 induces 
expression of genes involved in the glycolytic pathway (such as 
glucose transporter, glycolytic enzymes, etc). HIF-1 increases 
expression of pyruvate dehydrogenase kinase 1, a subunit of PDK, 
which blocks function of pyruvate dehydrogenase (PDH) enzyme 
leading to increase production of lactate (12). Increased amount 
of lactate also induces HIF-1, which not only blocks acetyl-CoA 
metabolism in mitochondria, but also reduces mitochondrial 
biogenesis as well as oxygen consumption (13, 14).

Although mitochondrial energy production is a more efficient 
method than that of glycolytic pathway, tumour cells perform 
glycolytic and other/altered metabolic pathways to generate 
energy. Mitochondrial electron transport chain (ETC) is involved 
in oxygen sensing since ETC consume most of the cellular oxygen. 
Certain inhibitors of ETC can block stabilisation of HIF-1α in 
hypoxic conditions, which signifies that functioning of ETC is 
required for hypoxia-mediated activities of HIF-1. During hypoxia, 
ETC complex III can release reactive oxygen species (ROS) into 
mitochondrial inter-membrane space and subsequently into the 
cytosol. Thus, mitochondrial ROS generation contributes to HIF-
1α stabilisation under hypoxic condition of the cell (15).

MiTOCHONDRiAL MeTABOLiSM AND 
TUMOUR GROwTH

Mitochondria coordinate anabolic as well as catabolic reac-
tions combined with energy production to achieve the needs 
of cellular bioenergetics and biosynthesis. Acetyl CoA, the key 
ingredient of mitochondrial metabolism and energy production 

is generated from breakdown of glucose, amino acids, and fatty 
acids. Necessity of mitochondrial metabolism for tumour growth 
is a well-discussed but yet it is an inconclusive area of research. 
According to one hypothesis, rapid proliferation and growth of 
tumour cells require functional mitochondria as it is the major 
source of energy as well as supplier of metabolic building blocks 
for tumour cells. Anaplerotic pathways which maintain pools of 
metabolic intermediates for repeated usage of rapid growth and 
proliferation are well-adapted in cancer cells. TCA cycle inter-
mediates are also utilised as carbon sources, such as production 
of α-ketoglutarate (α-KG) from glutamine by glutaminolysis, 
oxaloacetate production from pyruvate by pyruvate carboxyla-
tion, oxidation of branched chain amino acids, etc., to the ana-
plerotic activity of cancer cells (16–18).

Perturbation of cell signalling pathways, such as K-Ras, PI3K–
Akt–mTROC1, Myc signalling, play significant roles in mito-
chondrial metabolism of cancer cells. K-Ras oncogene decouples 
glucose and glutamine metabolism. It exhibits enhanced glyco-
lytic activity as well as increased usage of glutamine as a carbon 
source of TCA cycle (19). PI3K–Akt signalling pathway is found 
to be altered very frequently in different cancers. mTORC1, being 
one of the major targets of activated Akt, regulates growth factor 
signalling, energy state, and nutrient and oxygen availability in 
cancer cells (20–23). Oncogenic activation of Myc leads to activa-
tion of genes involved in glycolysis, glutamine metabolism, and 
mitochondrial biogenesis (24–27).

Mitochondrial TCA cycle enzymes, such as succinate dehy-
drogenase (SDH) and fumarate hydratase (FH), could function 
as mitochondrial tumour suppressors (28). Individuals with ger-
mline loss-of-function mutations in FH gene are predisposed to 
hereditary paraganglioma, pheochromocytoma, leiomyomatosis, 
and renal carcinoma (29, 30). Mutation-induced inactivation of 
SDH and FH results in accumulation of succinate and fumarate, 
respectively. These two metabolites leak out to cytosol to inhibit 
prolyl hydroxylase enzymes, which can promote cellular resistance 
to apoptotic signals or can activate pseudohypoxic response for 
triggering HIF-1-mediated glycolysis in cancer (31, 32). Elevated 
succinate and fumarate can also lead to consequent alteration of 
genome-wide histone and DNA methylation by inhibiting α-KG 
dependent dioxygenase (such as histone demethylases and TET 
family of 5-methylcytosine hydroxylases) activity (30, 33).

Bioenergetics and Altered Metabolism
Warburg’s hypothesis (1956) suggested cancer cells exhibit 
increased glycolysis and lactate production irrespective of the 
presence of oxygen (34). Loss of tumour suppressors, activation of 
oncogenes, upregulation of PI3K pathway, and altered expression 
of mitochondrial metabolic enzymes may also result in increased 
glycolysis (35, 36). Rate of glycolysis is increased in cancer cells 
but glycolytic products may enter mitochondria at different 
points of TCA cycle for energy production and growth, migration 
and metastasis of cancer cells (37). On the other hand, cancer 
cells with mitochondrial respiration defects rely on energy gener-
ated by glycolysis. Inhibiting glycolysis in these cancers results 
in depletion in ATP production and finally leads to apoptosis 
of the cells (35, 38). But in general, mitochondrial metabolism 
is necessary for cancer cell survival, proliferation, and growth. 
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FiGURe 2 | Schematic representation of metabolic pathways involving mitochondrial metabolites. Pathways or use of metabolites mentioned in red font 
are favoured in cancer cells for altered metabolism.
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So, cancer cells adopt multiple mechanisms to maintain proper 
functioning of mitochondria. Moreover, in hypoxia and nutri-
ent deficient conditions, mitochondria can modify its energy 
production as well as utilisation to adapt to the tumour micro-
environment since mitochondrial ETC can produce ATP even at 
very low oxygen level (39, 40). In these conditions, cancer cells 
can adapt different mechanisms to maintain their ATP/ADP ratio 
and decrease their demand for ATP as well as cellular functions 
which are ATP-dependent. In lower energy state (higher ADP/
ATP or AMP/ATP ratio), activation of AMP kinase (AMPK) is 
triggered by mitochondrial adenylate kinase (AK4) and activates 
catabolic pathways (such as fatty acid oxidation) to stimulate ATP 
production (41, 42).

Biosynthesis of Metabolites
Rapid cell division and growth of cancer cells require good supply 
of macromolecules. Various anabolic pathways utilise simpler 
and smaller nutrient molecules such as glucose, fatty acids, and 
amino acids to produce larger molecules or building blocks for 
the cells. Mitochondria which work as a central organelle of cel-
lular metabolic pathways perform different anabolic reactions to 
generate intermediate products for macromolecules.

Biosynthetic pathways of fatty acids and amino acids were 
found to be upregulated in cancer cells indicating their importance 
as metabolites (43, 44). Except pyruvate from glycolysis, other 
metabolic substrates from amino acid and fatty acid metabolism 
are also transported to mitochondria for further metabolic 

activities. When pyruvate is mostly being used for lactate produc-
tion, the metabolites from fatty acid and amino acid metabolism 
pathways play central role for providing metabolic substrates to 
mitochondria. In hypoxic condition, when acetyl CoA produc-
tion from pyruvate is impaired, glutamine acts as a biosynthetic 
precursor of acetyl CoA for sustainability of the tumour (40).

Glucose
Glucose is the most widely used nutrient in the body. Uptake 
of fluorodeoxyglucose (Fl-18), a glucose analogue, measured 
by positron emission tomography in cancer cells, was found to 
be increased as the cancer progresses (45, 46). Recent evidences 
indicate, although lactate production is induced in cancer cells, 
glucose also produces pyruvate which enters into mitochondrial 
TCA cycle. Pyruvate is metabolized into acetyl CoA by mitochon-
drial PDH complex and it is then converted to citrate by citrate 
synthase. Citrate is either converted to isocitrate within TCA 
cycle or is transported to the cytosol to yield cytosolic acetyl CoA 
which is used as a substrate for lipogenesis and acetylation.

The final and rate limiting factor of glycolytic pathway is the 
M2 isoform of pyruvate kinase (PKM2). PKM2 dimer has low 
kinase activity and drives pyruvate to lactate formation, whereas 
PKM2 tetramer which has higher kinase activity promotes the 
pyruvate to enter mitochondria for ATP production via oxidative 
phosphorylation pathway (47). PKM2 is commonly found to be 
highly expressed in cancers and induces rate of glycolysis, cell 
proliferation, migration, and invasion (48–50). It functions as a 
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coactivator of HIF-1 by enhancing the Warburg effect in cancer. 
PKM2 can also regulate cancer progression by activating mTOR 
or EGFR signalling pathway (47, 51, 52).

Amino Acids
Besides glucose, amino acids are also important substrates in 
mitochondrial biosynthesis of lipid and protein molecules. In 
absence of glucose, glutamine acts as major nutrient in cancer cells. 
Importance of glutamine in cellular metabolism is due to its ability 
to donate its carbon and nitrogen into different growth promoting 
pathways. Although, glutamine is a non-essential amino acid, dur-
ing rapid growth and cell proliferation in tumour, it is required to 
be imported from outside source to meet the high demands of it. 
Glutamine catabolism occurs inside mitochondria by glutaminase to 
produce glutamate and ammonia. Glutamate functions as a precur-
sor of cellular antioxidant glutathione and donates amino groups to 
synthesise non-essential amino acids like glycine, alanine, aspartate, 
and serine. Glutamate is also converted to α-KG, enters mitochon-
drial TCA cycle to provide carbon skeleton for macromolecules 
and contribute in ATP synthesis by oxidative phosphorylation (53). 
Requirement of glutamine can be variable in different tumours. In 
some tumours, glutamine plays as an essential amino acid, whereas 
some tumours seem to be independent of glutamine and utilise 
glucose-derived pyruvate as major source of nutrient (54).

Glycine and serine are two other amino acids which have been 
identified to have significant importance in cancer metabolism. 
They are inter-convertible and biosynthesis of both the amino 
acids comprises cytosolic as well as mitochondrial enzymatic 
pathways. Hyper-activation of serine and glycine biosynthesis can 
accelerate tumourigenesis (55). Activation of mitochondrial, but 
not cytosolic, enzymes for glycine biosynthesis, which is known 
to be significantly correlated with cancer cell proliferation, impli-
cates importance of mitochondria in cell proliferation in cancer 
(56). Moreover, glycine and succinyl CoA might condense to form 
5-aminolevulinate which is key precursor for haem biosynthesis 
in mitochondria (57). Iron modulates expression of four enzymes 
of TCA cycle, aconitase, citrate synthase, isocitrate dehydroge-
nase, and SDH. It also reduces glucose utilisation by increasing 
oxygen consumption and ATP synthesis in mitochondria. When 
iron is depleted, glycolysis and lactate formation are significantly 
increased to compensate for ATP production in mitochondria 
(58). Increased supply and generation of haem induces oxygen 
consumption and energy production in mitochondria for pro-
gression of cancer cells, such as lung cancer (59).

Mutations in isocitrate dehydrogenase enzymes IDH1 (cyto-
solic) and IDH2 (mitochondrial) are highly frequent in glioma 
and AML, though rare in other cancers. Recurrent mutations in 
Arg132 in IDH1 and Arg140 and Arg172 in IDH2 gene comprise 
90% of the total mutations (60–63). Mutant IDH1 or IDH2 
produces 2-hydroxyglutarate (2-HG), instead of α-KG (64, 65), 
which functions as an oncometabolite. Accumulation of 2-HG in 
cells results in epigenetic dysregulation followed by aberrant gene 
expression (62). IDH1 and IDH2 mutations are also responsible 
for hypermethylation, decreased differentiation, and increased 
stemness of cancer cells as well as HIF-1α-mediated angiogenesis 
and growth of tumour (66–68).

Fatty Acids
Lipogenesis is a common feature of different cancers. Although 
normal cells mostly depend on exogenous sources of lipid, can-
cer cells can execute de novo synthesis of fatty acids. It is one of 
the major components of cellular lipid which is needed for cell 
membrane synthesis, energy production, lipid modification of 
proteins, and signalling molecule production in highly prolifera-
tive cancer cells. In most of the cancers, cause of increased lipo-
genesis is due to overproduction of enzyme, fatty acid synthase 
(FASN). It performs the final catalytic step to convert acetyl CoA 
and malonyl CoA to fatty acids and functions as an oncogene 
by promoting cancer cell proliferation and growth. Suppression 
of FASN results in cell cycle arrest, reduction in cancer cell pro-
liferation, and increase in apoptosis (69–74). Another enzyme 
monoacylglycerol lipase that controls monoacylglycerol levels in 
normal cells is highly expressed in aggressive cancers and regu-
lates a fatty acid network. This network has lipids with oncogenic 
potential and increases pathogenicity by promoting invasion, 
survival, and growth of the tumour (44). Alternatively, low 
glucose content or food deprivation has been found to increase 
fatty acid oxidation in cancer (75). Fatty acids are considered 
major source of energy in healthy cells as they can provide twice 
ATP than carbohydrates. Fatty acid oxidation (also known as 
β-oxidation) promotes cell proliferation and inhibits apoptosis in 
tumour cells (76, 77). Other than ATP production, β-oxidation-
derived NADPH is the key mediator of oxidative stress as well 
as the coenzyme for anabolic reactions (78). PPAR genes play 
essential roles in β-oxidation by modulating enzymes involved 
in the pathway (79). PPAR-gamma coactivator-1α (PGC-1α) is 
activated by low glucose content and activates SIRT1. Both SIRT1 
and Sirtuin-3 (SIRT3) activate metabolic enzymes for β-oxidation 
of fatty acids into acetyl CoA (80, 81) in mitochondria. Acetyl-
CoA carboxylase (ACC) converts acetyl CoA to malonyl CoA 
in fatty acid synthetic pathway and is suppressed by AMPK. 
Hormones, such as leptin and adiponectin, activate AMPK and 
suppress ACC to inhibit fatty acid synthesis and increase fatty 
acid oxidation (82, 83).

Acetate
Recent studies on cancer metabolism have identified that 
certain tumours use exogenous acetate as an alternative source 
for producing acetyl CoA (84–86). Even in a glucose abundant 
scenario, glucose and acetate are simultaneously used to pro-
duce TCA cycle intermediates. Tumours, especially those with 
hypoxic conditions can produce 50% of their acetyl CoA from 
acetate, while the remaining amount is produced by utilising 
glucose and glutamine as carbon sources (87). Disease progres-
sion is correlated to the activity of the nucleo-cytosolic acetyl-
CoA synthetase (ACSS2) (88). ACSS2 uses acetate as a carbon 
source to generate acetyl CoA. Tumours which utilise acetate as 
a carbon source also show elevated activity of ACSS2. Mutations 
causing PTEN and BRAF inactivation driving AKT and ERK 
pathways have been found to play role in increased expression of 
ACSS2. Tumours devoid of this enzyme consume less amount of 
acetate, undergo cell death, and subsequently reach to a reduced 
tumour size (86).
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Mevalonate–Isoprenoid Pathway
Mevalonate–isoprenoid pathway is used for cellular cholesterol 
biosynthesis and protein prenylation and hyper-activated in 
many cancers. It activates proteins of RAS signalling pathway by 
prenylation leading to cell transformation and malignancy (89, 
90). Activation of this pathway shows chemoresistance in cancer 
cell line (91) and also induces cancer metastasis by epithelial 
mesenchymal transition, remodelling of cytoskeleton, cell motil-
ity and cell polarity (non-canonical Wnt/planar pathway) (92). 
Multiple factors can regulate mevalonate pathway. Mutant form 
of tumour suppressor protein P53 induces protein prenylation 
of mevalonate pathway, thus maintaining malignancy, three-
dimensional growth of tumour, and invasive growth (90, 93, 
94). Activation of ARID1A (a subunit of SWI/SNF chromatin 
remodelling complex) and IGF-1R/AKT/mTOR axis result in 
increased activity of mevalonate pathway in ovarian and colo-
rectal cancer, respectively (95, 96). Kallikrein-related peptidase 5 
(KLK5) protease can inhibit enzymes of mevalonate pathway in 
breast cancer (97). Drugs like statin, quinazoline, and simvas-
tatin show anticancer effects by inhibiting mevalonate pathway, 
which indicates possibility of building new therapeutic strategies 
targetting this pathway (92, 98–103).

MiTOPHAGY

Mitophagy or selective degradation of damaged mitochondria 
is a quality control mechanism for maintaining homoeostasis 
of functional mitochondria in cell (104). Key regulation 
of mitophagy is executed through PINK1–Parkin pathway. 
Under stress conditions like hypoxia and nutrient deficiency, 
Parkin (E3 ubiquitin ligase) is recruited by PINK1 for protea-
somal degradation of target proteins (VDAC1, mitofusin 1, 
mitofusin 2) at mitochondrial outer membrane (105–108). 
Loss-of-function mutation, copy number variation, or dele-
tion of PARK2 (encoding Parkin protein) resulted in retaining 
damaged mitochondria in different cancers and, thus, indicates 
tumour suppressing role of mitophagy. In solid tumours, loss 
of Perkin induces aerobic glycolysis, thus supporting Warburg’s 
hypothesis (109).

ReDOX SiGNALLiNG

Reactive oxygen species are, mostly, by-products of electron 
transporting systems in mitochondria. Although ROS have 
some important roles in transcriptional activation, cell prolifera-
tion, and other signalling pathways but excess amount of ROS 
is responsible for damaging cellular DNA, lipids, and proteins 
(110). Antioxidant systems of the cell provide protection against 
excess amount of ROS. Excess redox signalling leads to carcino-
genesis, tumour development and progression, cell migration, 
and angiogenesis. An increased quantity of ROS can activate 
hypoxia-mediated HIF-1α signalling pathway which might cause 
metabolic shift from oxidative phosphorylation to glycolysis by 
increasing expression of glycolytic enzymes. HIF-1α also reduces 
expression of tumour suppressor SIRT3 which functions in acti-
vating antioxidants in mitochondria of healthy cell. Loss of SIRT3 
is reported in many cancers and it results in continuous steady 

state level of ROS and oxidative stress. Mitochondrial antioxidant 
systems which regulate ROS level are manganese superoxide 
dismutase (MnSOD or SOD2), mitochondrial glutaredoxin, glu-
tathione peroxidise, and thioredoxin 2 (111–114). Antioxidants 
have dual role in redox signalling pathway. In physiological ROS 
signalling, they function as tumour suppressor by inhibiting 
ROS-induced cell proliferation and survival needed for cancer 
progression. By contrast, excess ROS in tumour microenviron-
ment promotes apoptotic signals and, then, antioxidants suppress 
those signals and act as tumour promoters. But, generally, these 
antioxidant systems protect cells against oxidative stress and 
ROS-induced cell death.

MiTOCHONDRiA BiOGeNeSiS

Biogenesis of mitochondria is required in cells with high energy 
demands. DNA double strand breaks, induced by anticancer 
drugs, activate ataxia telangiectasia mutated to activate α 
subunit of AMPK to increase mitochondrial biogenesis (115). 
Contradicting Warburg’s hypothesis, recent studies have 
proposed a two-compartmental metabolic system in cancer 
(116, 117). Cancer cell and surrounding stromal cells undergo 
metabolically symbiotic relationship, where the cancer cells have 
active mitochondria and increased mitochondrial biogenesis 
but the stromal cells contain dysfunctional mitochondria and 
take up glycolytic pathway (117). Ketone bodies are also major 
energy sources for mitochondria and they are synthesized in 
tumour stroma with the help of enzymes, such as HMGCS2, 
HMGCL, BDH1, and re-utilised in tumour cells (116). Severe 
oxidative stress leads to apoptotic cell death, whereas mild 
oxidative stress can increase mitochondrial biogenesis as well as 
mtDNA content in cancer cells. Key regulator of mitochondrial 
biogenesis is PGC-1α, which regulates expression of nuclear 
genes for respiratory chain function, transcription, and repli-
cation of mtDNA by activating transcription factors (NRF-1 
and NRF-2), tumour suppressor genes (SIRT3), nuclear coded 
mitochondrial enzymes (POLRMT), and transcription factor 
(mtTFA) (25, 118–121). Activated PGC-1α in invasive cancer 
cells increases oxidative phosphorylation, oxygen consump-
tion, and mitochondrial biogenesis and finally cell’s potential 
for distant metastasis. Activation of PGC-1α for mitochondrial 
biogenesis can occur through different signalling pathways 
(such as AMPK, NO–cGMP, cAMP–PKA–CREB, p38, and ERRα 
pathways) (122–124). Alternatively, HIF-1 negatively regulates 
mitochondrial biogenesis and oxygen consumption by inhibiting 
C-MYC via MXI-1 dependent and MXI-1 independent path-
ways in renal carcinoma (14). Translation of nuclear-encoded 
mitochondrial function-related genes, protein folding, and entry 
in mitochondrial sub-compartments are regulated by mTOR 
which is often found to be hyper-activated in cancer (125–128). 
Suppression of mTOR results in damage and loss of mitochondria 
in cancer (129). MYC, which has known oncogenic effects in 
various cancers, induces nuclear-encoded mitochondrial gene 
expression and mitochondrial biogenesis in cancer (14, 25, 130). 
Sustained expression of MYC can lead to increased production 
of ROS and subsequent genomic instability and mitochondrial 
dysfunction (131, 132).
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MiTOCHONDRiAL FiSSiON AND FUSiON

Fission and fusion, which are the key components in mito-
chondrial dynamics, modulate mitochondrial morphology 
and subsequently regulate essential cellular mechanisms such 
as cell growth, cell division, and distribution of mitochondria 
during differentiation (133–135). Imbalance in expression of 
fission controlling protein dynamin-related protein 1 (Drp1) 
and fusion controlling protein Mfn1 (mitofusin 1) is observed 
in different cancers. Increased fission or mitochondrial frag-
mentation due to high expression and activity of Drp1 and 
decreased fusion due to loss of Mfn1 activity are often linked to 
cancer cell migration, invasiveness, and metastasis (136–140). 
Pathways mediated by p53, PINK1, and mitochondrial mem-
brane proteins are also found to be involved in regulation of 
mitochondrial fission as well as chemosensitivity of cancer cells 
(141–144). Other than proteins, mitochondrial lipids (cardi-
olipin, phosphatidylethanolamine, phosphatidic acid, diacylg-
lycerol) also play important role in controlling mitochondrial 
dynamics (140).

CALCiUM HOMOeOSTASiS

Calcium ion concentration is a key regulator of various signalling 
pathways of the cytosol and cellular organelles. Under physi-
ological conditions, Ca2+ plays a beneficiary role by producing 
higher glycolytic and mitochondrial pathway enzymes (such 
as PDH, isocitrate dehydrogenase, α-KG dehydrogenase, ATP 
synthase, and α-glycerophosphate dehydrogenase), increasing 
oxidative phosphorylation activity and activating metabolite 
carriers (aspartate/glutamate carrier) of mitochondria. On the 
contrary, higher concentration of Ca2+ within mitochondria 
induces several negative effects on mitochondrial function which 
finally leads to apoptosis (145, 146). Mitochondrial stress (such 
as mtDNA depletion) in cancer cells results in increased cyto-
solic Ca2+, activation of calcium dependent MAPK (ERK1 and 
ERK2) and calcineurin, increased anti-apoptotic proteins, and 
loss of pro-apoptotic proteins (147). Mitochondria-associated 
membrane (MAM) structure which is the interacting interface 
between ER and mitochondrial outer membrane, functions as the 
gateway of Ca2+ release from ER to mitochondria. Oncoproteins 
and tumour suppressor proteins residing on MAM control 
apoptosis via Ca2+ homoeostasis. Ca2+ release from ER as well 
as uptake by mitochondria are inhibited by several oncogenes 
like AKT, Bcl2, and K-Ras to trigger anti-apoptotic signalling in 
cancer cells (148–150). Functional loss of ER protein PERK and 
mitochondrial calcium channel (MCU) are also known to have 
anti-apoptotic effects in cancer (151–153).

CeLL DeATH

Cell death is a physiological regulator for development, tissue 
homoeostasis, stress, and also functions as tumour suppressor. 
Besides apoptosis, mitochondria are also found to be involved 
in other cell death mechanisms such as autophagy, necrosis, 
and necroptosis (programmed necrosis) (154–156). Proteins 

known as inhibitors of apoptosis (IAPs) are overexpressed 
in cancer and inhibit caspases or procaspases (primarily 
caspase-3 and caspase-7) to suppress apoptosis. Cancer cells 
with activated IAPs become highly resistant to radiation or 
chemotherapy (157). Anti-apoptotic proteins of BCL2 family 
are overexpressed in cancer and inhibit the pro-apoptotic 
proteins to initiate the process of cell death. Thus, BCL2 
proteins are targetted by BCL2-inhibitors in cancer therapy 
to promote apoptosis (158, 159). Tumour suppressor, P53, plays 
an important role in promoting cell death. It is activated in 
ROS-dependent pathway and inhibits oncogenes via JNK-
mediated signalling pathway leading to apoptosis in cancer 
(160, 161). Inhibited cell growth and increased apoptosis in 
cancer by P53 activation are also regulated by miRNA or SIRT2 
dependent pathways (162, 163).

Mitochondrial fission- and fusion-related proteins, Drp1 and 
mitofusin (Mfn1 and Mfn2), are found to be involved in cell 
death (164). Drp1 induces mitochondrial fragmentation and 
apoptosis in a BAX/BAK-mediated pathway. Overexpression of 
Drp1 increases ROS production, release of cytochrome c, and 
PARP cleavage (165, 166). Being phosphorylated by ERK, Mfn1 
modulates apoptosis and fusion. Mutant Mfn1 binds to BAK 
more strongly inducing BAK activation and cell death (167). 
Mfn2 promotes anti-proliferative and pro-apoptotic effects via 
PI3K–AKT signalling pathway and lower expression of Mfn2 is 
associated with poor survival in cancer (168, 169).

MUTATiONS iN MiTOCHONDRiAL 
GeNOMe

Somatic mutations in mitochondrial genome (mtDNA) are 
common and frequently reported in different types of cancer 
(170–177). Functional consequences of these mutations are not 
well understood. These mutations are mostly point mutations, 
small insertion–deletions, or large scale deletions distributed in 
protein coding genes (177, 178). These mutations are thought to 
arise due to poor DNA repair mechanism and direct exposure 
to ROS, although oxidative stress is not always considered as a 
major contributor to somatic mutations (179). Mutations in cod-
ing genes might cause functional imbalance in respiratory chain. 
Mutant respiratory chain proteins promote elevation of ROS, 
tumour size, and glycolysis via HIF-1-mediated pathway in head 
and neck and prostate cancer (180, 181).

CONCLUSiON

Mitochondria are essential organelles for energy production 
but play important roles in carcinogenesis, cancer progression, 
and metastasis helping altered energy metabolism in cancer 
cells. Mitochondrial metabolism is also connected with other 
mitochondrial pathways such as redox signalling, Ca2+ signal-
ling, mitophagy, and mitochondrial biogenesis. These pathways 
cross talk and seem to play important roles in cancer. Targeting 
mitochondrial pathways individually or in combination might be 
considered as future cancer therapy. Recently, cancer research-
ers are focussing on the metabolic reprogramming of cancer 
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cells to use altered metabolites/oncometabolites for therapeutic 
approach.
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