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Weighted gene coexpression network analysis reveals hub
genes involved in cholangiocarcinoma progression and
prognosis
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Aim: Cholangiocarcinoma (CCA) is a highly malignant tumor
found in the bile duct epithelial cells, and the second most com-
mon primary tumor of the liver. However, the pivotal roles of
molecular biomarkers in oncogenesis of CCA are unclear. There-
fore, we aim to explore the underlying mechanisms of progres-
sion and screen for novel prognostic biomarkers and
treatment targets.

Method: The data of mRNA sequencing and clinical informa-
tion of CCA patients in The Cancer Genome Atlas was analyzed
by weighted gene coexpression network analysis (WGCNA).
Modules and clinical traits were constructed according to
Pearson’s correlation analysis, and Gene Ontology and pathway
enrichment analysis were applied. Hub genes of these modules
were screened by intramodule analysis; Cytoscape with Search
Tool for the Retrieval of Interacting Genes was utilized to visual-
ize protein–protein interaction of these modules; hub genes of
these modules were validated afterwards. Furthermore, the sig-
nificance of these genes was confirmed by survival analysis.

Results: Genes MRPS18A, CST1, and SCP2 were identified as
candidate genes in the module, which was associated with clin-
ical traits including pathological stage, histological grade, and
liver function and which also affected overall survival of CCA pa-
tients. Nineteen hub genes were analyzed together andwere as-
sociated with progression and prognosis of CCA. Survival
analyses found that several of the multiple genes could serve
as biomarkers to stratify CCA patients into low- and high-risk
groups.

Conclusion: These candidate genes could be involved in pro-
gression of CCA, which could serve as novel prognostic markers
and treatment targets. Moreover, most of them were first re-
ported in CCA and deserve further research.
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INTRODUCTION

CHOLANGIOCARCINOMA (CCA) IS a highly malig-
nant tumor located in the bile duct epithelial cells;

it is the second most common primary tumor of the liver.
Cholangiocarcinoma are subdivided into intrahepatic
cholangiocarcinoma (iCCA), originating from the biliary
tree within the liver, and extrahepatic cholangiocarcinoma
(eCCA), outside the liver parenchyma; the latter is further
subclassified into perihilar cholangiocarcinoma (pCCA)
and distal cholangiocarcinoma, with a proportion of

10–20% iCCA, 50% pCCA, and 30–40% eCCA.1 Most
cholangiocarcinoma are well, moderately, and poorly dif-
ferentiated adenocarcinomas with other histological sub-
types encountered rarely.2,3 The incidence of CCA has
increased to 18% of all liver cancers during the past
40 years and account for 2% of cancer-related deaths
worldwide per year.3 The fact that CCA has a slow evolu-
tion, atypical symptoms, and limited therapeutic measures
makes it difficult for early diagnosis and hence most pa-
tients are detected only in advanced or metastatic stages.
The overall 5-year survival after resection is usually lower
than 40%; in non-operable CCAs the overall 5-year
survival is less than 5%.4 Therefore, to establish reliable
biomarkers that are specific to the early stages of the dis-
ease is needed urgently to overcome the poor prognosis
and delayed treatment.
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Serum biomarkers such as carbohydrate antigen 199
and cancer antigen 125 are now used routinely as labora-
tory tests for CCA screening.5 However, the diagnostic sen-
sitivity and specificity are not satisfactory and are
insufficient for early detection. A study showed that benign
bile duct obstruction diseases also show moderately ele-
vated levels; these serum biomarkers have wide ranges of
sensitivity (50–90%) and specificity (54–98%).6

In the last decade, numerous studies indicated that dif-
ferent genomic alterations are involved in the pathogenesis
of CCA and reported their potential value for diagnosis
and prognosis. Among these genes, TP53 was presumed
to affect DNA repair,4,7 some are involved in cell growth
pathways (KRAS, SMAD4, PTPN3, BRAF, and FGFR2),4,7,8

some are worked during chromatin remodeling (PBRM1,
KMT2C, ARID1A, and BAP1),7–9 and others, such as the
Notch and Wnt signaling pathways, play important roles
in the development of CCA.10,11 The FGFR2 fusion genes
are of particular interest, as they could not be detected in
other liver malignancies, could be used for therapeutic tar-
get purposes, and also have diagnostic value.12,13 It was
also found that IDH1 and IDH2 alter the methylation sta-
tus of CCA cells.13 The genomic variability of CCAs could
be the reflection of different etiologies or stages of tumor
development, and thus be used as biomarkers and for
targeted therapy. Aberrant transcriptomic change would
occur subsequent to genetic and epigenetic modifications.
Previous studies have confirmed the abnormal microRNA
profiles in both CCA tumor tissues and cell lines.14–16

Mass spectrometry (MS)-based proteomics has become a
useful tool for the analysis of different biofluids to find
accurate and specific protein biomarkers for risk stratifica-
tion, diagnosis, and prognosis.17 Studies focused on prote-
omics have identified a specific peptide, SSP411 protein, in
bile and urine showed better diagnostic value than the
general non-specific tumor markers used in serum.18,19

However, MS proteomics are difficult to implement in
these samples due to the abundance of high dynamic
range proteins, such as albumin or immunoglobulins,
making the discrimination of less abundance aimed pro-
teins difficult.
Although widely investigated in the field of tumorigene-

sis, the analysis of gene expression data by the weighted
gene coexpression network analysis (WGCNA) systems bi-
ology approach has not yet, so far as we know, been ap-
plied to CCA-derived data. The WGCNA allows a global
interpretation of gene expression data by constructing gene
networks based on similarities in expression profiles
among samples.20 Highly coexpressed genes are connected
in the network and highly connected network regions can
be grouped into modules. As these modules often consist

of functionally related genes, different modules are in-
volved in individual functions. Within the modules,
WGCNA also allows the identification of the most central
and connected genes, called hub genes.21 These modules
and their hub genes could be involved in pathogenesis de-
velopment and, therefore, might have important clinical
applicability as potential prognostic biomarkers or as
therapeutic targets. In this study, in order to improve our
understanding of the biological mechanisms underlying
CCA, we analyzed CCA gene expression datasets by
constructing a coexpression network analysis strategy to
detect key genes potentially involved in the carcinogenesis
of CCA.

METHODS

Analysis of gene expression data

RNA SEQUENCING DATASETS and clinical informa-
tion of CCA patients were downloaded from The

Cancer Genome Atlas (TCGA) database (http://
cancergenome.nih.gov/). RNA sequencing data were de-
rived from Illumina (SanDiego, CA, USA)HiSeq V2 RSEM
genes. The gene expression level was measured as frag-
ments per kilobase of transcript per millionmapped reads.
Clinical follow-up data of CCA patients in TCGA were re-
trieved for prognostic analysis. Clinical information, in-
cluding American Joint Committee on Cancer
pathological tumor–node–metastasis (TNM) stage, which
was carried out according to the TNM 2010 system and is
specific for every subtype of CCA,22 gender, age at initial
pathological diagnosis, and tumor type, were all extracted
for WGCNA analysis.

Gene coexpression network construction
Coexpression networks were constructed according to the
protocol of the WGCNA package in R language environ-
ment.20 The similarity between the gene expression
profiles were calculated based on a matrix of pairwise
Pearson’s correlation coefficients, which represented a
measure of the degree of concordance between gene
expression profiles. Then we used the WGCNA function
adjacency to transform the similarity matrix into an adja-
cency matrix.
Scale-free gene coexpression networks were constructed

by theWGCNApackage.20 To ensure that the results of net-
work construction were reliable, outlier samples whose
connectivity was less than�2.5 were removed.23 Function
pickSoftThreshold was used to calculate scale-free topol-
ogy fitting indices R2 for several soft threshold powers.
When the power value is approximately 0.8, it means that
the topology of the network is scale-free, and there are no
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batch-effects. The adjacency matrix was transformed into a
topological overlap matrix (TOM) and the corresponding
dissimilarity (dissTOM). The resulting topological overlap
is a biologically meaningful measure of gene similarity
based on coexpression relationships between two genes.24

Module identification was undertaken with the dynamic
tree cut method for branch cutting to generate modules
on the basis of hierarchically clustering genes using
dissTOM. During the process, the distance measure with
a deepSplit value of 2 to branch splitting and a minimum
size cut-off of 30 (minClusterSize=30) for the resulting
dendrogram were chosen to avoid generating abnormal
modules. Highly similar modules were identified by clus-
tering and then merged together with a height cut-off of
0.25.

Construction of module–trait relationships of
CCA
The module eigengene (ME), defined as the first principal
component of a given module, was calculated by function
module eigengenes. TheME can be considered to be repre-
sentative of gene expression profiles and to capture the
maximal amount of variation in the module. Modules
would be merged if their correlation of MEs was greater
than 0.75, which means they have similar expression
profiles. The correlation between MEs and clinical traits,
including pathologic stage, histologic type and grade, liver
function (Child–Pugh classification), and Ishak fibrosis
staging were evaluated by Pearson’s correlation tests.
P<0.05 was considered to be significantly correlated.

Finding meaningful modules and functional
annotations
The correlation betweenmodules and clinical features was
evaluated by Pearson’s correlation tests, by which we can
obtain biologically meaningful modules. The module
and clinical feature that had the highest correlation were
selected as the module of interest and clinical feature to
be studied. In order to explore the potential mechanism
of how module genes affect related clinical features, all
genes of the module of interest were mapped into the DA-
VID database and subjected to GO functional and Kyoto
Encyclopedia of Genes andGenomes (KEGG) pathway en-
richment analysis. A P-value <0.01 and false discovery
rate<0.01 were set as the cut-off criteria.25

Identifying hub genes and correlation analysis
To quantify module–trait associations, given that we had a
summary profile (eigengene) for each module, we corre-
lated each eigengene with external traits and looked for
the most significant associations. This calculation was

referred to as the module–trait relationship.20 For
intramodular analysis, we evaluated the gene significance
(GS) and module membership (MM), the latter of which
is also known as eigengene-based connectivity. The GS is
the absolute value of the correlation between a specific
gene and a trait. The MM is the correlation between the
module eigengene and the gene expression profile. Using
the GS andMM,we can identify genes that are significantly
associated with clinical traits and important MM.20 Node
centrality has been shown to be useful to identify function-
ally critical genes; the node degree, number connections
associated with a gene, was calculated and graphically
visualized.
In addition, Search Tool for the Retrieval of Interacting

Genes (STRING) is an online tool designed to evaluate
protein–protein interaction (PPI) information.26 To detect
the potential relationship among the hub genes, we used
the STRING application in Cytoscape and mapped the
hub genes into STRING. A confidence score≥0.4 was set
as the cut-off criterion. In the PPI network, genes with a
connectivity degree ≥8 were also defined as hub genes.
The common hub genes in both the coexpression network
and PPI network were regarded as “real” hub genes for
further analysis.

Hub gene validation
The role of hub genes was validated by survival analysis in
the transcriptional levels between CCA and normal
samples from overall survival data of TCGA database.
Moreover, Gene Expression Profiling Interactive Analysis
(http://gepia.cancer-pku.cn) and SurvExpress (http://
bioinformatica.mty.itesm.mx/SurvExpress) online tools
to undertake validation of cancer-specific expression and
prognosis of hub genes.27,28

Survival analyses were undertaken using log–rank tests
and Kaplan–Meier survival curves. The SurvExpress tool
divides samples into two groups (high-risk and low-risk)
through the median of the prognostic index obtained by
a Cox regression model. It then generates risk hazard ra-
tios (HR), relative confidence intervals (CI), and P-
values.

RESULTS

Gene coexpression network of CCA

USING THE WGCNA approach, we analyzed gene
coexpression patterns based on mRNA expression

profiles of CCA in TCGA database to identify key and
candidate mRNAs that regulate the pathologic stage, histo-
pathological identity, and pathology of fibrosis in the
process of bile duct carcinogenesis. Generally, WGCNA
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calculates correlations among genes that are analyzed
across samples, and the correlations are weighted using a
power function to determine the connection strengths be-
tween genes. Co-regulated genes are grouped intomodules
based on similarities in their expression patterns. Finally,
each module is summarized, and hub genes are identified
based on intramodular statistical analysis and node cen-
trality properties, linking network topological features to
biological information.
In TCGA, expression values of CCA were used to con-

struct the coexpression network. The cluster analysis on
these samples, undertaken with the flashClust package,
are shown in Figure S1. After discarding the outlier sam-
ples, the soft threshold power value was set to 5
(Fig. S2), in accordance with the standard scale-free net-
work distribution, with which adjacencies between all
differential genes were calculated by power function.
Then 28 gene coexpression modules, clustered in size
from 55 to 1409 genes, were identified by hierarchical
clustering and dynamic branch cutting (Fig. 1a). Each
module was assigned a unique color as an identifier
and is listed in Table S1. Interaction between the 28
coexpression modules was analyzed with the TOM
among all genes (Fig. S3). Among these modules, two
were merged into others because of similar MEs.
Twenty-eight modules were finally generated (Fig. 1b).

The gray module represented a gene set that was not
assigned to any of the modules.

Modules with clinical significance
The clinic traits dataset was also downloaded from TCGA;
some useless clinic traits information were removed in this
research. To explore the clinical significance of each mod-
ule, correlations betweenMEs and clinical traits, including
clinical TNM staging, pathologic stage, histologic grade,
Child–Pugh classification, and Ishak fibrosis classification,
were analyzed. This observation is shown by the r-value of
correlations shown in Figure 2. There were eight modules
positively correlated with pathological stage and four
modules positively correlated with histological grade,
while there were only two modules positively correlated
with Child–Pugh classification and one module
correlatedwith Ishak fibrosis score. The highest association
in the module–feature relationship was between the tur-
quoise module and pathological stage III (r = 0.95,
P=3×10�18), and between the dark green module and
pathological grade G1 (r=0.95, P=3×10�19), which were
selected as modules of interest and clinical features to be
studied in subsequent analyses. The second-highest associ-
ation in the module–trait relationship was found between
the orange module and pathological stage IVa (r=0.72,
P=7×10�7), and between the turquoise module and

Figure 1 Cluster dendrogram generated
by hierarchical clustering of genes in-
volved in cholangiocarcinoma progres-
sion and prognosis, based on
dissimilarity measure (topological over-
lap matrix) of genes. The branches corre-
spond to modules of highly
interconnected groups of genes. Two col-
ored bars below the dendrogram repre-
sent the original modules and merged
modules. Thirty modules were identified
by the dynamic tree cutting method. Each
module was assigned a color as an identi-
fier. Twenty-eightmodules were generated
after merging according to the correlation
of modules. [Color figure can be viewed
at wileyonlinelibrary.com]
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tumor type of distal CCA (r =0.71, P=1 × 10–6). Among
them, seven modules (pink, dark green, orange, tan, tur-
quoise, magenta, and saddle brown) were positively corre-
lated with histological grade G1 and G4, pathological
stage III–IV, pathological type (distal), Child–Pugh classifi-
cation, and Ishak fibrosis stage 3–4. The module–module
(metamodule) relationship is the groups of correlated
eigengenes with correlation of eigengenes >0.5. As shown
in Figure 3, the eigengene dendrogram depicts the pink
and saddle brownmodules as highly related. The heatmap
was used to identify groups of correlated eigengenes and
the dendrogram indicates that the seven modules were
significantly and positively associated with CCA clinic
traits. Finally, we plotted a scatter plot of GS versus MM
in these selected modules (Fig. S4). There is a highly
significant correlation between GS and MM in these
modules except for the tan and saddle brown modules.

Functional enrichment analysis of genes in
meaningful modules
The biological significance of selected modules was inves-
tigated for in-depth understanding by GO term function
analysis including biological process, cellular component,
and molecular function, and KEGG pathway enrichment
analysis. All genes in interesting modules were imported

to DAVID software and STRING for online tool analysis.
As shown in Table S2, the results illustrated that the dark
green module were particularly enriched in biological
processes, including tissue development and system
development (data not shown), and were enriched in
extracellular space and extracellular exosome in molecular
function.
The biological processes of the magenta module were

enriched in small molecule metabolic processes and
single-organism metabolic processes; the molecular func-
tions were enriched in catalytic activity, and cellular com-
ponents were enriched in the cytoplasm and membrane-
bounded organelles. The metabolic pathway plays an im-
portant role in KEGG pathway. The pink module was
enriched in metabolic processes, including oxidation re-
duction and regulation of small molecular activation, in
cellular components including extracellular vesicles and
exosomes, and inmolecular functions including endopep-
tidase activity and oxidoreductase activity. KEGG was
enriched in metabolic pathways and complement and co-
agulation cascades. The biological processes of the tan
module mainly regulated the metabolism of
mitochondria, and were enriched in the mitochondrial
membrane and mitochondrial parts. The turquoise
module illustrated that these gene clusters were enriched

Figure 2 Module–trait relationships and P-values for selected traits in cholangiocarcinoma. Each row corresponds to a module
eigengene, and each column corresponds to a clinical trait. Each cell contains a corresponding correlation and P-value. The table is
color-coded by correlation according to the color legend. [Color figure can be viewed at wileyonlinelibrary.com]
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in immune system processes and immune response of bi-
ological processes that regulate leukocyte activation. These
genes, which are associated with cytoplasm and cytosol
components, also played molecular function roles in
protein and enzyme binding. The pathway indicated by
the turquoise module was associated with human T-
lymphotropic virus-1 infection, allograft rejection, and cell

adhesion molecules. However, the results of GO enrich-
ment and KEGGanalysiswere not achievable in the orange
module.

Identification of hub genes during
tumorigenesis in candidate modules
The significance of hub genes with high MM value in a
module was consistent with the significance of the mod-
ule. These genes are also centers of the network and play
essential roles in the network. In order to identify the
central nodes that well represent these modules, we an-
alyzed module genes with high intramodular connectiv-
ity in further detail. One hundred and fifty-three genes
with high connectivity in the dark green, magenta, tur-
quoise, and pink modules were identified as hub genes
(Fig. 4, Table S3). In addition, under the threshold value
of confidence >0.4 and connectivity degree of ≥10, the
PPI network analysis showed 442 genes in the dark
green, magenta, pink, tan, and turquoise modules
individually. Finally, 40 common hub genes were iden-
tified in the coexpression network and PPI network,
which were validated further for the process of CCA
oncogenesis.

Survival analysis on hub genes
In order to validate whether these 40 common hub genes
in the dark green, magenta, pink and turquoise modules
were associated with the prognosis of CCA patients, and
were regarded as potential prognostic biomarkers. Sur-
vival analysis, including overall survival (OS) time and
disease-free survival time, were detected with GEPIA.
Only two hub genes (FERMT3 and HCST) with higher
expression levels in CCA were screened out from the 40
common hub genes, but the two upregulated genes indi-
cated good survival time of CCA patients. Next, we exten-
sively and sequentially analyzed the other hub genes
from PPI networks and coexpression networks. Finally,
genes MRPS18A and CST1 with higher expression level
and SCP2 with lower expression level compared to nor-
mal tissue reflected poor prognosis and survival time of
CCA patients (Fig. 5); in contrast, although POLE4,
NDUFA2, COX6A1, HSP90B1, CTSD, SAR1A, TYROBP,
RAP1A, and HCST were closely correlated with prognosis,
their expression level between CCA and normal tissue
showed no significant difference. In addition, we found
the differential expression of FERMT3, LYN, CASP8,
CDH1, TNFRSF18, MBNL1, and TNFRSF14 with better
OS. To this end, after survival analysis of single genes,
we undertook multigene survival analyses in three cate-
gories of hub genes, including differentially expression
genes (DEG) with better prognosis (seven hub genes),

Figure 3 Eigengene network including dendrogram and
heatmap shows the correlation among the module and clinical
traits in cholangiocarcinoma. (a) Hierarchical clustering of mod-
ule eigengenes indicates the branches of the dendrogram cluster
together eigengenes that are positively correlated. Pink and saddle
brown modules are highly related. (b) Heatmap plot of the adja-
cencies in the hub gene network. Red represents positive correla-
tion with high adjacency; blue represents negative correlation
with low adjacency. Squares of red color along the diagonal are
the metamodule, positively correlated with clinical traits. [Color
figure can be viewed at wileyonlinelibrary.com]
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DEG with poorer prognosis (three hub genes), and un-
differentiated expression genes with better prognosis
(nine hub genes). Specifically, we found that the OS
times of the high-risk group of patients were more than
twofold shorter than those of patients in the low-risk
group (HR 51.43 [95% CI, 6.28–421.4], P=2.4e-04 for
all of 19 hub genes; HR 16.02 [95% CI, 3.43–74.94],
P=4.2e-04 for 16 hub genes except for SCP2, MRPS18A,
and CST1) (Fig. 6).

DISCUSSION

THE PROGRESSION AND prognosis of CCA are
quite variable in different patients. Although some

molecular signatures involved in the process of CCA tu-
morigenesis have been discovered, specific and reliable
biomarkers for CCA prognosis and progression are

rarely reported. Accordingly, better and valuable bio-
markers are urgently needed to provide more accurate
clinical information that could significantly enhance
decision-making for patient management. Here, we used
WGCNA to screen progression- and prognosis-related
biomarkers.
The WGCNA has many distinct advantages over other

methods as the analysis focuses on the association be-
tween coexpression modules and clinic traits and the
results had much higher reliability and biological signifi-
cance.29 Hotta et al. reported core gene networks and hub
genes associated with progression of non-alcoholic fatty
liver disease by RNA sequencing.30 Through our study,
by utilizing WGCNA, 28 modules were generated through
10000 genes and 36 CCA samples globally, and relation-
ships between module genes and clinical traits were con-
structed. By means of correlating gene modules with

Figure 4 Coexpression network of most connected genes involved in cholangiocarcinoma in the modules (a) dark green, (b) magenta,
(c) turquoise, and (d) pink. Nodes and edges represent the correlation of genes. The nodes with saturated circle represent network hub
genes and the edge width was proportional to the score of weight by weighted gene coexpression network analysis. [Color figure can be
viewed at wileyonlinelibrary.com]

Hubgenes involved in cholangiocarcinomaprogressionandprognosis 1201

© 2019 The Authors.
Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology

Hepatology Research 2019; 49: 1195–1206

http://wileyonlinelibrary.com


clinical features, seven modules positively correlated with
CCA clinical traits were picked out. Among these modules,
dark green, orange, tan, and turquoise were involved in
pathological stage, pink and dark green were associated
with histological grade, and magenta and dark green were
correlated with liver function and aggressive location. The
highest positive correlation was found in the turquoise
module corresponding with pathological stage III and
the dark green module corresponding with histological
grade G1.
Function enrichment analyses of the dark green module

illustrated that these genes played important roles in bio-
logical processes in tissue and system development, which
are closely associated with tumor evolution, including
aggressive depth, location, and malignancy. Module

turquoise, corresponding to pathological grade III, was
found to be mainly enriched in immune system processes,
and enriched pathways of cell adhesion molecules. With
the abnormal regulation of this module’s genes, the dys-
function of immune cells facilitates tumor immune eva-
sion and tissue infiltration of tumor cells; moreover,
weakened cell adhesion could promote metastasis or
movement of tumor cells. The biological processes of the
tan module were mainly regulated by the metabolism of
mitochondrion. The biological processes of the pinkmod-
ule were enriched in metabolic processes including oxida-
tion reduction, and the magenta module was enriched in
small molecule metabolic processes. Changes in cell me-
tabolism are central to cancer development.31 The mito-
chondria, which plays a central role in regulating

Figure 5 Validation of hub genes involved in cholangiocarcinoma (CCA) progression and survival. (a) Overall survival analysis of three
hub genes in dark green, pink, and magenta modules individually (i) CST1, (ii)MRPS18A, and (iii) SCP2. Red line represents the sam-
ples with highly expressed genes; blue line represents samples with low gene expression. HR, hazard ratio. (b) Validation of gene expres-
sion levels between CCA samples and normal tissue. (i) CST1, (ii) MRPS18A, (iii) SCP2. [Color figure can be viewed at
wileyonlinelibrary.com]
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parameters of the metabolism such as energy production,
production of biosynthetic precursors, redox status, reac-
tive oxygen species (ROS) generation, cytosolic calcium
levels, and the initiation of apoptosis, has been a fascinat-
ing focus of oncologic investigation, and somatic mito-
chondrial DNA (mtDNA) mutations have been identified
in some solid tumors, and have been suggested as playing
a critical role in carcinogenesis.32 Mutations in mtDNA are
enhanced by ROS generated by the oxidative phosphoryla-
tion pathway. In fact, Zhou et al., using the MitoChip
Affymetrix (commercially available GeneChipHumanMi-
tochondrial Resequencing Array 2.0; Santa Clara, CA) with
an oligonucleotide sequencing array, found a high inci-
dence of mtDNA mutations in squamous cell carcinomas
of the head and neck that might contribute to the develop-
ment of a malignant phenotype by direct genotoxic effects
from increased ROS production.33

Consequently, these modules were associated with
higher pathological stage and histological grade.
Among these candidate modules, 40 common hub

genes were derived from coexpression networks and PPI
networks were extracted. Even though none of these
common hub genes were identified as ideal prognosis bio-
markers, we searched hub genes in two networks individu-
ally and thoroughly. Interestingly, we found numbers
of upregulated hub genes with differential expression
levels (FERMT, LYN, CASP8, CDH1, TNFRSF18, MBNL1,
TNFRSF14, and MXRA5) and without differential expres-
sion (COX6A1,NDUFA2, TYROBP, RAP1A, POLE4,HCST,
HSP90B1, CTSD, and SAR1A) showed good prognosis for
CCA patients. Apparently, these hub genes could not be
regarded as warning signatures for CCA prognosis. How-
ever, when these hub genes were taken together for survival
analyses, the results were reversed. Multiple hub genes

Figure 6 Kaplan–Meier survival plots for overall survival in patients with cholangiocarcinoma related to multiple hub genes. (a) Seven
hub genes with differential upregulation and SCP2, MRPS18A, and CST1. (b) Nine hub genes with undifferentiated upregulation and
SCP2, MRPS18A, and CST1. (c) Sixteen hub genes for differential expression and undifferentiated expression. (d) All 19 hub genes. X
and Y axes represent survival time (months) and percent of survival, respectively. Lower curves represent high-risk groups and upper
curves represent low-risk groups. [Color figure can be viewed at wileyonlinelibrary.com]
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within the high expression group were more than twofold
shorter than the low expression group in terms of OS,
which illustrated these hub genes could serve together as
prognostic biomarkers.
The factors accounting for different prognostic results

might include insufficient numbers of CCA samples, and
the expression levels of hub genes tended to be unstable.
Thus, we need to increase the CCA samples to validate
the expression levels in further studies. Most importantly,
we excluded 16 hub genes. Three hub genes (MRPS18A,
CST1, and SCP2) attracted our attention as meaningful
prognostic biomarkers.

Themitochondrial ribosomal proteins (MRPS18) coded
by nuclear DNAwere reported in early proteomic analyses,
of which the s18 protein family were localized on the sur-
face of the large subunit of the mitochondrial ribosome.31

However, the function of these proteins is basically un-
known. Recent studies reported that the expression of
MRPS18A is upregulated in breast cancer cells compared
to normal cells, but it cannot be regarded as a unique bio-
marker because it was found both in normal and cancer
cells. However, the increased expression level in cancer
cells is explained by the increased energy metabolism of
cancer cells, and it could pave the way for new diagnostic
and therapeutic routes to be explored.34

As a secretory protein encoded by the CST1 gene, CST1
which belongs to the type 2 cystatin (CST) superfamily.
Studies have implied that cystatins play pivotal roles in tu-
mor invasion andmetastasis. The salivary activity cystatins
were associated with both local invasion at early stage and
remote metastasis in colorectal cancer.35,36 It is reported
that CST1 was upregulated in cancerous lesions of gastric
cancer tissue, which suggests its important role in the
regulation of the proteolysis system and its effect on gastric
tumorigenesis through T-cell factor-mediated proliferative
signaling.37 Previous studies implied that CST1 could
contribute to the processes of carcinogenesis and tumor
progression.

Sterol carrier protein 2 (SCP2), famous as non-specific
lipid transfer protein, is a 13.2-kDa base protein expressed
in peroxisome, mitochondria, endoplasmic reticulum,
and cytoplasm.38 The function of SCP2 is involved in the
biosynthesis of cholesterol39,40 and the transformation of
cholesterol to bile acid.41 Hence, SCP2 plays an essential
role in cholesterol metabolism as a moderating factor. At
present, there has been no direct research on the relation-
ship between SCP2 and tumors. However, our study indi-
cates that SCP2 might promote the development of CCA.
Evidence given above illustrates that SCP2 could be a novel
oncogene and worth further study.

Taken together, MRPS18A, CST1, and SCP2, as candi-
date genes in CCA, were first found to be associated with
CCA with tremendous excitement. The expression levels
of these genes are involved in pathological stage, histolog-
ical grade, Child–Pugh grade, and OS of patients, which
illustrates that these hub genes participate in the develop-
ment and progression of CCA. Thus, the candidate genes
we identified can be taken as novel prognostic biomarkers
or therapeutic targets of CCA and deserve further study. A
large-scale study needs to be carried out to validate
these findings. The outcomes of this study surely
provide new insight into the tumorigenesis and progres-
sion of CCA.
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SUPPORTING INFORMATION

ADDITIONAL SUPPORTING INFORMATION may be
found online in the Supporting Information section

at the end of the article.

Figure S1 Clustering dendrogram of tumor samples and
clinical traits. The color intensity is proportional to the
clinical feature.
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Figure S2 Analysis of network topology for various
softthresholding powers. (a) Analysis of the scale-free fit
index for various soft-thresholding powers (β). (b) Analy-
sis of the mean connectivity for various soft-thresholding
powers.
Figure S3 Network heatmap plot. The heatmap shows the
topological overlap matrix (TOM) among selected genes
in the analysis. Branches in the hierarchical clustering den-
drograms correspond to each module. Two bars of color
coded module membership are located under and right
of the dendrograms. Light color shows low overlap and
progressively saturated yellow and red color represents
higher overlap. Genes of high intramodular connectivity
are located at the tip of the module branches because they
show the highest interconnectedness with the rest of the
genes in the module.

Figure S4 (a) Scatterplots of Gene Significance (GS) for
pathological stage III–IV versus Module Membership
(MM) in the turquoise, orange, and dark green modules.
(b) Scatterplots of GS for histological distal type versus
MM in the dark green module. (c) Scatterplots of GS for
histological grade G1 and G4 versus MM in the dark green
and pink modules. (d) Scatterplots of GS for liver fuction
classification Child–Pugh B versus MM in the magenta.
There is a highly significant correlation between GS and
MM in these modules.
Table S1 Number of genes in modules
Table S2 Gene Ontology enrichment analysis and the
Kyoto Encyclopedia of Genes and Genomes pathway of
coexpression module genes
Table S3 Hub genes identified in interesting modules

1206 A. Tian et al.

© 2019 The Authors.
Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology

Hepatology Research 2019; 49: 1195––1206




