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Abstract: The data sequence of spectrum sensing results injected from dedicated spectrum sensor
nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data
loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network
congestion may occur at a SU acting as fusion center when the offered data load exceeds its available
capacity, which degrades network performance. In this paper, we present an effective approach to
mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for
SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive
congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier
(IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy
consumption. In particular, we firstly devise two pricing factors by considering stability of local
spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility
function of this power control problem is formulated by jointly taking into account the revenue of
power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the
utility function maximization and linear differential equation constraint of energy consumption,
we further formulate the power control problem as a differential game model under a cooperation
or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by
employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived
by alleviating the buffer load over their internal buffers. Simulation results are presented to show the
effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario.

Keywords: cognitive radio; sensor network; congestion mitigation; power control

1. Introduction

Cognitive radio (CR) [1] has newly emerged as a promising solution to improve the spectrum
utilization by allowing unlicensed secondary users (SUs) to access the idle licensed spectrum. In a
CR network (CRN), SUs can periodically sense the licensed spectrum and opportunistically access
the spectrum holes or spectrum opportunities (SOPs) unoccupied by primary users (PUs). Most of
the existing research efforts in CRNs mainly focus on the issues of the physical and MAC layers for
an infrastructure-based single hop scenario, such as spectrum sensing, spectrum access and sharing
techniques [2–4]. In addition, SUs can also form a multi-hop ad hoc network without the support
of infrastructure. In a cognitive radio ad hoc network (CRANET) [5], SUs can only access the SOPs
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
control reacts to congestion faster where the rates are adjusted at intermediate SUs by feedback
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information about the congestion state of congested SUs. A cross-layer framework to jointly achieve
both congestion and power control through a non-convex optimization method was proposed in [19].
In [20], an optimization framework achieving tradeoff between energy efficiency and network utility
maximization was devised, which can jointly balance interference, collision, and congestion among
SUs by adjusting transmit power, persistence probability, together with data rate simultaneously via
interaction between MAC and other layers. However, the proposed frameworks in [19,20] are just
suited to mitigate the congestion caused by the data traffic from upstream SUs in multi-hop CRANETs,
ignoring the impact of the data sequence of the SSR injected from SSNs on the congestion of SUs.

To the best of our knowledge, aside from some studies on congestion control for CRANETs as
mentioned before, there is no related work reported in the literature related to congestion control
over SN-CRNs. As a result, there is a strong motivation to explore congestion mitigation approach
in SN-CRNs. Under this scenario, it is certainly not a surprise that the channel capacity between
any SSN and FC is a concave function of the transmit power of this SSN and channel conditions [21].
In principle, effective transmit power control strategies have been widely used to maximize the total
system capacity in conventional celluar wireless networks while adapting to the changing channel
and interference conditions. Recent research efforts have achieved the capacity and energy efficiency
maximization by devising the optimal power allocation on subchannels in two-tier femtocell networks
based on orthogonal frequency division multiple access (OFDMA) [22], together with the optimal
power control allocation and sensing time optimization in OFDMA cognitive small cell networks [23].
In addition, the transmission rate of this SSN always depends on channel capacity and is also a function
of the transmit power according to the Shannon channel theorem. Thus, the congestion at FC can be
controlled and mitigated through the transmission rate adjustment with the help of an optimal power
allocation policy for this SSN in the physical layer. During a time interval, the amount of bits of the
data sequence of SSR transmitted from this SSN to FC also approximately depends on the channel
capacity [24]. For this observation it turns out that we can fully achieve the congestion mitigation for
FC by reducing the amount of bits of the data sequence of the SSR transmitted from this SSN, aiming
to release the capacity of the internal buffer for FC. In this paper, we propose a congestion mitigation
approach by constructing a distributed power control framework for SSNs over the rectangular grid
based SN-CRN. The main contributions of this paper are summarized as follows:

1. To evaluate the performance of local spectrum sensing, we present the relative divergence
between the detection probability and the false alarm probability for each SSN under any uplink
channel via the Kullback-Leibler divergence framework. By the aid of mathematical statistics,
we obtain the detection probability and false alarm probability distributions for each SSN, and
also model the stability metric of local spectrum sensing as the relative divergence by applying
the entropy modeling framework.

2. We propose a distributed power control framework for SSNs from the interior tier (IT) and
middle tier (MT) perspective in order to achieve the tradeoff between channel capacity and
energy consumption. In particular, the power control problem is formulated as a differential
game model by taking into account the utility function maximization together with the linear
differential equation constraint with respect to energy consumption. We further present the
theoretical results of the optimal solutions to this differential game model in a cooperative or
noncooperative manner by using dynamic programming.

3. With the help of the proposed distributed power control framework, we attain the congestion
mitigation for bottleneck SU by alleviating its buffer load over its internal buffer. We also
rigorously analyze the impact of noncooperative and cooperative optimal transmit power for IT
and MT SSNs on the internal buffer of bottleneck SU, respectively.

The rest of paper is organized as follows: Section 2 describes the system model. In Section 3,
we present the spectrum sensing quality analysis method based on local spectrum sensing by SSNs.
In Section 4, we formulate the distributed power control for IT and MT SSNs as a differential game
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model, and derive the noncooperative and cooperative optimal solutions. The congestion mitigation
approach for bottleneck SU is analyzed rigorously in Section 5. Section 6 presents the simulation
results. Finally, Section 7 concludes the paper.

2. System Model

2.1. Primary Network and Cognitive Radio ad hoc Network Model

We consider an underlay SN-CRN coexisting with a cellular primary network involving NP PUs
and NS SUs in a torus area ΩS = [0,

√
NS/ρ]

2
(ρ is the spatial density of SUs) sharing the spectrum

within the same frequency band simultaneously, as depicted in Figure 1. Particularly, PUs have the full
privilege of accessing their allocated frequency band whereas SUs can opportunistically utilize idle
channels unoccupied by the PUs. In the cellular primary network, PUs send their data traffic to the
primary base station (PBS) via the licensed uplink channels constituting a channel set C = {1, 2, · · · , Nc}.
We employ the independent and identically distributed alternating ON-OFF process to model the
occupation time length of PUs in uplink channels. Specifically, the OFF state indicates the idle state
where the unoccupied uplink channels or the SOPs can be freely occupied by SUs.
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In CRANET, SUs denoted by a set NS = {1, 2, · · · , NS} can only leverage the OFF state to access
the SOPs over the idle authorized uplink channels. Due to the randomness of data traffic and the
dynamic behavior of PUs, we suppose that the SOPs are available for usage by SU i with a probability
of δi, for i ∈ NS. With the aid of the ON-OFF process to characterize the status of the uplink channels,
the occupancy probability of the k-th uplink channel by PUs can be given by αk/(αk + βk), where αk
is probability that the k-th uplink channel transits from OFF to ON state, and βk is probability that
the k-th uplink channel transits from ON to OFF state, for k ∈ C. We also assume that the occupancy
probability of uplink channels by PUs can be acquired by SUs through a priori knowledge of the
local spectrum sensing. By bearing in mind the mutually independent occupancy probability of the
k-th uplink channel, the SOP usage probability δi of SU i during time interval [t0, T] is formulated
as follows:

δi =
Nc

∏
k=1

(
1− αk

αk + βk

)
, i = 1, · · · , Ns (1)
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Let ϑi(t) and Bi denote the amount of data traffic in the buffer of SU i at time t ∈ [t0, T] and the
buffer size of SU i, respectively. The buffer of SU i generally consists of two buffer segments that can
hold the offered data load including data traffic injected from upstream SUs and the data sequence
of SSR transmitted from SSNs, respectively. Given a time interval ∆t, the first buffer segment of SU i
called as the forward buffer holds the amount of data traffic injected from upstream SUs denoted by
ϑF

i (∆t). Meanwhile, the second buffer segment of SU i known as the internal buffer is used to store the
amount of the data sequence of SSR transmitted from SSNs denoted by ϑI

i (∆t). Thus, the amount of
aggregate data traffic from upstream SUs and SSNs in the buffer of SU i with a time interval ∆t can be
formulated as ϕi(∆t) = ϑF

i (∆t) + ϑI
i (∆t). Then, for a given time interval ∆t, the amount of data traffic

ϑi(t) in buffer of SU i at time t evolves as follows:

ϑi(t + ∆t) = min{ϑi(t) + ϕi(∆t), Bi} − (Λi(∆t) + χi(∆t)) (2)

where Λi(∆t) and χi(∆t) stand for the amount of data traffic successfully delivered by SU i and the
amount of the data sequence of SSR removed by SU i within a time interval ∆t, respectively. It is worth
noting that the received data sequence of SSR will be removed by SU i within a time interval ∆t in
order to free storage capacity of the internal buffer.

Remark 1. From Figure 1, there are |NIT |+ |NET | hop-by-hop fluid flows of the data sequence of SSR injected
from SSNs to a single SU (i.e., FC), in addition to the amount of data traffic from upstream SUs. Apparently,
this single SU, also known as a possible bottlenecked SU, is a little more inclined to be a congested SU node
as a consequence of its buffer overflow. For convenience, the terms bottlenecked SU is used in the following to
describe a possible congested SU. It is worth noting that our work in this paper mainly concentrates on how to
attain effective congestion mitigation for a single possible congested SU due to buffer overflow caused by the data
sequence of SSR injected from SSNs by means of the proposed distributed power control framework for SSNs.
However, it is conceivable that the amount of data traffic from upstream SUs may also lead to the congestion of
bottlenecked SUs. This problem can be resolved by the specific congestion control technique (e.g., [25]) which is
out of the scope of this work.

2.2. Sensor Network Model

As shown in Figure 1, we consider a rectangular grid based sensor network deployed in ΩS to
provide the SSR about real-time spectrum availability information to SUs. Each SSN is equipped
with a single omnidirectional antenna, a predefined common control channel (CCC), and an energy
detector that continuously senses the entire primary licensed uplink channels through individual local
real-time measurement. We suppose that the distributed collaborative spectrum sensing is carried
out by multiple collaborating SSNs to enhance the sensing performance. Also, each SU serves as the
FC collecting the SSR and then makes a global decision on the availability of the monitored uplink
channels via a decision fusion rule, e.g., OR-rule fusion mechanism [7]. All SSNs simultaneously
communicate to SUs over a narrowband additive white Gaussian noise (AWGN) multiple-access
channel with the channel bandwidth denoted by W. The horizontal or vertical distance between any
SSNs in rectangular grid is initialized to be d. According to the location of each SU along with the
distance between SSN and the corresponding SU, we define the set of SSNs center around the SU
as a tier in rectangular grid. More specifically, the three-tier structure is exploited to organize SSNs
into three groups due to the simplicity of implementation as shown in Figure 1, including an interior
tier (IT) denoted by a set NIT = {1, · · · , nIT} with nIT = 4, a middle tier (MT) denoted by a set
NMT = {1, · · · , nMT} with nMT = 8, and an exterior tier (ET) denoted by a set NET = {1, · · · , nET}
with nET = 12.

Remark 2. Because of multiple SUs sharing the authorized uplink channels with PUs, one SSN may also
belong to the different tiers based on the presented division criterion to devise the three-tier structure as stated
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previously. It is important to emphasize that our work in this paper is mainly aimed to study congestion
mitigation approaches for one single possible congested SU under the scenario of the single three-tier structure of
SSNs. The underlying scenario of the superimposed three-tier structures to organize SSNs is beyond the scope of
this work. However, the results about our proposed distributed power control framework for SSNs are easily
extendable to the superimposed three-tier structures.

We devise a time-slotted frame structure for sensor network, as illustrated in Figure 2, where
each frame with duration TF is divided into different slots according to the types of tiers. Let ϕ be the
number of time-slotted frames within time interval [t0, T]. Clearly, the time-slotted frame duration
is given by TF = (T − t0)/ϕ. We assume that all SSNs from three tiers perform their operations
simultaneously from the beginning of each time-slotted frame. We denote by τs the fraction of frame
duration TF for the slot of spectrum sensing, and denote by τrp the fraction of frame duration TF for the
slot of SSR reporting to the bottlenecked SU. We also use τET

f to represent the slot of SSR forwarding

from ET SSNs to neighbor MT SSNs, and use τMT
rc to denote the slot of SSR receiving by MT SSNs.

During the remaining time, i.e., TF − τs − τET
f for ET, TF − τs − τMT

rc − τrp for MT, and TF − τs − τrp

for IT, SSNs will go into sleep mode to save energy.
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During the slot τrp, the data sequence of the SSR will be transmitted by IT and MT SSNs to
bottleneck SU. For analytical simplicity, we assume that the starting time and the terminal time of the
slot τrp are equal to t′0 and t′0 + τrp for both IT and MT SSNs, respectively. The instantaneous transmit
power of the m-th SSN from IT or MT at time t ∈

[
t′0, t′0 + τrp

]
, denoted by pm(t), can be adjusted in a

continuous way but is also limited by a maximum value Pmax
m , i.e., 0 ≤ pm(t) ≤ Pmax

m . In the case of
the simultaneous communications by IT and MT SSNs over an AWGN multiple-access channel, pm(t)
should satisfy an average power constraint given as follows to mitigate the interference among IT and
MT SSNs [26]: 

1
nIT

nIT
∑

m=1
pm(t) ≤ PIT

av , m ∈ NIT

1
nMT

nMT
∑

m=1
pm(t) ≤ PMT

av , m ∈ NMT

(3)

where PIT
av and PMT

av are the total average power assigned to IT and MT SSNs, respectively. We assume
that each SSN knows its distance dm→b from bottleneck SU b via the CCC and the channel path gain
hm→b from the m-th SSN to the bottlenecked SU b can be expressed as hm→b = (dm→b)−κ , where
κ ≥ 2 is the path-loss exponent and b ∈ NS. Thus, the channel capacity between the m-th SSN and
bottlenecked SU b can be characterized by a concave function of the transmit power and channel
conditions as follows [27]:
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Cm→b = W log2

(
1 +

pm(t)K|hm→b|2

N0W

)
(4)

where K is a constant that depends on the transmission frequency and N0 is the noise power spectral
density. Under this channel capacity formulation, the signal-to-noise ratio (SNR) between the m-th
SSN and bottlenecked SU b is given by:

γm =
pm(t)K|hm→b|2

N0W
(5)

Remark 3. It is assumed that the data sequence of the SSR will be forwarded by ET SSNs to neighbor MT SSNs
via a single-hop fashion during the slot τET

f . Let t′′0 and t′′0 + τET
f denote the starting time and the terminal time

of the slot τET
f , respectively. The transmit power pn(t) of the n-th SSN from ET at time t ∈

[
t′′0 , t′′0 + τET

f

]
is

limited to a maximum transmit power Pmax
n , for 0 ≤ pn(t) ≤ Pmax

n and n ∈ NET . It is clear that the neighbor
MT SSN with the shortest distance will be selected by an ET SSN as the next-hop SSN to save energy during
the SSR forwarding period. In other words, the selection metric for the next-hop SSN by an ET SSN is only
dependent on the distance between neighbor MT SSN and itself. Owing to the scenario of the rectangular grid
based sensor network, it should be admitted that the shortest distance between ET SSN and neighbor MT SSN is
equal to d for any ET SSN. Therefore, the n-th SSN from ET is inclined to hold the same transmit power pn(t)
at time t. Under an AWGN multiple-access channel, the average power constraint should also be satisfied for all
ET SSNs, i.e., ∑n∈NET

pn(t) ≤ nET PET
av , where PET

av is the total average power assigned to ET SSNs. Thus, our
work in this paper primarily focuses on the distributed power control for IT and MT SSNs.

Remark 4. The channel capacity Cm→b in Equation (4) will be rigorously guaranteed if the channel state
information (CSI) including the channel path gain hm→b and constant K is perfectly known at the m-th SSN
which transmits the data sequence of the SSR. In practice, the perfect knowledge of the CSI measured at the
m-th SSN side cannot be available because of time-varying wireless channel impairments along with hardware
limitations [28,29]. How to model the uncertain relation between the channel path gain hm→b or constant K and
their estimates by taking into account the effect of imperfect CSI and outage constraint on distributed power
control for IT and MT SSNs will be our further work in future.

2.3. Local Spectrum Sensing Model

We denote by H1 and H0 the binary hypotheses of the presence and absence of the PU on the
uplink channel, respectively. Without loss of generality, we choose the m-th SSN from the three-tier
structure of sensor network to describe its local spectrum sensing model during the slot τs. This
formulation can be easily extendable to the general case for any SSN from one of the tiers including IT,
MT, and ET. The sampled signals that are received at the m-th SSN on the k-th uplink channel during
the slot of spectrum sensing τs are given as:

ym,k(u) =

{
hm,ks(u) + υm,k(u), H1

υm,k(u), H0
(6)

where s(u) denotes the signal from the PU on the k-th uplink channel with a sampling frequency fs,
υm,k(u) is the noise at the m-th SSN on the k-th uplink channel, hm,k is the channel gain between the PU
and the m-th SSN on the k-th uplink channel implying Rayleigh fading. Then the number of samples
that is collected by the m-th SSN on the k-th uplink channel can be defined as Us = fsτs. We assume
that the PU signal s(u) satisfies an independent identically distributed (i.i.d.) random process with
zero mean and variance σ2

s , and the noise υm,k(u) is i.i.d. circularly symmetric complex Gaussian
with zero mean and variance σ2

υ [8]. Thus, the received SNR from the PU at the m-th SSN on the k-th
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uplink channel is given by γm,k =
∣∣hm,k

∣∣2σ2
s /σ2

υ . After collecting Us received signal samples on the
k-th uplink channel, the m-th SSN obtains its test statistics given as Y(m, k) = (1/Us)∑Us

u=1

∣∣υm,k(u)
∣∣2.

Let εm denote a decision threshold by the m-th SSN to decide whether the channel is occupied by the
PU. For the m-th SSN, the probabilities of detection and false alarm on the k-th uplink channel are
approximately formulated as follows [8]:

pd(m, k) = Pr(Y(m, k) > εm|H1) = Q
((

εm

σ2
υ
− γm,k − 1

)√
Us

2γm,k + 1

)
(7)

p f (m, k) = Pr(Y(m, k) > εm|H0) = Q
(

(εm − 1)
√

Us

)
(8)

where Q(·) denotes the right-tail probability of a normalized Gaussian distribution. Hence, the
detection probability set Pd and the false alarm probability set P f for the m-th SSN over the entire
uplink channels can be further expressed as:

Pd = {pd(m, 1), pd(m, 2), · · · , pd(m, k), · · · , pd(m, Nc)} (9)

P f =
{

p f (m, 1), p f (m, 2), · · · , p f (m, k), · · · , p f (m, Nc)
}

(10)

3. Spectrum Sensing Quality Analysis

In this section, our objective is to analyze the spectrum sensing quality of each SSN via a local
spectrum sensing model, aiming to provide the quantification result with the emphasis to evaluate the
spectrum sensing performance of each SSN. More importantly, the analysis results will be employed to
formulate the distributed power control framework for IT and MT SSNs. By revisiting Equations (9)
and (10) in local spectrum sensing model, we can observe that the detection probability pd(m, k) in Pd
and the false alarm probability p f (m, k) in P f can be referred to the random variables for the m-th SSN
under the k-th uplink channel due to the uncertainty of the presence and absence of the PU. It is worth
noting that the errors in spectrum sensing for a SSN will be generally considered negligible due to
imperfect spectrum sensing [27], e.g., misdetection and false alarm caused by hardware capability of
SSN and practical time-varying channel conditions. So the errors in spectrum sensing for a SSN will
further incur the fact that different uplink channels will hold different probabilities of detection and
false alarm. In particular, the higher the detection probability in Pd, the better the PUs are protected;
the lower the false alarm probability in P f , the more efficiently the uplink channel can be reutilized by
SUs [7]. Based on this observation, the higher the relative divergence between pd(m, k) and p f (m, k),
the better the performance of local spectrum sensing. It has been revealed that the Kullback–Leibler
divergence is an effective measure of how one probability diverges from a second probability [30].
Hence, the relative divergence between pd(m, k) and p f (m, k) for the m-th SSN under the k-th uplink
channel can be defined as follows based on a Kullback–Leibler divergence framework:

D
(

pd(m, k)‖p f (m, k)
)
, pd(m, k) log2

pd(m, k)

p f (m, k)
(11)

With respect to the entire set of uplink channels, the relative divergence between Pd and P f for
the m-th SSN can be denoted as:

Dm(Pd‖P f

)
=

Nc

∑
k=1

pd(m, k) log2
pd(m, k)

p f (m, k)
(12)

It is noticeable that the relative divergence between the detection probability and the false alarm
probability just reflects the performance of local spectrum sensing by each SSN. Viewed from the SU
perspective, we are also interested in the impact of the SOP usage probability on the spectrum sensing
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quality. To this end, we characterize the spectrum sensing quality factor which can be expressed by a
function of two parameters including the relative divergence between Pd and P f along with the SOP
usage probability δb for bottleneck SU b. Specifically, the spectrum sensing quality factor Fm→b of the
m-th SSN with respect to bottleneck SU b can be defined as:

Fm→b , δb · Dm

(
Pd‖P f

)
, b ∈ NS (13)

By using mathematical statistics theory, next we start by formulating the detection probability
distribution Υd(m) and the false alarm probability distribution Υ f (m), which have been derived from
Algorithm 1.

Algorithm 1: Generation Procedure of Distribution Υd(m) and Distribution Υ f (m)

1: Input: The detection probability set Pd and the false alarm probability set P f .

2: Output: The detection probability distribution Υd(m) =
{
Υd

1(m),Υd
2(m), · · · ,Υd

ξ (m)
}

The false alarm probability distribution Υ f (m) =
{
Υ

f
1(m),Υ f

2(m), · · · ,Υ f
ς (m)

}
.

The detection probability distribution generation:

1:
Sort the detection probability pd(m, 1), pd(m, 2), · · · , pd(m, Nc) in ascending order and constitute the sorted
sequence as p̂d(1), p̂d(2), · · · , p̂d(Nc).

2: ∀Xd, Yd > 0, for Xd < p̂d(1) and Yd > p̂d(Nc).
3: Divide interval [Xd, Yd] into ξ equal subintervals, i.e., Xd = µd

0 < µd
1 < µd

2 · · · < µd
ξ−1 < µd

ξ = Yd.
4: for ` = 1→ ξ do
5: µd

` − µd
`−1 = (Yd − Xd)/ξ.

6: Calculate the number of the detection probabilities within subinterval
(

µd
`−1, µd

`

]
denoted by nd

` .

7: Calculate the probability Υd
` (m) = nd

`/Nc.
8: end for

9: Return: Υd(m) =
{
Υd

1(m),Υd
2(m), · · · ,Υd

ξ (m)
}

.

The false alarm probability distribution generation:

1:
Sort the false alarm probability p f (m, 1), p f (m, 2), · · · , p f (m, Nc) in ascending order and constitute the
sorted sequence as p̂ f (1), p̂ f (2), · · · , p̂ f (Nc).

2: ∀X f , Yf > 0, for X f < p̂ f (1) and Yf > p̂ f (Nc).

3: Divide interval
[

X f , Yf

]
into ς equal subintervals, i.e., X f = µ

f
0 < µ

f
1 < µ

f
2 · · · < µ

f
ς−1 < µ

f
ς = Yf .

4: for ` = 1→ ς do

5: µ
f
` − µ

f
`−1 =

(
Yf − X f

)
/ς.

6: Calculate the number of the false alarm probabilities within subinterval
(

µ
f
`−1, µ

f
`

]
denoted by n f

` .

7: Calculate the probability Υ
f
` (m) = n f

`/Nc.
8: end for

9: Return: Υ f (m) =
{
Υ

f
1(m),Υ f

2(m), · · · ,Υ f
ς (m)

}
.

Owing to the fact that the number of the detection probabilities or the false alarm probabilities is
calculated under the constraint of Nc, it is clear that the distributions Υd(m) and Υ f (m) fall into the

complete probability distributions, i.e., ∑ξ
`=1 Υd

` (m) = 1 and ∑ς
`=1 Υ

f
` (m) = 1. Apparently, the entropy

paradigm should be used for a measure of the uncertainty associated with a random variable of
a distribution in information theory [31], and can be also applied to measure the uncertainty of
the distributions Υd(m) and Υ f (m). As a result, for the m-th SSN over the entire uplink channels,
the uncertainty characterization of the distributions Υd(m) and Υ f (m) can be respectively described
as based on the entropy modeling framework:

H(Υd(m)) = −
ξ

∑
`=1

Υd
` (m) log2 Υd

` (m) (14)
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H
(

Υ f (m)
)

= −
ς

∑
`=1

Υ
f
` (m) log2 Υ

f
` (m) (15)

In what follows, we are also interested in gaining a better understanding of how to apply this
entropy measurement to evaluate the stability of local spectrum sensing. It should be admitted that
the entropy tends to be larger when the change of the random variable values in given distribution is
disorder or randomness [32]. That is, a more disordered probability distribution will result in larger
entropy. Thus, the better performance of spectrum sensing for the m-th SSN will bring about the
more ordered probability distributions Υd(m) and Υ f (m). In this way, the stability of the distributions
Υd(m) and Υ f (m) will decrease because of more disorder for the values of the detection probability
and false alarm probability in the distributions Υd(m) and Υ f (m). Based on the insight, we model
the stability metric of local spectrum sensing by the relative divergence between the entropy of the
detection probability distribution and the entropy of the false alarm probability distribution. Thus,
the stability metric of local spectrum sensing for the m-th SSN over the entire uplink channels denoted
by Hm

(
Υd(m)‖Υ f (m)

)
can be calculated as follows:

Hm

(
Υd(m)‖Υ f (m)

)
=
∣∣∣H(Υd(m))− H

(
Υ f (m)

)∣∣∣ (16)

4. Distributed Power Control for Spectrum Sensor Nodes

4.1. Problem Formulation

It is considered that the channel capacity between the SSNs from IT or MT and a bottlenecked SU
is a concave function of the transmit power and channel conditions. Therefore, each SSN is expected to
increase the transmit power in the physical layer to provide as much channel capacity that each flow
of the data sequence of the SSR requires. However, the higher transmit power will result in the more
energy consumption for SSN. Meanwhile, the average power constraint will not be guaranteed for all
SSNs if each SSN aims to increase the transmit power. As a consequence, it is necessary to require a
tradeoff between channel capacity and energy consumption by achieving an optimal power allocation
for all IT and MT SSNs in the physical layer during the slot τrp. Under the constraint of path-loss of
wireless channel, the maximum transmit power of the m-th SSN at a distance dm→b is approximately
equal to [33]:

Pmax
m (dBm) = P0(dBm)− 10κlog10(dm→b/d0) (17)

where P0 is the receiving reference power of bottlenecked SU b at a reference distance d0. Because
of the limitation by a maximum value Pmax

m , the value of power reduction for the m-th SSN at time
t ∈

[
t′0, t′0 + τrp

]
can be expressed by Pmax

m − pm(t). Then the power reduction efficiency for the m-th
SSN can be written as (Pmax

m − pm(t))/Pmax
m . To formulate the revenue for power reduction by the

m-th SSN, we firstly define a pricing factor for power reduction by taking into account both the power
reduction efficiency and the stability metric of local spectrum sensing according to the distributions
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

d(m) and
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

f (m). More precisely, we define a pricing factor by characterizing an efficiency-to-stability
ratio for the m-th SSN at time t ∈

[
t′0, t′0 + τrp

]
, denoted by ℘R

m, to describe the power reduction
efficiency under the stability of local spectrum sensing, which can be defined as:

℘R
m ,

(Pmax
m − pm(t))/Pmax

m

Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

f (m)
) (18)

Thus, the revenue of the power reduction for the m-th SSN at time t ∈
[
t′0, t′0 + τrp

]
by attaining

the product of the pricing factor together with the power reduction value, i.e.,

UR
m = ℘R

m(Pmax
m − pm(t)) (19)
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From Equations (18) and (19), it is worth remarking that the smaller of stability metric of local
spectrum sensing will generate more pricing ℘R

m and also yield more revenue UR
m of the power

reduction for the m-th SSN. On the other hand, it is also a natural idea for the m-th SSN to reduce its
transmit power to obtain more revenue UR

m according to Equation (19). To depict the cost of energy
consumption for the m-th SSN, we further define another pricing factor for energy consumption,
denoted by ℘C

m, by considering the spectrum sensing quality factor Fm→i as:

℘C
m , e−δi ·Dm(Pd‖P f ) (20)

Recall that the higher spectrum sensing quality factor will result in the better performance of local
spectrum sensing by each SSN. As can be seen from Equation (20), it will be far more realistic to reduce
the pricing ℘C

m for energy consumption for the m-th SSN with respect to the better performance of its
local spectrum sensing, aiming to balance local spectrum sensing and the energy efficiency of SSN [34].
Let Em(t) and EA(t) represent the energy consumption value and the available energy value of the
m-th SSN at time t, respectively. It is assumed that the available energy of the m-th SSN is derived
from its battery of limited capacity and the harvesting energy from the renewable energy sources by
exploiting the energy harvesting technology. Thus, the energy consumption of the m-th SSN evolves
according to a linear differential equation given as:

dEm(t)
dt

= EA(t)− τrp pm(t)− Em(t) (21)

Then the cost of energy consumption for the m-th SSN at time t ∈
[
t′0, t′0 + τrp

]
can be given as:

UC
m = ℘C

mEm(t) (22)

Therefore, based on the revenue and the cost formulated in Equations (19) and (22), the utility
function of the m-th SSN at time t ∈

[
t′0, t′0 + τrp

]
can be constructed as follows:

Um = UR
m −UC

m = ℘R
m(Pmax

m − pm(t))− ℘C
mEm(t) (23)

We denote the discount factor by r, for 0 < r < 1. Our optimization objective is to maximize the
utility function Um by choosing optimal transmit power pOP

m (t) of the m-th SSN during the slot τrp

according to ℘R
m and ℘C

m, at time t ∈
[
t′0, t′0 + τrp

]
, i.e.,

Maximize :
∫ t′0+τrp

t′0

(
℘R

m(Pmax
m − pm(t))− ℘C

mEm(t)
)

e−r(t−t′0) (24)

It is noteworthy that the discount factor r is an exponential factor between 0 and 1 by which the
future utility must be multiplied in order to obtain the present value with the underlying structure
of differential game theory in mind. Therefore, each SSN is required to maximize its discounted
utility Um function by discount factor r, implying that discount factor will have a stronger impact
on the utility obtained by each SSN in the future. To this end, the power control problem for all
IT and MT SSNs in the physical layer can be formulated as a differential game model defined by
G =

{
N ,
{

pOP
m (t)

}
m∈N , EOP

m (t), {Um}m∈N

}
, where N = NIT ∪NMT is the set of players involving

all IT and MT SSNs, pOP
m (t) is the strategy of player m,

{
pOP

m (t)
}

m∈N is the set of strategies or strategy
space related to all players, EOP

m (t) is the state variable associated with optimal transmit power pOP
m (t),

and {Um}m∈N is the set of utility function of all players with their strategies.

4.2. Noncooperative Optimal Solution

We formulate a dynamic optimization problem P1 to derive the optimal solution to the differential
game model G with the objective of the utility function maximization problem under the linear
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differential equation constraint of the energy consumption for the m-th SSN. From Equations (21) and
(24), the problem P1 can be formulated as:

P1 : max
pm(t),m∈N

∫ t′0+τrp
t′0

(
℘R

m(Pmax
m − pm(t))− ℘C

mEm(t)
)
e−r(t−t′0)dt

s.t. dEm(t)
dt = EA(t)− τrp pm(t)− Em(t)

(25)

For the noncooperation scenario if all the players play noncooperatively, we aim at deriving
an optimal solution to the problem P1 in the distributed noncooperative power control (NoCoPC)
problem for all IT and MT SSNs by employing the theory of dynamic programming developed by
Bellman. Note that the players can abandon the cooperation due to their selfishness and own interests
in the NoCoPC problem, e.g., the selfish behavior in forwarding the data sequence of the SSR to
bottleneck SU. Specifically, we employ pNC

m (t) to represent the noncooperative optimal solution to
the problem P1, and assume that there exists a continuously differentiable function VNC

m (pm, Em)

satisfying the following partial differential equation:

rVNC
m (pm, Em) = max

(
℘R

m(Pmax
m − pm(t))− ℘C

mEm(t) + ∂VNC
m (pm ,Em)

∂Em

(
EA(t)− τrp pm(t)− Em(t)

))
(26)

Proposition 1. The function VNC
m (pm, Em) for the m-th SSN in Equation (26) should be subject to the partial

differential equation constraint as follows:

∂VNC
m (pm, Em)

∂Em
= − ℘C

m
r + 1

(27)

Proof. See Appendix A. �

Proposition 2. The noncooperative optimal solution pNC
m (t) constitutes a Nash equilibrium solution to the

problem P1 if and only if the optimal transmit power for the m-th SSN can be expressed as:

pNC
m (t) = Pmax

m

1−
Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

f (m)
)

τrp

2(r + 1)eδi ·Dm(Pd‖P f )

 (28)

Proof. Recall the following expression of the noncooperative optimal solution in Equation (A1) on
the basis of Proposition 1. By substituting the expression of function VNC

m (pm, Em) in Equation (27)
into Equation (A1), we can easily obtain the noncooperative optimal transmit power pNC

m (t) which
constitutes a Nash equilibrium solution to the problem P1 can be formulated by Equation (28). �

By observing Proposition 2, it is clear that an increased discount factor r will enhance
the noncooperative optimal transmit power pNC

m (t) for the m-th SSN. From Equation (28), the
noncooperative optimal transmit power vector PNC for all IT and MT SSNs in the NoCoPC problem
can be further combined as:

PNC =

pNC
1 (t), · · · , pNC

|NIT |(t)︸ ︷︷ ︸
for nIT IT SSNs

,

for nMT MT SSNs︷ ︸︸ ︷
pNC
|NIT |+1(t), · · · , pNC

|NIT |+|NMT |(t)

 (29)
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Given the noncooperative optimal solution pNC
m (t), by substituting VNC

m (pm, Em) and pNC
m (t) into

Equation (26), the function VNC
m
(

pNC
m (t), ENC

m (t)
)

for the m-th SSN is further given by:

VNC
m
(

pNC
m (t), ENC

m (t)
)

= ℘C
m

r(r+1)

(
τrpPmax

m −
Pmax

m Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

f (m)
)

τ2
rp℘

C
m

4(r+1)
− EA(t)− rENC

m (t)

)
(30)

where ENC
m (t) is the noncooperative optimal energy consumption value of the m-th SSN at time t.

4.3. Cooperative Optimal Solution

In this subsection, we move on to explore the distributed cooperative power control (CoPC)
problem for all IT and MT SSNs by building up the cooperation scenario if all the players play
cooperatively via the differential game model G. Note that this is a natural idea for the players aiming
to achieve an optimal power allocation through full cooperation for their common interests. Under
this scenario, our optimization objective is to maximize the sum of the utility functions of all players
(i.e., ∑m∈N Um) while the linear differential equation constraint of the energy consumption should
also be satisfied for the m-th SSN. To be specific, we formulate a dynamic optimization problem P2 as
follows to attain the objective of maximizing the sum of the utility functions of all players:

P2 : max
p1(t),··· ,pm(t),··· ,p|N |(t),m∈N

∑
m∈N

∫ t′0+τrp
t′0

(
℘R

m(Pmax
m − pm(t))− ℘C

mEm(t)
)
e−r(t−t′0)dt

s.t. dEm(t)
dt = EA(t)− τrp pm(t)− Em(t)

(31)

Under the cooperation scenario, we use pC
m(t) to represent the cooperative optimal solution to the

problem P2, and assume that there exists a continuously differentiable functionWC
m(pm, Em) satisfying

the following partial differential equation:

rWC
m(pm, Em) = max

(
∑

m∈N

(
℘R

m(Pmax
m − pm(t))− ℘C

mEm(t)
)

+ ∂WC
m(pm ,Em)

∂Em

(
EA(t)− τrp pm(t)− Em(t)

))
(32)

Proposition 3. The functionWC
m(pm, Em) for the m-th SSN in Equation (32) should be subject to the partial

differential equation constraint as follows:

∂WC
m(pm, Em)

∂Em
= −

∑
m∈N

℘C
m

r + 1
(33)

Proof. See Appendix B. �

Proposition 4. The cooperative optimal solution pC
m(t) to the problem P2 if and only if the optimal transmit

power for the m-th SSN can be expressed as:

pC
m(t) = Pmax

m

1−
Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

f (m)
)

τrp

2(r + 1) ∑
m∈N

eδi ·Dm(Pd‖P f )

 (34)

Proof. Substituting the expression of functionWC
m(pm, Em) in Equation (33) into Equation (A4), and

applying the result of the indicated maximization operation in Equation (A4), we derive the cooperative
optimal solution pC

m(t) to the problem P2 as in Equation (34). �
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Similar to Proposition 2, it is also revealed that an increased discount factor r will enhance
the cooperative optimal transmit power pC

m(t) for the m-th SSN. According to Equation (34), the
cooperative optimal transmit power vector PC for all IT and MT SSNs in the CoPC problem can be
also combined as follows:

PC =

pC
1 (t), · · · , pC

|NIT |(t)︸ ︷︷ ︸
for nIT IT SSNs

,

for nMT MT SSNs︷ ︸︸ ︷
pC
|NIT |+1(t), · · · , pC

|NIT |+|NMT |(t)

 (35)

Define the notation Ψm = Pmax
m Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

d(m)‖
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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where EC
m(t) is the cooperative optimal energy consumption value of the m-th SSN at time t.

By using PNC of the NoCoPC problem and PC of the CoPC problem, we then design a distributed
optimal transmit power adjustment (OTPA) algorithm as stated in Algorithm 2. Recall that the pricing
factor ℘R

m is employed to characterize the efficiency-to-stability ratio for the m-th SSN, for m ∈ N ,
aiming to describe the power reduction efficiency under the stability of local spectrum sensing. Thus,
in order to ensure the convergence of optimal transmit power adjustment, we design the average
efficiency-to-stability ratio vm as a scaling coefficient in Algorithm 2 as follows:

vm =


℘R

m

∑
nIT
m=1 ℘

R
m

, m ∈ NIT

℘R
m

∑
nIT+nMT
m=nIT+1 ℘R

m
, m ∈ NMT

(37)

It is worth remarking that the adjusted optimal transmit power will be updated with respect ro
the scaling coefficient vm. In particular, the adjusted optimal transmit power for all IT and MT SSNs
via OTPA algorithm can be made locally while guaranteeing that the condition of the average power
constraint as given in Equation (3) is satisfied.
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Algorithm 2: Distributed Optimal Transmit Power Adjust Algorithm

1: Input: PNC and PC.

2: Output:

 p̃NC
1 (t), · · · , p̃NC

nIT
(t)︸ ︷︷ ︸

1→nIT

,

nIT+1→nIT+nMT︷ ︸︸ ︷
p̃NC

nIT+1(t), · · · , p̃NC
nIT+nMT

(t)

 and

 p̃C
1 (t), · · · , p̃C

nIT
(t)︸ ︷︷ ︸

1→nIT

,

nIT+1→nIT+nMT︷ ︸︸ ︷
p̃C

nIT+1(t), · · · , p̃C
nIT+nMT

(t)

.

3: Initialization:
{

Pmax
1 , · · · , Pmax

m , · · · , Pmax
|N |

}
,
{
℘R

1 , · · · ,℘R
m, · · · ,℘R

|N |

}
,
{
℘C

1 , · · · ,℘C
m, · · · ,℘C

|N |

}
.

4: for m = 1→ |N | do
5: p̃NC

m (t)← pNC
m (t) using Equation (28), and p̃C

m(t)← pC
m(t) using Equation (34).

6: end for
7: if ∑nIT

m=1 p̃NC
m (t) > nIT PIT

av or ∑nIT
m=1 p̃C

m(t) > nIT PIT
av then

8: repeat
9: for m = 1→ nIT do
10: p̃NC

m (t)←
(
℘R

m/∑nIT
m=1 ℘

R
m
)
× p̃NC

m (t) when ∑nIT
m=1 p̃NC

m (t) > nIT PIT
av .

11: p̃C
m(t)←

(
℘R

m/∑nIT
m=1 ℘

R
m
)
× p̃C

m(t) when ∑nIT
m=1 p̃C

m(t) > nIT PIT
av .

12: end
13: until ∑nIT

m=1 p̃NC
m (t) > nIT PIT

av and ∑nIT
m=1 p̃C

m(t) > nIT PIT
av

14:end if
15: if ∑nIT+nMT

m=nIT+1 p̃NC
m (t) > nMT PMT

av or ∑nIT+nMT
m=nIT+1 p̃C

m(t) > nMT PMT
av then

16: repeat
17: for m = nIT + 1→ nIT + nMT do

18: p̃NC
m (t)←

(
℘R

m/∑nIT+nMT
m=nIT+1 ℘

R
m

)
× p̃NC

m (t) when ∑nIT+nMT
m=nIT+1 p̃NC

m (t) > nMT PMT
av .

19: p̃C
m(t)←

(
℘R

m/∑nIT+nMT
m=nIT+1 ℘

R
m

)
× p̃C

m(t) when ∑nIT+nMT
m=nIT+1 p̃C

m(t) > nMT PMT
av .

20: end
21: until ∑nIT+nMT

m=nIT+1 p̃NC
m (t) > nMT PMT

av and ∑nIT+nMT
m=nIT+1 p̃C

m(t) > nMT PMT
av

22:end if

5. Congestion Mitigation for Bottlenecked Secondary User

We have shown that the bottlenecked SU is a little more inclined to be a congested SU node
during the slot τrp due to its buffer overflow under the scenario of the hop-by-hop fluid flows of the
data sequence of the SSR injected from |NIT |+ |NET | IT and MT SSNs to this bottlenecked SU. We use
the buffer size Bb to denote the buffer saturation value of bottlenecked SU b. Recall that the amount of
data traffic ϑb(t′0) in buffer of SU b at time t′0 evolves according to Equation (2) for the given slot τrp.
As depicted in Figure 3a, the buffer of bottlenecked SU b is composed of two buffer segments, i.e., the
forward buffer that holds data traffic injected from upstream SUs denoted by ϑF

b
(
τrp
)
, and the internal

buffer that stores the data sequence of SSR transmitted from IT and MT SSNs denoted by ϑI
b
(
τrp
)
.

Normally, there exist idle segments within the forward buffer or the internal buffer of bottlenecked SU
b when ϑb

(
t′0 + τrp

)
< Bb. This phenomenon is referred to the normal status where the offered data

load does not exceed available buffer capacity of bottleneck SU b because of its higher data rate to
deliver the amount of data traffic to other SUs and remove the amount of the data sequence of SSR
during the slot τrp.
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However, congestion in bottlenecked SU b will occur when the offered data load exceeds its
available buffer capacity due to buffer overflow imposed by the data load involving the data sequence
of the SSR injected from IT and MT SSNs together with the data traffic from upstream SUs. We assume
that the congestion detection information of bottlenecked SU b can be transferred back to the m-th SSN
by means of a hop-by-hop backpressure signal via the CCC form bottlenecked SU b to the m-th SSN.
As a result, bottlenecked SU b is said to be a congested SU if and only if the amount of its current data
traffic ϑb

(
t′0 + τrp

)
≥ Bb during the slot τrp, as shown in Figure 3b. We further assume that the m-th

SSN has the data sequence of the SSR with Ξm bits to transmit at time t ∈
[
t′0, t′0 + τrp

]
. According

to [24], the data sequence of SSR with Ξm bits to transmit from the m-th SSN to bottlenecked SU b
during the slot τrp under the transmit power pm(t) can be approximately expressed as follows based
on channel capacity Cm→b given by Equation (4):

Ξm = τrpW log2

(
1 +

pm(t)K|hm→b|2

N0W

)
(38)

Clearly, Ξm depends on channel capacity Cm→b and is also a function of the transmit power
pm(t). For ease of exposition, we use Ξm(pm(t)) to denote the amount of bits of the data sequence
of SSR transmitted from the m-th SSN to bottlenecked SU b under transmit power pm(t). Therefore,
the aggregated amount of bits of the data sequence of SSR from all |NIT |+ |NET | IT and MT SSNs
to bottleneck SU b during the slot τrp under transmit power pm(t) is given as ∑m∈N Ξm(pm(t)),
for N = NIT ∪NMT . Recall that the internal buffer of bottlenecked SU b is used to store the amount of
the data sequence of SSR transmitted from SSNs denoted by ϑI

b
(
τrp
)

during the slot τrp by using
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Equation (2). Hence, within the time interval τrp, ϑI
b
(
τrp
)

of bottlenecked SU b can be further
formulated by:

ϑI
b
(
τrp
)

= ∑
m∈N

Ξm(pm(t))− χb
(
τrp
)

(39)

where χb
(
τrp
)

is the amount of the data sequence of SSR removed by bottlenecked SU b within a time
interval τrp.

So far, we have mathematically derived the amount of the data sequence of SSR transmitted from
SSNs to bottlenecked SU b under the condition that the m-th SSN employs the transmit power pm(t),
for m ∈ N . Next, we are concerned with how to mitigate the congestion of bottlenecked SU b by the aid
of the proposed distributed power control framework for IT and MT SSNs. The basic idea of congestion
mitigation for bottlenecked SU b is to alleviate its buffer load because of the accumulated amount
of the data sequence of the SSR transmitted from IT and MT SSNs. It is uncovered that the transmit
power of the m-th SSN may have a bearing on Ξm from Equation (38). Our objective is to leverage the
distributed power control to reduce the amount of bits of the data sequence of the SSR transmitted
from the m-th SSN to bottlenecked SU b, in order to lower the amount of the data sequence of the SSR
in the internal buffer of bottlenecked SU b. This operation will further ensure that offered data load
does not exceed available buffer capacity of bottlenecked SU b, i.e., ϑb

(
t′0 + τrp

)
< Bb. The key point

to achieve congestion mitigation for bottlenecked SU b is established with a block diagram shown in
Figure 4. It is worth remarking that the amount of the data sequence of SSR in the internal buffer of
bottlenecked SU b can be effectively reduced by the proposed distributed power control framework for
IT and MT SSNs under the noncooperation and cooperation scenarios. Conceptually, the reduction of
the amount of the data sequence of SSR will release the capacity of the internal buffer for bottlenecked
SU b, which naturally further attains the congestion mitigation for bottlenecked SU b. In the following,
we analyze the impact of optimal transmit power for the m-th SSN on the reduction of the amount of
the data sequence of SSR in the internal buffer of bottleneck SU b rigorously from the noncooperation
and cooperation cases.
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secondary user.

(1) Noncooperative Optimal Transmit Power Case: In this case, suppose, without loss of generality, that
τrpW , 1. By replacing pm(t) in Equation (38) with pNC

m (t) in Equation (28), Ξm
(

pNC
m (t)

)
for the

m-th SSN within a time interval τrp can be expressed as:
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Ξm
(

pNC
m (t)

)
= τrpW log2

(
1 + pNC

m (t)K|hm→b |2
N0W

)
≈ log2

(
pNC

m (t)K|hm→b |2
N0W

)
≈ log2

(
Pmax

m

(
1− Hm(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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(

pC
m(t)

)
into Equation (39), we obtain:

ϑI
b
(
τrp
)

=
nIT

∑
m=1

Ξm

(
pC

m(t)
)

︸ ︷︷ ︸
for nIT IT SSNs

+
nIT+nMT

∑
m=nIT+1

Ξm

(
pC

m(t)
)

︸ ︷︷ ︸
for nMT MT SSNs

− χb
(
τrp
)

(46)

Therefore, similar to Equation (42), ∆ϑI
b
(
τrp
)

is also approximately formulated as:

∆ϑI
b
(
τrp
)
≈ ∑

m∈N
log2

(
pm(t)
pC

m(t)

)
(47)

Proposition 6. Under the condition of the transmit power pm(t) = Pmax
m for the m-th SSN,∆ϑI

b
(
τrp
)

satisfies
the following upper bound:

∆ϑI
b
(
τrp
)
≤ ∑

m∈N
log2

1/

1−
Hm

(

Sensors 2017, 17, 2132 2 of 30

by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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Proof. Similar to the proof of Proposition 5, it is easy to identify the upper bound in Equation (48),
thus completing the proof. �

6. Simulation Results

In this section, we provide simulation results to evaluate the performance of the proposed
congestion mitigation approach by using the distributed power control framework for IT and MT SSNs
in the rectangular grid based SN-CRN, and investigate the impact of key system parameters on the
performance. Particularly, our simulations pay more attention to evaluate the effect of the proposed
distributed power control framework for IT and MT SSNs on the reduction of the amount of the data
sequence of SSR in the internal buffer of bottlenecked SU b. Technically, the reduction of the amount of
the data sequence of SSR in the internal buffer will free the buffer capacity of bottlenecked SU b, which
can bring about the congestion mitigation for bottlenecked SU b. As illustrated in Figure 5, all the
simulations are carried out on a rectangular grid topology within a torus area of 100 m × 100 m where
one bottlenecked SU is randomly placed within the area of IT over three-tier structure. It suffices to
mention that the horizontal or vertical distance between any SSNs is initialized to be d = 20 m. For
convenience, the IT SSN and the MT SSN are marked by IT-m and MT-n in sequence for m ∈ NIT
and n ∈ NMT , respectively, as shown in Figure 5. We assume that there are Nc = 12 licensed uplink
channels allocated to PUs. The SOP usage probability δb is set to 0.65 for the bottlenecked SU. Also,
the total average power constraint assigned to IT and MT SSNs are assumed to PIT

av = 18 dBm and
PMT

av = 8 dBm, respectively, to mitigate the interference among IT and MT SSNs. As for the AWGN
multiple-access channel, the path-loss exponent κ has been set to 8, and the channel bandwidth used
for SSNs is assumed to be 2 MHz according to IEEE 802.15.4a channel model. The constant K under
the channel capacity formulation given in Equation (4) is defined as 0.005. In addition, the noise power
spectral density N0 under this channel model is initialized as −3 dBm. We also adopt the receiving
reference power by bottleneck SU b P0 = 20 dBm under the reference distance d0 = 20 m.

In all the simulations, the detection and false alarm probabilities for IT and MT SSNs over Nc = 12
licensed uplink channels have been initialized as in Figure 6. We also set the number of subintervals in
Algorithm 1 to be the same value for all SSNs, i.e., ξ = ς = 8. We also assume that the minimum value
Xd and the maximum value Yd in derivation of the detection probability distribution are set to 0.6 and
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1, respectively. Likewise, the minimum value X f and the maximum value Yf in derivation of the false
alarm probability distribution are set at 0 and 0.3, respectively.
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Figure 5. Simulation scenario: the rectangular grid topology with three-tier structure within a torus
area of 100 m × 100 m. The dotted lines correspond to the transmissions of the spectrum sensing
results from interior tier (IT) and middle tier (MT) spectrum sensor nodes to bottlenecked secondary
user. SU: secondary user; PU: primary user; ET: exterior tier.
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Figure 6. The detection and false alarm probabilities for spectrum sensor nodes from interior tier and
middle tier over 12 uplink channels. IT: interior tier; MT: middle tier; SSN: spectrum sensor node.
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For simplicity, we deliberately choose some of the IT and MT SSNs in the simulation including
IT-1, MT-2, MT-5, and MT-7, to evaluate the performance of our developed approach. Specifically, the
detection probability and false alarm probability distributions of the selected SSNs from IT and MT
generated from Algorithm 1 are assumed to comply with the corresponding distributions as given by
Figure 7.
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Figure 7. The detection probability and false alarm probability distributions of the selected spectrum 
sensor nodes involving IT-1, MT-2, MT-5, and MT-7. (a) Detection probability distribution; (b) False 
alarm probability distribution. IT: interior tier; MT: middle tier; SSN: spectrum sensor node. 
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First the optimal transmit power is compared between PB algorithm with 250 iterations and our 
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The proposed OTPA algorithm for both the NoCoPC problem and the CoPC problem under the
distributed power control framework for IT and MT SSNs is compared with the well-known power
balancing (PB) algorithm in [35]. The PB algorithm is also a SNR balancing constrained power control
iterative method which iteratively searches for decentralized transmit power level updated from the
l-th iteration to the (l + 1)-th iteration. Let γtar

m denote the target SNR for the m-th SSN to maintain
a certain QoS requirement, for m ∈ N . In this simulation, the target SNR can be set to γtar

m = 7 dB.
Therefore, the PB algorithm iteratively updates the transmit power for the m-th SSN according to [35]:

p(l+1)
m = min

{
Pmax

m ,

(
γtar

m

γ
(l)
m

)
· p(l)

m

}
(49)

First the optimal transmit power is compared between PB algorithm with 250 iterations and our
proposed distributed power control framework via the noncooperation and cooperation scenarios
under the slot τrp = 12 ms with the evolution of discount factor r, as exhibited in Figure 8. It is shown
that an increased discount factor from 0.1 to 0.9 will enhance the optimal transmit power of selected
SSNs (i.e., IT-1, MT-2, MT-5, and MT-7) under the proposed OTPA algorithm for both the NoCoPC
problem and the CoPC problem within the slot τrp = 12 ms. This is due to the fact that the discount
factor r has an affect on the optimal transmit power of selected SSNs via Equations (28) and (34).
Specifically, the optimal transmit power of selected SSNs grows in proportion to discount factor r. It is
also revealed that the optimal transmit power of selected SSNs under a given discount factor satisfy
the average power constraint of PIT

av = 18 dBm and PMT
av = 8 dBm. Thus, the optimal transmit power

of selected SSNs will not be adjusted through OTPA algorithm. Comparing the performance of the
NoCoPC problem and CoPC problem with the slot τrp = 12 ms, we can also observe that the optimal
transmit power of selected SSNs by using PB algorithm presents a fixed constant value. The reason
for this is that the optimal transmit power of the selected SSN by using PB algorithm converges to an
expected equilibrium point after 250 iterations. It is also interesting that Proposition 2 has turned out
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that the optimal transmit power of selected SSNs derived by NoCoPC problem converges to a fixed
Nash equilibrium point. Moreover, Proposition 4 has also guaranteed that the optimal transmit power
of selected SSNs under the CoPC problem will reach to a fixed value. From Figure 8, it is implicitly
revealed that the optimal transmit power of selected SSNs by the OTPA algorithm is obviously lower
than that of PB algorithm. This observation is reasonable since PB algorithm generates more power
consumption to maintain the target SNR. However, the optimal transmit power of selected SSNs via
the proposed OTPA algorithm fully depends on the maximum transmit power of the selected SSNs
and the pricing factors in differential game model.
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Figure 9 displays the optimal transmit power comparison between PB algorithm with 250
iterations and our proposed distributed power control framework under discount factor r = 0.5
with the evolution of the slot τrp from 10 ms to 15 ms. As can be seen, the proposed OTPA algorithm
for both the NoCoPC problem and CoPC problem under the condition of discount factor r = 0.5
outperforms PB algorithm with 250 iterations significantly in terms of the optimal transmit power of
selected SSNs with the growth of the slot τrp. This result further validates PB algorithm will result in
much more power consumption aiming to maintain the target SNR. However, the optimal transmit
power of selected SSNs by using the proposed OTPA algorithm entirely depends upon maximum
transmit power of selected SSNs and pricing factors in differential game model. We can also observe
that the optimal transmit power of selected SSNs of the proposed OTPA algorithm for the CoPC
problem under discount factor r = 0.5 is considerably lower than that of the NoCoPC problem. That
is, the proposed OTPA algorithm for the CoPC problem outperforms that of the NoCoPC problem.
This can be intuitively explained by the fact that there exists an operation of summing with respect to
eδi ·Dm(Pd‖P f ) in the denominator of the analytical cooperative optimal transmit power pC

m(t). Moreover,
the increase of the slot τrp will generate lower transmit power for both the NoCoPC problem and CoPC
problem with discount factor r = 0.5. This is because based on Equations (28) and (34), the optimal
transmit power for both the NoCoPC problem and CoPC problem is inversely proportional to the slot
τrp. This observation emphasizes the importance of selecting the proper time interval of slot τrp on the
optimal transmit power.
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In Figure 10, we look at the performance of the transmitted data sequence of SSR from selected
SSNs to bottlenecked SU b during the slot τrp = 12 ms with the evolution of discount factor r from 0.1
to 0.9. From the results, we can see the transmitted data sequence of SSR for selected SSNs gradually
increase with the growth of discount factor r. Meanwhile, the transmitted data sequence of SSR for
PB algorithm with 250 iterations and our proposed distributed power control framework under the
condition of the slot τrp = 12 ms tends to be close when discount factor r = 0.9. The reason for this is
that the transmitted data sequence of SSR can be approximately expressed as a function of channel
capacity according to Equation (38), which is in direct proportion to the optimal transmit power of
selected SSNs. It has also been shown that an increased discount factor from 0.1 to 0.9 will increase the
optimal transmit power of selected SSNs under the proposed OTPA algorithm for both the NoCoPC
problem and CoPC problem with the slot τrp = 12 ms. Consequently, higher optimal transmit power
yields more transmitted data sequence of SSR.

In Figure 11, we examine the impact of discount factor r from 0.1 to 0.9 on the reduction of data
sequence of SSR with respect to selected SSNs in the internal buffer of bottleneck SU b. It can be
observed from the figure that the reduction of data sequence of SSR by our proposed congestion
mitigation approach under the slot τrp = 12 ms will gradually decrease with the growth of discount
factor r, except that the reduction result by PB algorithm with 250 iterations appears to a fixed constant
value. This trend is the result of the inverse relationship between the reduction of the data sequence
of SSR ∆ϑI

b
(
τrp
)

and the optimal transmit power of selected SSNs pNC
m (t) for the NoCoPC problem

or pC
m(t) for the CoPC problem according to Equations (42) and (47). Additionally, in Figure 11, we

can also observe that the proposed congestion mitigation approach by using the OTPA algorithm
for the CoPC problem with the slot τrp = 12 ms achieves the higher reduction of the data sequence
of SSR compared with those of the NoCoPC problem and PB algorithm with 250 iterations. In other
words, through cooperation among all IT and MT SSNs, the reduction of the data sequence of SSR in
the internal buffer of bottlenecked SU b can be further improved. This observation has verified the
analytical derivation of the proposed congestion mitigation approach. The explanation is twofold:
(i) The proposed OTPA algorithm for the CoPC problem outperforms that of the NoCoPC problem
owing to the lower cooperative optimal transmit power pC

m(t) obtained by the CoPC problem compared
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with the noncooperative optimal transmit power pNC
m (t) by the NoCoPC problem; (ii) The reduction of

the data sequence of SSR is inversely proportional to the optimal transmit power of selected SSNs.
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Figure 12 shows the comparison of the reduction of data sequence of SSR with respect to selected
SSNs in the internal buffer of bottlenecked SU b, versus the slot τrp under the condition of discount
factor r = 0.3, for the proposed congestion mitigation approach and PB algorithm with 250 iterations. As
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seen from Figure 11, the reduction of data sequence of SSR through PB algorithm has converged to the
same constant value after the 250 iterations. This is the direct influence that the optimal transmit power
of selected SSN will converge to an expected equilibrium point by using PB algorithm. As expected,
the reduction of data sequence of SSR by the proposed congestion mitigation approach with discount
factor r = 0.3 is larger than that of PB algorithm with 250 iterations. This is because our proposed
approach can obtain smaller optimal transmit power than PB algorithm. According to Equations (42)
and (47), the smaller optimal transmit power will lead to the more reduction of data sequence of SSR
with respect to selected SSNs. It is also interesting that with the growth of the slot τrp the reduction
of data sequence of SSR by our proposed approach will gradually increase, and the reduction by the
CoPC problem is much higher than that of the NoCoPC problem. This result can be interpreted by
the fact that the optimal transmit power of selected SSNs by the CoPC problem under discount factor
r = 0.3 is clearly lower than that of the NoCoPC problem with the growth of the slot τrp. This result
further gives rise to the larger reduction of data sequence of SSR.
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7. Conclusions and Future Work

In this paper, we have developed a congestion mitigation approach by employing the distributed
power control framework for SSNs in the rectangular grid based SN-CRN. Particularly, we defined the
relative divergence between the detection probability and false alarm probability for a SSN under any
uplink channel by adopting a Kullback-Leibler divergence framework. After deriving the detection
probability and false alarm probability distributions for SSN according to mathematical statistics, we
characterized the stability metric of local spectrum sensing based on entropy modeling framework.
Aiming to gain the tradeoff between channel capacity and energy consumption, the distributed
power control framework for IT and MT SSNs was proposed, and the power control problem was
formulated as differential game model by taking into account the utility function maximization with
linear differential equation constraint in regard to energy consumption. Further, we derived the
theoretic optimal solutions to this game model under the scenario of cooperation or noncooperation
via dynamic programming. Based on the obtained optimal transmit power of SSNs, we devised the
congestion mitigation approach for bottleneck SU by alleviating buffer load over its internal buffer,
and validated its performance with simulations.
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What we have discussed in this paper is the portion of the foundation for SN-CRN. Possible
directions for future work within this research involve examining the effect of imperfect CSI and
outage constraint on distributed power control for SSNs by formulating the uncertain relation between
the wireless channel conditions and the corresponding estimates. As another future work, we will try
to investigate congestion mitigation approaches in future 5G mobile systems with the novel network
architecture and networking technologies [36], e.g., fog computing-based radio access networks and
network slicing-based mobile networks in currently practical applications.
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Appendix A

Proof of Proposition 1. For mathematical tractability, the problem P1 can be converted into an
finite horizon differential game model by relaxing the terminal time t′0 + τrp to explore when t′0 + τrp

approaches ∞ (i.e., t′0 + τrp → ∞ ) as infinite time horizon. Under this conversion, we then perform
the maximization operation of the right hand side of Equation (25) with respect to pm(t). After some
simplifications, we have the following expression of the noncooperative optimal solution:

pNC
m (t) = Pmax

m +
∂VNC

m (pm, Em)

∂Em

Pmax
m Hm

(
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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To proceed, we derive the derivative of VNC
m (pm, Em) with respect to Em(t) in Equation (A2).

Upon solving the partial differential equation, after some simplifications, we now can express the
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This completes the proof. �

Appendix B

Proof of Proposition 3. The proof is similar to Proposition 1. The only difference is that the objective
function of the cooperative power control problem is to maximize the sum of the utility functions of
all players. For convenience of derivation, we also relax the time interval of the game and discuss
the infinite-horizon differential game (i.e., τrp → ∞ ), and we also set t′0 = 0. By performing the
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maximization operation of the right hand side of Equation (31) with respect to the transmit power of
all players p1(t), p2(t), · · · , p|N |(t), after some simplifications, we have:
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop

d(m)‖

Sensors 2017, 17, 2132 2 of 30

by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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by seeking to underlay, overlay, or interweave their signals with those of the existing PUs without
significantly impacting their communications.

Spectrum sensing is one of the key enabling technologies for the establishment of CRNs, because
it constantly allows for the opportunistic identification and use of the SOPs from a licensed primary
network without causing harmful interference to the PUs. In order to improve the sensing performance,
collaborative spectrum sensing has been proposed as an effective way to reliably detect the activity of
PUs by addressing the issues imposed by the hidden PU terminal problem and the wireless channel
impairments, such as the heavy shadowing and fading [6–8]. In this way, cooperation is achieved by
allowing different SUs to collaborate and share their spectrum sensing results (SSR) through a fusion
center (FC), which makes a global decision on the occupancy status of the licensed band. However,
this centralized FC is not available in decentralized CRANETs. Clearly, each SU under this scenario
must perform the distributed collaborative spectrum sensing, which is preferred to the centralized FC
scheme because of its scalability, fault tolerance and flexibility [9].

In order to facilitate the spectrum sensing functionality, high sampling rates, high resolution
analog to digital converters with large dynamic range, and high speed signal processors are required
to be incorporated into an individual SU transceiver [10], which increases hardware cost and power
consumption, especially for the double-radio sensing architecture of SU transceiver. An alternative
approach is to adopt the cost-effective and dedicated spectrum sensor nodes (SSNs) that perform
distributed collaborative spectrum sensing and report SSR to SUs acting as FCs in CRANETs [11].
Technically, s wireless sensor network can be naturally exploited to assist a CRANET by providing SSR
about the current spectrum occupancy of PUs in a cooperation fashion. The concept of sensor network
embedded into CRANETs has further called sensor network-aided CRANETs (SN-CRNs), which has
been considered as one of the most appealing approaches to perform cost-effective spectrum sensing
in CR systems [7,11,12].

Υ

Similar to most other traditional wireless networks or wireline Internet, network congestion in
SN-CRNs will also occur when offered data load that exceed the available capacity of a SU due to buffer
overflow caused by the data sequence of the SSR injected from SSNs together with the data traffic
from upstream SUs. This therefore leads to energy consumption of SSNs, aggressive retransmission,
queuing delay, and blocking of new flows from upstream SUs. Indubitably, a congestion control
technique in the transport layer is essential to balance resource loads and avoid excessive congestion.
However, the congestion control mechanism for the traditional Transmission Control Protocol (TCP)
via the acknowledgement-triggered or window-based methods was initially designed and optimized
to perform in reliable wired links with constrained bit error rates and round trip times (RTTs) [13].
A recent study [14] has reported that the performance of HTTP download deteriorates as much as
about 40% under the TCP window control in an IEEE P1900.4 based cognitive wireless system by using
User Datagram Protocol (UDP) and TCP transport protocols. On the other hand, some other research
efforts about congestion control have also been conducted from the perspective of finding methods to
modify the TCP protocol, such as TCP monitoring delayed acknowledgment, segment-based selective
acknowledgement, TCP adaptive delayed-acknowledgment window, etc. [15], aiming to accommodate
the challenging multi-hop wireless environments. Unfortunately, it has been shown that these methods
of TCP modification and extension cannot be directly applied into SN-CRNs due to sudden large-scale
bandwidth fluctuation, periodic interruption caused by spectrum sensing and channel switching [16].

Recently, there have also been previous works on congestion control for multi-hop CRANETs from
a cross-layer design perspective. In [17], an end-to-end congestion control framework was proposed
under the constraint of the non-uniform channel availability by taking into account the interactions
from the physical layer to the transport layer. In [18], a cross-layer framework for joint optimization
of MAC, scheduling, routing and congestion control was presented to maximize the throughput of
a set of multi-hop end-to-end packet flows. However, the end-to-end control policy in [17,18] is ill
suited for operation over wireless links characterized by higher RTTs. On the contrary, the hop-by-hop
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Next, we try to derive the derivative ofWC
m(pm, Em) with respect to Em(t) in Equation (A5). Upon

solving the partial differential equation, after some basic mathematical manipulations, we obtain the
final result in Equation (32), thus completing the proof. �

References

1. Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005,
23, 201–220. [CrossRef]

2. Rakovic, V.; Denkovski, D.; Atanasovski, V.; Mahonen, P.; Gavrilovska, L. Capacity-aware cooperative
spectrum sensing based on noise power estimation. IEEE Trans. Commun. 2015, 7, 2428–2441. [CrossRef]

3. Zhang, N.; Liang, H.; Cheng, N. Dynamic spectrum access in multi-channel cognitive radio networks. IEEE J.
Sel. Areas Commun. 2014, 32, 2053–2064. [CrossRef]

4. Sharma, P.K.; Upadhyay, P.K. Performance analysis of cooperative spectrum sharing with multiuser two-way
relaying over fading channels. IEEE Trans. Veh. Technol. 2017, 66, 1324–1333. [CrossRef]

5. Akyildiz, I.F.; Lee, W.-Y.; Chowdhury, K.R. CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Netw. 2009,
7, 810–836. [CrossRef]

6. Ghasemi, A.; Sousa, E.S. Collaborative spectrum sensing for opportunistic access in fading environments.
In Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access
Networks, Baltimore, MD, USA, 8–11 November 2005; pp. 131–136.

7. Deng, R.; Chen, J.; Yuen, C.; Cheng, P.; Sun, Y. Energy-efficient cooperative spectrum sensing by optimal
scheduling in sensor-aided cognitive radio networks. IEEE Trans. Veh. Technol. 2012, 61, 716–725. [CrossRef]

8. Peh, E.C.Y.; Liang, Y.-C.; Guan, Y.L.; Zeng, Y. Cooperative spectrum sensing in cognitive radio networks
with weighted decision fusion schemes. IEEE Trans. Wirel. Commun. 2010, 9, 3838–3847. [CrossRef]

9. Vosoughi, A.; Cavallaro, J.R.; Marshall, A. Trust-aware consensus-inspired distributed cooperative spectrum
sensing for cognitive radio ad hoc networks. IEEE Trans. Cogn. Commun. Netw. 2016, 2, 24–37. [CrossRef]

10. Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun.
Surv. Tutor. 2009, 11, 116–130. [CrossRef]

11. Weiss, M.B.H.; Delaere, S.; Lehr, W.H. Sensing as a service: An exploration into practical implementations of
DSA. In Proceedings of the IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN), Singapore,
6–9 April 2010; pp. 1–8.

12. Fodor, V.; Glaropoulos, I.; Pescosolido, L. Detecting low-power primary signals via distributed sensing
to support opportunistic spectrum access. In Proceedings of the IEEE International Conference on
Communications, Dresden, Germany, 14–18 June 2009; pp. 1–6.

13. Chowdhury, K.R.; Di Felice, M.; Akyildiz, I.F. TCP CRAHN: A transport control protocol for cognitive radio
ad hoc networks. IEEE Trans. Mob. Comput. 2013, 12, 790–803. [CrossRef]

14. Sarkar, D.; Narayan, H. Transport layer protocols for cognitive networks. In Proceedings of the INFOCOM
IEEE Conference on Computer Communications Workshops, San Diego, CA, USA, 15–19 March 2010;
pp. 1–6.

15. Soelistijanto, B.; Howarth, M.P. Transfer reliability and congestion control strategies in opportunistic
networks: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 538–555. [CrossRef]

http://dx.doi.org/10.1109/JSAC.2004.839380
http://dx.doi.org/10.1109/TCOMM.2015.2433297
http://dx.doi.org/10.1109/JSAC.2014.141109
http://dx.doi.org/10.1109/TVT.2016.2560758
http://dx.doi.org/10.1016/j.adhoc.2009.01.001
http://dx.doi.org/10.1109/TVT.2011.2179323
http://dx.doi.org/10.1109/TWC.2010.092810.100320
http://dx.doi.org/10.1109/TCCN.2016.2584080
http://dx.doi.org/10.1109/SURV.2009.090109
http://dx.doi.org/10.1109/TMC.2012.59
http://dx.doi.org/10.1109/SURV.2013.052213.00088


Sensors 2017, 17, 2132 28 of 28

16. Al-Ali, A.K.; Chowdhury, K. TFRC-CR: An equation-based transport protocol for cognitive radio networks.
Ad Hoc Netw. 2013, 11, 1836–1847. [CrossRef]

17. Song, Y.; Xie, J. End-to-end congestion control in multi-hop cognitive radio ad hoc networks: To timeout or
not to timeout? In Proceedings of the 2013 IEEE Globecom, Atlanta, GA, USA, 9–13 December 2013; pp. 1–6.

18. Cammarano, A.; Presti, F.L.; Maselli, G.; Pescosolido, L.; Petrioli, C. Throughput-optimal cross-layer design
for cognitive radio ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2599–2609. [CrossRef]

19. Nguyen, M.V.; Hong, C.S.; Lee, S. Cross-layer optimization for congestion and power control in OFDM-based
multi-hop cognitive radio networks. IEEE Trans. Commun. 2012, 60, 2101–2112. [CrossRef]

20. Nguyen, M.V.; Lee, S.; You, S.; Hong, C.S.; Le, L.B. Cross-layer design for congestion, contention, and power
control in CRAHNs under packet collision constraints. IEEE Trans. Wirel. Commun. 2013, 12, 5557–5571.
[CrossRef]

21. Chiang, M. Balancing transport and physical layers in wireless multihop networks: Jointly optimal
congestion control and power control. IEEE J. Sel. Areas Commun. 2015, 23, 104–116.

22. Zhang, H.; Jiang, C.; Beaulieu, N.C.; Chu, X.; Wen, X.; Tao, M. Resource allocation in spectrum-sharing
OFDMA femtocells with heterogeneous services. IEEE Trans. Commun. 2014, 62, 2366–2377. [CrossRef]

23. Zhang, H.; Nie, Y.; Cheng, J.; Leung, V.C.M.; Nallanathan, A. Sensing time optimization and power control
for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans. Wirel. Commun.
2017, 16, 730–743. [CrossRef]

24. Yao, Y.; Giannakis, G.B. Energy-efficient scheduling for wireless sensor networks. IEEE Trans. Commun. 2005,
53, 1333–1342. [CrossRef]

25. Xiao, K.; Mao, S.; Tugnait, J.K. MAQ: A multiple model predictive congestion control scheme for cognitive
radio networks. IEEE Trans. Wirel. Commun. 2017, 16, 2614–2626. [CrossRef]

26. Bajwa, W.U.; Haupt, J.D.; Sayeed, A.M.; Nowak, R.D. Joint source–channel communication for distributed
estimation in sensor networks. IEEE Trans. Inf. Theory 2007, 53, 3629–3653. [CrossRef]

27. Nama, H.; Chiang, M.; Mandayam, N. Utility-lifetime trade-off in self-regulating wireless sensor networks:
A cross-layer design approach. In Proceedings of the IEEE International Conference on Communications,
Istanbul, Turkey, 11–15 June 2006; pp. 1–6.

28. Zhang, H.; Jiang, C.; Mao, X.; Chen, H.-H. Interference-limited resource optimization in cognitive femtocells
with fairness and imperfect spectrum sensing. IEEE Trans. Veh. Technol. 2016, 65, 1761–1771. [CrossRef]

29. Zhang, H.; Jiang, C.; Beaulieu, N.C.; Chu, X.; Wang, X.; Quek, T.Q.S. Resource allocation for cognitive small
cell networks: A cooperative bargaining game theoretic approach. IEEE Trans. Wirel. Commun. 2015, 14,
3481–3493. [CrossRef]

30. Reeb, D.; Wolf, M.M. Tight bound on relative entropy by entropy difference. IEEE Trans. Inf. Theory 2015, 61,
1458–1473. [CrossRef]

31. Li, R.; Zhao, Z.; Zhou, X.; Palicot, J.; Zhang, H. The prediction analysis of cellular radio access network traffic:
From entropy theory to networking practice. IEEE Commun. Mag. 2014, 52, 234–240. [CrossRef]

32. Nielsen, M.A.; Kempe, J. Separable states are more disordered globally than locally. Phys. Rev. Lett. 2001, 86,
5184–5187. [CrossRef] [PubMed]

33. Patwari, N.; Hero, A.O.; Perkins, M.; Correal, N.S.; O’Dea, R.J. Relative location estimation in wireless sensor
networks. IEEE Trans. Signal Process. 2003, 51, 2137–2148. [CrossRef]

34. Zhang, H.; Huang, S.; Jiang, C.; Long, K.; Leung, V.C.M.; Poor, H.V. Energy efficient user association and
power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE
J. Sel. Areas Commun. 2017, 35, 1936–1947. [CrossRef]

35. El Batt, T.; Ephremides, A. Joint scheduling and power control for wireless ad hoc networks. IEEE Trans.
Wirel. Commun. 2004, 3, 74–85. [CrossRef]

36. Zhang, H.; Liu, N.; Chu, X.; Long, K.; Aghvami, A.-H.; Leung, V.C.M. Network slicing based 5G and future
mobile networks: Mobility, resource management, and challenges. IEEE Commun. Mag. 2017, 55, 138–145.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.adhoc.2013.04.007
http://dx.doi.org/10.1109/TPDS.2014.2350495
http://dx.doi.org/10.1109/TCOMM.2012.061212.110295
http://dx.doi.org/10.1109/TWC.2013.092313.121625
http://dx.doi.org/10.1109/TCOMM.2014.2328574
http://dx.doi.org/10.1109/TWC.2016.2628821
http://dx.doi.org/10.1109/TCOMM.2005.852834
http://dx.doi.org/10.1109/TWC.2017.2669322
http://dx.doi.org/10.1109/TIT.2007.904835
http://dx.doi.org/10.1109/TVT.2015.2405538
http://dx.doi.org/10.1109/TWC.2015.2407355
http://dx.doi.org/10.1109/TIT.2014.2387822
http://dx.doi.org/10.1109/MCOM.2014.6829969
http://dx.doi.org/10.1103/PhysRevLett.86.5184
http://www.ncbi.nlm.nih.gov/pubmed/11384452
http://dx.doi.org/10.1109/TSP.2003.814469
http://dx.doi.org/10.1109/JSAC.2017.2720898
http://dx.doi.org/10.1109/TWC.2003.819032
http://dx.doi.org/10.1109/MCOM.2017.1600940
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Model 
	Primary Network and Cognitive Radio ad hoc Network Model 
	Sensor Network Model 
	Local Spectrum Sensing Model 

	Spectrum Sensing Quality Analysis 
	Distributed Power Control for Spectrum Sensor Nodes 
	Problem Formulation 
	Noncooperative Optimal Solution 
	Cooperative Optimal Solution 

	Congestion Mitigation for Bottlenecked Secondary User 
	Simulation Results 
	Conclusions and Future Work 
	
	

