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Simple Summary: Several populations of Coho salmon have been maintained in aquaculture, but
the extent of the genetic diversity in these strains is unknown. This paper describes the genetic status
of several aquaculture strains of Coho salmon from North America, Chile, and Japan and a wild-type
hatchery strain from the Pacific Northwest of North America. The Chilean strains in particular have
been subject to changes in population sizes attributable to their establishment, reductions due to
disease outbreaks, and maintenance of small population sizes in culture. An assumption-free method
for estimating the changes in genetic diversity showed that many aquaculture strains had reduced
variability. These results highlight the importance of monitoring the genetic diversity of aquaculture
species from the start of breeding programs to secure their future genetic variation, particularly in
challenging environments such as those expected from climate change.

Abstract: Understanding the genetic status of aquaculture strains is essential for developing man-
agement guidelines aimed at sustaining the rates of genetic gain for economically important traits,
as well as securing populations that will be robust to climate change. Coho salmon was the first
salmonid introduced to Chile for commercial purposes and now comprises an essential component of
the country’s aquaculture industry. Several events, such as admixture, genetic bottlenecks, and rapid
domestication, appear to be determinants in shaping the genome of commercial strains representing
this species. To determine the impact of such events on the genetic diversity of these strains, we
sought to estimate the effective population size (Ne) of several of these strains using genome-wide
approaches. We compared these estimates to commercial strains from North America and Japan, as
well as a hatchery strain used for supportive breeding of wild populations. The estimates of Ne were
based on a method robust to assumptions about changes in population history, and ranged from low
(Ne = 34) to relatively high (Ne = 80) in the Chilean strains. These estimates were higher than those
obtained from the commercial North American strain but lower than those observed in the hatchery
population and the Japanese strain (with Ne over 150). Our results suggest that some populations
require measures to control the rates of inbreeding, possibly by using genomic information and
incorporating new genetic material to ensure the long-term sustainability of these populations.
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1. Introduction

Coho salmon (Oncorhynchus kisutch) is one of the key salmonids contributing to aqua-
culture production in Chile. The species was first introduced to Chile from the west coast
of North America in 1930, and since then, additional introductions have taken place from
North America and Asia [1]. Farming began in the late 1980s, and Chile is now the leading
producer of large Coho salmon worldwide [2].

Many existing aquaculture strains of Coho salmon are descended from few sources
and share similar breeding goals [1]. However, many of these strains have been introduced
into novel environments, often with associated founder events. Therefore, comparisons
between these populations serve as a critical resource for examining modes of evolution and
characterizing the extent of changes in genetic diversity since foundation. For example, the
detection of signatures of selection across the genome can help identify genes underlying
quantitative traits that may have played a role in unique or parallel processes [3]. Examining
genetic diversity across populations can also provide important information on the capacity
of individual strains to respond to ongoing environmental change. Many contemporary
domesticated strains of Coho salmon originated from a few source populations in the
Pacific Northwest in the USA and Canada. They have subsequently been introduced into
different environments in southern Chile from the USA and Japan, with ongoing external
introductions early in their history [1,2,4]. Most strains have been in culture in established
breeding programs for about ten generations and have experienced intense natural and
artificial selection. Therefore, they serve as a valuable model for comparative analyses.

Rapid changes in effective population size (Ne) are expected in commercial salmonid
aquaculture due to inadequate management of broodstock. The establishment of breeding
populations might not have been accompanied by methods to prevent genetic bottlenecks
and high rates of inbreeding. Such events might have led to sudden changes in effective
population sizes [5]. Salmonids can also be subjected to very high selection intensities,
due to the species’ high fecundity rates. Genetic improvement of Chilean strains has
been achieved through the implementation of an animal model, based on Best Linear
Unbiased Prediction (BLUP). However, these practices might have increased the rates of
inbreeding because populations that rely on fewer breeding families can lead to skewed
genetic contributions. The consequences of co-selection of relatives on effective population
size has not been well studied across Coho salmon populations [6]. The impact of natural
selection on genetic diversity is also likely significant in Chilean salmonid aquaculture,
attributable in part to Piscirickettsia salmonis, a bacterium inducing significant mortalities
since culture began [7]. The disease produced by this bacterium has been called “coho
salmon syndrome”, since it was first isolated from this species [8,9].

It is essential to understand the status and genetic sustainability of commercial popu-
lations of Coho salmon. This situation is critical since Coho salmon is not native to Chile,
but genetic rescue using introductions from outside the country has not been permitted to
prevent large-scale disease outbreaks resulted in significant losses to the Atlantic salmon
industry. Local feral strains might serve a role in enhancing strains, but it is not known
to what extent such a step is necessary. Thus, understanding the current genetic status of
these populations can help develop plans for increasing the genetic sustainability of the
commercial aquaculture of this species. In this paper, we present estimates of recent and
historical effective population sizes obtained from different strains of Chilean Coho salmon
and compare these with commercial strains in North America and Japan. We also include
a source population that has not been subject to deliberate domestication selection. The
use of both contemporary and historical measures across study populations provides an
understanding of the dynamics of effective population size throughout the management
history of each strain.
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2. Materials and Methods
2.1. Commercial and Hatchery Strains

Samples from 5 Chilean strains that belong to individual companies (sample size
between 20 and 45 individuals each, see Table 1) were surveyed with the previously devel-
oped Coho salmon single nucleotide polymorphisms (SNP) array [10]. These populations
have been primarily subjected to selection for growth rate (using mass or BLUP selection)
and maintained as closed populations for several generations. These strains were originally
founded from different sources. Some were commercial, founded from populations in the
Pacific Northwest in USA and Canada, including the Domsea strain in Washington [11] and
Kitimat strain [12] in Canada [2]. Other sources originate from naturalized populations in
Lago Llanquihue, which in turn are thought to have been made up of stocks from Oregon
Aquafoods (Puget Sound and Oregon-Alsea, USA), Fish Pro and Kitimat (Canada), and
Aquamar (Chile) [1]. In many cases, the exact origin of the Chilean strains is uncertain [2].
Short-term concerns of inbreeding were used initially to avoid mating between close rela-
tives, but this is not well documented. The generation interval in captivity is around two
years in Chile. Here, individuals were sampled within generations.

Table 1. Description of the SNP data obtained from the different populations analyzed. Sample size,
number of SNPs genotyped, and the median minimum allele frequency (MAF). SNPs were derived
from the Coho salmon microarray, except for the Japanese population, where SNPs were obtained
from double digested Restriction-Site Associated DNA (ddRAD) loci.

Population Abbreviation Number of
samples

Number of SNPs
Genotyped Median MAF

Chile Strain 1 CL_1 45 146,945 0.19
Chile Strain 2 CL_2 20 135,663 0.23
Chile Strain 3 CL_3 44 138,893 0.31
Chile Strain 4 CL_4 40 135,868 0.21
Chile Strain 5 CL_5 36 135,743 0.28

Domsea Even USA_1 30 135,624 0.17
Domesea Odd USA_1′ 25 136,297 0.18
Wallace River WRH 46 146,288 0.24

Japan JAPAN 112 51,794 0.10

Data from a Japanese breeding population were obtained from ddRAD sequences of
Coho salmon from the Inland Fisheries Experimental Station, Miyagi Prefecture Fisheries
Technology Center (Miyagi, Japan) [13]. This population was established in 1978 from the
Lower Kalama hatchery (Washington, WA, USA) and maintained for several generations
without deliberate selection. Family identification began in 2000, where artificial selection
was applied for less than two generations. Here, samples were obtained from the 2009
broodstock populations. The generation interval of this population was four years, although
some cohorts used precocious males at three years of age [13]. Publicly available ddRAD
sequences from 112 randomly selected individuals (sequences were not individually de-
scribed) were downloaded from NCBI (Submission: DRA005759; BioProject: PRJDB5730).

The North American reference, the Domsea strain, was initially derived from wild
Skykomish Coho salmon returning to the Wallace hatchery in 1971, followed by three
generations of mass selection by the Washington Department of Fish and Wildlife (WDFW)
in 1971 and 1972 [14]. The founding population was based on 40 families and 600 in-
dividuals, accompanied by high survival and growth rate in captivity [15]. A breeding
design based on avoiding of matings between close relatives and use of a circular mating
design was applied throughout the strain’s history to limit the rates of inbreeding [11].
The generation interval is two years [16], and at the time of sampling, the Domsea strain
had been in a selection program for 20 generations or 40 years. Individuals were sampled
across two separate lineages (even and odd year), and the results are presented within
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generations. The source population for the Domsea strain, Wallace hatchery, is a locally
derived population [4,14] that returns to the Wallace River, a tributary of the Skykomish
River, and is used to enhance the population size of wild fish within the system.

A summary of the data describing the different populations is presented in Table S1.

2.2. Genotypic Data

After sampling of fin tissue, DNA was extracted using the DNeasy Blood & Tissue Kits
(Qiagen, Valencia, CA) from fin clips obtained from broodstock from the Chilean and North
American strains. The Affymetrix SNP-chip used for genotyping contained 220,001 SNPs,
as described previously [10]. Thermo Fisher carried out genotyping in Santa Clara, (CA).

The ddRAD sequences from the Japanese Coho salmon strain [13] were mapped to the
Coho salmon genome version 2 (GCA_002021735.2, University of Victoria, Victoria, Canada)
using the software BWA [17]. SAM files were sorted with samtools [18] and PCR duplicates
were removed using SAMBAMBA software [19]. SNPs were identified using FreeBayes
with default settings. The initial set of SNPs identified was filtered using vcftools [20] to
a smaller group using the following criteria (derived from the FreeBayes output): (1) a
Phred-scaled SNP quality score with significance greater than 30; (2) maximum allele
frequency of 0.49; (3) maximum percentage of missing values of 0.20; and (4) the maximum
number of alleles as 2. Missing values were imputed using Beagle version 5.2 [21].

2.3. Estimation of Linkage Disequilibrium and Effective Population Size (Ne)

Estimates of the extent of linkage disequilibrium (LD), r2 [22], were obtained using
PLINK [23], using the default parameters. Linkage Disequilibrium decay for each chromo-
some arm was assessed using e estimated at different inter-marker physical distances, from
0.1 to 2 Mb and using a minimum allele frequency (MAF) of 0.05. Bins of physical distance
(every 10 kilobases) were constructed using the “content” method as implemented in the
software ONeR [24].

Estimates of Ne were obtained using the software GONE [25]. The approach mini-
mizes the sum of the squared differences between the observed values of d2 (Ohta and
Kimura 1969; Rogers 2014). These values are obtained as the average of r2 [22] between
pairs of SNPs, weighted by their variance in allele frequencies across several bins given
different ranges of chromosomal distances in Morgans [26]. The method uses a genetic
algorithm to infer the temporal series of Ne in the population that minimizes the sum of
the squared differences between the observed values of d2 of the bins, and those predicted
considering different demographic histories. Notably, the temporal estimates of Ne are not
modelled with the underlying assumption that there is a linear relationship between Ne
and generation time, the main assumptions associated with other estimation methods [27].
The analyses assumed that phase was unknown. The chromosomal distances between
SNPs were assumed to follow a linear relationship between physical distance and cM
(1 cM1 Mb), corrected using the kosambi mapping function over short distances (c = 0.05).
The position of the SNPs was obtained by aligning the harbouring sequence of each SNP
with the Coho salmon genome version 2 (CF_002021735.2) using BWA [17].

For comparison purposes, estimates of Ne were also obtained from an approach that
assumes a constant linear relationship between Ne and the number of generations. The
method used the derivations of [27,28] and has been implemented in the software SNeP
by [29]. Default parameters were used in all the populations analyzed.

3. Results
3.1. Linkage Disequilibrium (LD)
Marker Data

After final filtering, a set of 189,501 segregating SNPs with a minor allele frequency
(MAF) over 0.01 and below 0.49 across all screened populations was selected from the
Coho salmon genotyping array. The median minor allele frequency was 0.24. A total
of 147,349 SNPs were mapped to the 30 autosomes and used for the final analysis. The
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median marker spacing was 4.4 kilobases. Missing values were imputed using Beagle
version 5.2 [21].

In comparison, the median of the SNP marker distance for the ddRAD data on the
Japanese population was 8.0 kilobases. The average number of markers per chromosome
for the ddRAD dataset was 1727, giving a total of 51,794 across the Coho salmon genome. A
description of sample size, number of polymorphic SNPs genotyped, and minimum allele
frequencies are presented in Table 1.

The relationship between LD decay and physical distance (Mb) is presented within
each population over distances up to 2 Mb (Figure 1). In general, the average LD (r2) decay
was most pronounced between SNPs separated within 0.15 Mb (Figure 1). This result
was observed across all populations. For example, the r2 decayed at half the initial values
from 0.2 to 2 Mb in the Chilean strains. However, on average, the r2 values of the North
American commercial Domsea lines was higher than the values observed in the Chilean
populations. In contrast, the r2 values were small and decreased rapidly in the Wallace
River hatchery and Japanese populations. The maximum average value of r2 was almost
half those in the commercial populations, and the lowest average r2 was obtained from the
Japanese population.

Animals 2022, 12, x FOR PEER REVIEW 5 of 13 
 

3. Results 
3.1. Linkage Disequilibrium (LD) 
Marker Data 

After final filtering, a set of 189,501 segregating SNPs with a minor allele frequency 
(MAF) over 0.01 and below 0.49 across all screened populations was selected from the 
Coho salmon genotyping array. The median minor allele frequency was 0.24. A total of 
147,349 SNPs were mapped to the 30 autosomes and used for the final analysis. The 
median marker spacing was 4.4 kilobases. Missing values were imputed using Beagle 
version 5.2 [21]. 

In comparison, the median of the SNP marker distance for the ddRAD data on the 
Japanese population was 8.0 kilobases. The average number of markers per chromosome 
for the ddRAD dataset was 1727, giving a total of 51,794 across the Coho salmon genome. 
A description of sample size, number of polymorphic SNPs genotyped, and minimum 
allele frequencies are presented in Table 1. 

The relationship between LD decay and physical distance (Mb) is presented within 
each population over distances up to 2 Mb (Figure 1). In general, the average LD (r2) decay 
was most pronounced between SNPs separated within 0.15 Mb (Figure 1). This result was 
observed across all populations. For example, the r2 decayed at half the initial values from 
0.2 to 2 Mb in the Chilean strains. However, on average, the r2 values of the North 
American commercial Domsea lines was higher than the values observed in the Chilean 
populations. In contrast, the r2 values were small and decreased rapidly in the Wallace 
River hatchery and Japanese populations. The maximum average value of r2 was almost 
half those in the commercial populations, and the lowest average r2 was obtained from 
the Japanese population. 

 
Figure 1. Decay of the average linkage disequilibrium (LD) genome-wide, measured as r2 against
physical distance (Mb): (A) Chilean strains, and (B) North American strains and Japanese strains.

3.2. Patterns of Effective Population Size, Ne, across Generations

The Chilean commercial strains showed a non-linear pattern of change in Ne across
time (Figure 2), reflecting the complexity of the breeding history of Coho salmon in Chile.
Most of the Chilean populations had Ne values between 20 and 60 in the most recent
generations (Figure 2). Three strains, CL_1, 2, and 4, shared a bottleneck 14 to 15 generations
prior to sampling, after which two of the strains (1 and 2) experienced a gradual decline
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in Ne, to stabilize in more recent generations. CL_4 continued to decline sharply to
12 generations, after which the Ne stabilized to give the highest contemporary values. In
contrast, strain CL_5 retained a high effective size until 4 generations prior to sampling,
when it experienced a dramatic decline in Ne (from almost 5000 to 17; Figure 2). Finally,
the Ne values for strain CL_3 declined gradually since founding until 8 generations ago,
after which the effective population size increased.
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breeding program was started (Table S1).

Changes in Ne in the commercial Domsea lines of North America were smaller across
time. However, the relationship between Ne and the generations was not linear. There
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was a tendency towards decreased Ne values from 20 generations until nine generations
in the past, after which there was a greater rate of decline from nine to four generations
ago. This change is very similar between both lines (even and odd; Figure 2; USA_1 and
USA_1’). In the most recent generations, the Ne in the North American commercial strain
was the smallest of all the different strains analyzed (Ne = 25). The contemporary effective
population size in the wild-type Wallace River hatchery strain was the largest in all the
strains analyzed, with values of Ne of about 165, although there was a significant decrease
from 12 to 4 generations ago. Within the Japanese strain, the greatest drop in effective
population size occurred seven and three generations prior to sampling.

The method of Corbin [29] provided lower estimates of Ne (Figure 3); this method
assumes a constant or linear relationship between Ne and time. Since this method could
not accurately model the complex patterns of population history in aquaculture, some
downwards bias can be expected (see Discussion, [26]). The Japanese commercial strain
had amongst the higher estimates of effective population size (Ne= 65 based on the method
of Corbin [27] and Ne = 137 based on the technique of Santiago [25]) in the recent past.
The strain shows a sudden decrease in Ne, about three generations ago, which is expected
based on the population history of the strain (about five generations ago, a mass selection
program was started based on growth rate).
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4. Discussion

The main goal of breeding programs is to increase the profitability and sustainability
of the breeding population. In aquaculture, increased fecundity can often result in a
large census population at the expense of a relatively low effective population size. The
asymmetry of genetic contributions within breeding programs can also be influenced by
the biology of the species, such as spawning behavior [30], or the application of intense
selection without efforts to constrain the long-term rates of inbreeding [15]. Recent studies
have shown that relatively low effective population sizes in aquaculture are the norm in
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marine species and salmonids, but overall, the estimates are scarce [26,31]. The significance
of measuring Ne for aquaculture populations is that it provides a measure of the likelihood
of genetic gain. Here, we found that the contemporary effective population size is relatively
low in most of the strains we studied, and the Chilean strains in particular revealed the
genetic consequences of a range of management scenarios. Some strains shared historical
population bottlenecks (about 15 generations prior to sampling), and exhibited a subsequent
slow decline in Ne. However, these values have stabilized in more recent generations,
possibly a result of improved management. The effective population sizes in one strain
remained stable historically, but experienced a dramatic decline more recently. However,
the majority of the Chilean strains had higher contemporary effective population sizes
and lower linkage disequilibrium compared to a strain that has been maintained longer
in culture—the Domsea line. The Wallace River hatchery population and the Japanese
strains had larger estimates of Ne. Most of the commercial strains had Ne values below 50,
recognized as the minimum value for reducing the effects of inbreeding and when genetic
drift can significantly counteract the effects of natural selection [32]. Importantly, these
values provide guidelines for comparative assessment of these populations’ sustainability
and genetic risk, and whether it would be necessary to implement methods to further
constrain the rates of inbreeding [30].

The contemporary and historical estimates of effective population size across strains
provides insight into their different management histories. The Domsea lines from the
USA have been deliberately managed to limit the rates of inbreeding by using circular
mating designs and avoidance of mating between relatives [13]. However, the population
has remained closed since founding. The rate of decline in Ne was largely constant over
time, reflecting the inevitable consequences of maintaining a relatively small population
in captivity. This result is in contrast to those observed in the Chilean populations. Here,
companies established formal Coho salmon breeding programs relatively recently, the
majority no more than ten generations ago. In general, breeding programs were founded
using many families in the nucleus population (from 100 to 200 full-sib families), which
may explain the relatively large effective population size obtained in earlier generations
in several strains. While some companies mixed eggs from different hatcheries, others
based their selective breeding programs on closed broodstock populations that they had
already established. Mass selection was initially used in many breeding programs, and
pedigree records were not maintained. Therefore, the constraint of long-term inbreeding
rates was not initially considered. As a result, large decreases in the effective population
size were observed over time, particularly in some of the strains analyzed (see Figure 2).
Further, Piscirickettsia salmonis produced increased mortalities, which were particularly
impactful when their culture began in Chile [7,33]. Such mortalities may explain the shared
bottlenecks in the early generations, especially if these strains shared common origins
(some before they were formally founded). Interestingly, the founding of two new strains
subsequent to these events, in generation eight, appears to have resulted in stabilization or
improvement of Ne (see Figure 2); these populations have been managed to avoid mating
between relatives (Table S1). However, the exact history of these populations is uncertain,
and there are a range of other explanations for changes in genetic diversity. For example,
the use of a few families for spawning due to management or environmental reasons (such
as volcano eruptions in the south of Chile, [34]) could not be ruled out. The Japanese
strain had higher contemporary values of Ne, possibly reflecting the fact that they were
maintained for several generations as a randomly mating population without deliberate
selection, prior to formal management [13].

The results of this study also provide information relevant to conservation manage-
ment. The Wallace River hatchery population has been maintained over time to support
returning wild salmon and, as such, has incorporated locally derived wild fish in the
hatchery [14]. This population has not been artificially selected, but it is possible that the
hatchery environment has resulted in genetic changes through processes such as genetic
drift or selection. For example, hatchery broodstock may rely on a few individuals, re-
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sulting in a low effective population size. The release of large numbers of hatchery fish
can in certain circumstances reduce the Ne of the wild population (the Ryman–Laikre
effect) [35]. In addition, the reproductive success of hatchery fish in the wild can be lower
than naturally born fish [36,37], possibly as a result of domestication selection. Taken
together, these factors may explain some of the changes in Ne seen here [4]. To our knowl-
edge, the estimates presented here are the first to model recent changes of Ne, using an
assumption-free robust method in a hatchery population, such as that found in the Wallace
hatchery. Therefore, monitoring changes in effective population size can help assess sudden
changes or increases of this important parameter on the basis of genomic data, without
having to rely on pedigrees.

The LD values estimated between markers at short distances provide insight into the
possible effects of selection. Here, the values obtained for the commercial populations
(≤0.1 Mb) is very similar to r2 values reported for other aquaculture species, such as
rainbow trout lines raised in France [31]. In this case, LD declined rapidly within the first
100 kb (mean r2 decreased from 0.34 at 10 kb to 0.23 at 100 kb) [31]. At longer distances
between markers (e.g., about 1 Mb apart), the observed LD (0.13–0.18) was similar to that
observed in the Chilean lines. This result is likely to be explained by the selection intensity
applied at the start of breeding programs in these populations. Overall these values are
lower than the ones observed in terrestrial species [38].

The small effective population sizes observed here are relevant to understanding
future scenarios in aquaculture. For example, the ability to adapt to climate change can
impact the future viability of aquaculture and natural populations [39–41]. The likelihood
for adaptation of salmonids can be explained by long- and short-term exposure to increased
water temperature. Population bottlenecks due to sudden changes in water temperature
may be cumulative, therefore limiting their long-term evolutionary potential. These situ-
ations have been observed in natural populations where changes in heat tolerance were
small but significant [39]. Population recovery could be too slow in species with long
generation intervals that have undergone drastic reductions in population size, such as
some of the populations analyzed here. Therefore, measures to maintain genetic variation
in cultured populations should be considered a priority and addressed when possible
through genomic selection [10]. This situation is particularly critical in the North American
and Chilean strains with relatively low Ne, which may in turn restrict the evolutionary
potential of these strains. No eggs can be imported from outside of the country due to
stringent disease management protocols.

Concerns have been raised when applying Ne estimation methods to populations
created by admixture, or when generating synthetic populations. The method of estimating
Ne used here [25] has been shown to be robust to population admixture in predicting
recent population history, demonstrated using simulations [26]. Further, Ne estimates in an
admixed pig population (created by mating, synthetic lines) were comparable to pedigree
estimates using the method of [25]. Some of the Chilean strains were developed using eggs
purchased from different Canadian and American hatchery populations. Therefore, early
broodstock management in some lines was not exclusively performed on a specific line
or sourced from a single egg supplier [2]. After this initial period, the consolidation of
specific breeding programs began, and the strains were maintained as closed populations
for several generations after these initial admixture events. Data from this study suggests
that some Chilean strains were admixed. This effect may explain the large initial Ne values,
followed by sudden and very significant decreases (particularly in one Chilean strain);
however, further investigation on this topic is required to assess the extent of admixture
between the different lines analyzed.

An important issue is how accurate the estimates of Ne are when considering different
methods. Estimates from GONE are proportional to the sample size, the square root of
the number of pairs of SNPs included in the analysis, and the inverse of the effective
population size [25]. The sample size in this study varied between 20 and 112 individuals
(Table 1). However, the amount of information used to estimate Ne in this study appears to
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be sufficient to obtain relatively accurate estimates. Here, we used more than 147 thousand
SNPs within relatively small recombination rates (c = 0.05), providing sufficient power
to obtain relatively accurate estimates. This large number of marker pairs at different
distances was combined with relatively large sample sizes, gave enough power to estimate
Ne. Estimates with as few as 32 haplotypes (n = 16) appear to be sufficient to recover
population history, particularly recent events, as demonstrated using simulations and real
data [25]. The lowest number of markers is the one obtained from the ddRAD dataset, but
the sample size of this population was more than double that of the Chilean strains, and
is in the same order of magnitude of estimates obtained in other studies as well as those
obtained using simulations [25].

It is necessary to point out that any estimation method of Ne has several assumptions.
In many instances, these assumptions may not be fully met in practice. For example, the
estimates obtained from [27,29] assume a constant or linear relationship between Ne and
generation number. Estimates of Ne based on this method were in all cases much smaller
than those predicted based on the more assumption-free estimate derived from the method
of [25]. Simulations showed that the method of [27] gave consistently downward biased
estimates when the populations did not follow a constant or linear decrease in Ne, which is
the case for the aquaculture strains. In this study, most Chilean strains had Ne values near
Ne = 25 using these methods; much smaller estimates were obtained for the North American
commercial strains (Ne = 18). Both the Japanese and the North American hatchery strain
had recent values of about 65, which are nearly three times smaller than those obtained
using [25]. Moreover, these estimates from recent generations relied upon longer physical
genomic distances and were subjected to large standard errors [27]. Therefore, these
estimates should be interpreted with caution, given the history of these populations.

5. Conclusions

Commercial Coho salmon strains have undergone a series of events leading to con-
temporary values of Ne below 50 in some populations, which is the minimum value
recommended for short-term sustainability of selection programs and avoiding genetic
risks associated with inbreeding [6,32]. The estimates of Ne in the Chilean populations
reveal a significant decrease in the past, probably due to processes associated with estab-
lishment and domestication, exposure to diseases, and high selection intensities in breeding
programs. Our results suggest that some populations require measures to control the rates
of inbreeding, possibly by using genomic information and by incorporating genetic material
from other populations. The management of effective population size is important in cases
where variation in climate change can have consequences for the long-term sustainability
of these populations. However, in the short term, loss of genetic diversity is of significant
concern. Intervention is essential for minimizing the loss of alleles through genetic drift,
improving the ability of populations to respond to selection and increase disease resistance,
and for managing inbreeding depression.
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