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Abstract: The transport properties of chloride ions in cement-based materials are one of the major
deterioration mechanisms for reinforced concrete (RC) structures. This paper investigates the
influence of pore size and fatigue loading on the transport properties of NaCl in C-S-H nanopores
using molecular dynamics (MD) simulations. Molecular models of C-S-H, NaCl solution, and C-S-H
nanopores with different pore diameters are established on a microscopic scale. The distribution of
the chloride ion diffusion rate and the diffusion coefficient of each particle are obtained by statistically
calculating the variation of atomic displacement with time. The results indicate that the chloride
ion diffusion rate perpendicular to C-S-H nanopores under fatigue loading is 4 times faster than
that without fatigue loading. Moreover, the diffusion coefficient of water molecules and chloride
ions in C-S-H nanopores increases under fatigue loading compared with those without fatigue
loading. The diffusion coefficient of water molecules in C-S-H nanopores with a pore size of 3 nm
obtained from the MD simulation is 1.794 × 10−9 m2/s, which is slightly lower than that obtained
from the experiment.

Keywords: C-S-H; diffusion coefficient; pore diameter; fatigue loading; molecular dynamics simulation

1. Introduction

The deterioration of reinforced concrete structures in coastal areas is mainly caused by chloride
ions [1,2]. Considerable research has been carried out on corrosion properties in structural concrete
on a macro level [3–5]. Nemecek [6] considered the concentration change of chloride ions under
diffusion convection and simulated the transport of chloride ions in reinforced concrete models
with FEM simulation, which is based on Fick’s first law. Li [7] introduced a multiscale approach of
combining both mesoscopic models, including full-graded aggregate and equivalent macroscopic
models. Feasibility and relative error were evaluated by analytical deduction and numerical simulation.
Carsana [8] investigated the effects of chlorides in raw materials, such as recycled aggregate from
salt-contaminated concrete structures, on the durability of concrete. The tested durability-related
properties included capillary water absorption, chlorides, and carbonation penetration. Zhang [9]
experimentally studied the combination effect of freeze–thaw cycles and chloride attack on concrete
damage. Since reinforcement corrosion coupled with sustained load has been recognized as the main
issue affecting the durability of reinforced concrete (RC) structures [10], many existing studies have
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been conducted to investigate the properties of structural concrete under the coupled effect. Li [11]
tested the performance of RC beams under coupled sustained loading and reinforcement corrosion.
The authors of this study [12] proposed a concrete damage plasticity model to simulate the damage
evolution of RC beams under the coupled effect.

Figuring out chloride ion diffusion mechanism in cement-based materials is of vital importance
to improve the durability of RC structures in marine environments [13,14]. Many researchers have
also investigated the chloride diffusion process in cement-based materials on a micro scale [15–17].
Zheng [11] derived the aggregate number function of the circular aggregate, which is based on the
probability density function and the cumulative distribution. A Brownian motion simulation for the
chloride diffusivity of concrete was conducted, which was verified through two sets of experimental
results. He [12] established the relationship between chloride diffusion coefficient pore structure
parameters, which was characterized by low-field nuclear magnetic resonance (NMR) spectroscopy.
Liu proposed a multi-phase transport model to simulate the ionic (K+, Na+, Cl−, and OH−) transport
features in concrete composites containing various shaped aggregates. Li [15] established a model that
used the concept of double porosity to reflect the influence of pore size distribution on the transport of
ionic species in porous materials. The model also considered the effects of ionic exchange between
the pores of different sizes and the ionic binding between liquid and solid phases. The model was
validated using experimental data obtained from rapid chloride migration tests. Using the molecular
dynamics (MD) simulation method, Hou [16] investigated the structural and dynamic properties
of water/ions and a tobermorite interface. Li [17] established nanopores of cement-based materials
with different widths and tortuosity. The transport process of chloride ions in nanochannels was
explored. The results showed that the larger the width of the nanopores, the faster the diffusion rate of
chloride ions. The tortuosity of nanopores changes the direction of chloride ion transport, leading
to a reduction of the chloride ion diffusion rate. Yang [8] predicted the chloride ionic diffusivity in
cement-based microstructures by pore-scale modeling using a modified lattice Boltzmann method.
Both the Nernst–Planck equation for ion diffusion and the Poisson equation for electrodynamic effect
were fully solved. The results showed that a cement-based microstructure with a smaller pore size and
higher negative Zeta potential hindered chloride ion corrosion more effectively.

The abovementioned studies, however, were mainly focused on corrosion properties of RC
structure not subjected to fatigue loading, yet the coupled chemo-mechanical process of chloride
diffusion was not considered. Furthermore, the application of MD simulation on chloride
transport properties in cement-based materials has not been thoroughly discussed, apart from a
few exceptions [16–18].

The aim of this paper is to reveal the essence of the particle transport properties in C-S-H nanopores
under real working conditions. The objectives of this research include (1) establishing molecular
models of C-S-H, NaCl solution, and C-S-H nanopores; (2) simulating the transmission process of
particles in a NaCl solution in C-S-H nanopores under different working conditions; (3) investigating
the effects of pore size and fatigue loading on the NaCl transport properties in C-S-H nanopores; and
(4) exploring the distribution of chloride ion diffusion rate and mean square displacement (MSD) of
particles in NaCl solution.

2. Molecular Dynamics Simulation Theory

Newton’s law of motion is the basic principle of a molecular dynamics simulation, in which the
microscopic particles (atoms, molecules, or ions) are treated as Newtonian classic particles and the
phase space trajectories of these particles can be calculated at discrete time intervals. The position,
velocity, and acceleration of each particle at each time step can be calculated, and the macroscopic
properties of the system can be obtained using the statistical mechanics method. The calculation steps
of the molecular dynamics simulation are as follows:

(1) Establish the micro-structural system needed for a specific project.
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(2) Given the initial position and velocity of each atom in the micro-structural system, the appropriate
potential function is adopted to calculate the load on each atom. The following two formulas are
the speed and position of atom i at time t, which are the core of the numerical solution equation
of molecular dynamics simulation. The correctness of the atom’s numerical solution depends on
U (potential function).

νi =
1

mi

dU(r)
dri

t + v0
i (1)

ri =
1
2

1
mi

dU(r)
dri

t2 + v0
i t+r0

i (2)

where: vi is the velocity of atom i at time t; ri is the position of atom i at time t; vi
0 is the initial velocity

of atom i; ri
0 is the initial position of atom i.

(3) Based on the obtained position, velocity, and load of the atom at each time, the atom at the upper
position is pushed to a lower energy state in a small-time interval, thus generating a new position
and velocity.

(4) The positions and velocities of the atoms are updated in the established micro-structural system.
The simulation steps mentioned above are repeated until the properties of the system do not
change with time, and the structure of the system reaches a stable state. The trajectories of all
atoms in the micro-structural system can be obtained.

3. Molecular Dynamics Simulation Details

3.1. Molecular Modeling of NaCl Transportation in C-S-H

To investigate the transport characteristics of NaCl in C-S-H nanopores on a micro-scale, a molecular
model of C-S-H, NaCl solution, and C-S-H nanopores containing NaCl was established. The modeling
details are as follows:

3.1.1. Molecular Modeling of C-S-H

The name “tobermorites” includes a number of C-S-H phases differing in their hydration state
and sub-cell symmetry [19]. Using the nuclear magnetic resonance (NMR) method, Merlino [20]
obtained the microstructure of tobermorite with a layer spacing of 11 Å, which has a structure similar
to that of C-S-H. The detailed microstructure parameters are shown in Table 1. A corresponding C-S-H
molecular model is established, as shown in Figure 1.

Table 1. Lattice parameters of tobermorite 11 Å

Category Tobermorite 11 Å

Space group Bm
Crystal system Monoclinic

a/Å 6.732
b/Å 7.369
c/Å 22.68
α/◦ 90
β/◦ 90
γ/◦ 123.18
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Figure 1. Molecular modeling of C-S-H (yellow balls are Si atoms, green balls are Ca atoms, red balls
are O atoms, white balls are H atoms).

3.1.2. Molecular Modeling of NaCl Solution

The concentration of NaCl solution used herein is 8%, which is refined to the ratio between
Na+, Cl-, and H2O on a micro-scale. According to the calculation result, Na+:Cl−:H2O = 134:134:500.
The amorphous cell module provides a variety of tools to build structures for any number of components
at a chosen density and output a single structure [18,19]. These structures form the basic input to
simulation and modeling workflows involving amorphous materials [20,21]. The thickness of the
molecular model should sufficiently large to effectively exclude direct interactions between two
different solution/solid interfaces created because of the periodicity of the system [22]. For systems
containing a solid–fluid interface and dissolved solute, the distance between ions in the aqueous phase
should not less than 8–10 Å [23]. Based on the molecular model of NaCl solution established by
Kalinichev [22], the thickness of the solution layer is about 40 Å. Using the “Amorphous Cell” tool, a
microscopic model of amorphous 8% NaCl solution is established in the range of 41.70 Å × 41.70 Å ×
41.70 Å. After structural optimization, the stable molecular model of NaCl solution in Figure 2.

Figure 2. Molecular modeling of NaCl solution (purple balls are Na+, light green balls are Cl−, red
balls are O atoms, white balls are H atoms).

3.1.3. Molecular Modeling of NaCl in the C-S-H Pore Structure

Minet [24] has experimentally determined that the pore width of C-S-H ranges from 0.5 nm to
10 nm. Based on the results obtained by Enrico Masoero [25], the predominant pore diameter of
C-S-H is 3 nm when the hydration degree reaches 80%. Chloride ion transport causes deterioration of
durability of RC structures during service. For cement composites, the hydration degree of cement in
RC structure during the service period is usually about 80% [26]. Li [27] compared the attraction of
C-S-H on chloride ion with different pore size. The results show that the C-S-H with smaller pore size
has stronger adsorption effect on chloride ion. Therefore, C-S-H nanopores with pore sizes of 1.5 nm
and 3 nm were selected for the molecular model.

By using MD simulation software, Hou proposed a method for testing ion diffusion coefficient
under electric field [28]. In this study, the tools of “Cleave” and “Build Vacuum Slab” are employed to



Materials 2020, 13, 700 5 of 15

perform the molecular modeling of NaCl in the C-S-H pore structure [19,29,30]. The tool “Cleave” is
employed to obtain the corresponding size model according to different needs, and the tool “Build
Vacuum Slab” combines multiple types of models to form a composite model. Using the tools of
“Cleave” and “Build Vacuum Slab”, a NaCl structure model with a size of 6.732 Å × 7.369 Å × 15 Å is
obtained, in which case, the three designed facets, (1 0 0), (0 1 0), and (0 0 1) plans, of the NaCl solution
model shown in Figure 2 are cut. By using the tool “Build Layer”, the C-S-H model and the NaCl
solution model are then spliced into a C-S-H pore structure model with pore sizes of 1.5 nm and 3 nm,
which is filled with 8% NaCl solution. The obtained model is a single cell structure which needs to
be expanded to a supercell structure. To provide a better description of the C-S-H pore structure but
without increasing extra computational efforts, a 30 × 2 × 1 super-cell structure is generated, which
makes the simulation result closer to the real condition. The obtained initial structure is not stable, in
which case, an optimization process must be performed to obtain a stable structure with the lowest
energy. After optimization, a stable C-S-H pore structure is established, as shown in Figure 3. Using
the Voigte–Reusse–Hill method [31], the calculated elastic modulus of C-S-H molecular model are
16.79 GPa, which is consistent with the experimentally obtained values (18.1 ± 4 GPa) of low-density
C-S-H by Jennings [32].

Figure 3. C-S-H pore structure model (green balls are Ca2+, yellow balls are Si atoms, purple balls
are Na+, light green balls are Cl−, red balls are O atoms, white balls are H atoms). (a) Overall image.
(b) Partial image.

For the C-S-H pore structure model without subject loading, the pore structure remains unchanged
during the simulation process. Therefore, the MD simulation process of NaCl transportation in C-S-H
nanopores is conducted in a canonical ensemble (NVT). All thermostatting schemes employed in MD
simulations are designed to control the kinetic temperature [33]. The temperature was set at 298 K,
which is controlled by the Nosé-Hoover method with a time step of 1 fs. The transport of NaCl in
C-S-H nanopores with sizes of 1.5 nm and 3 nm is simulated with a time step of 6000 fs.
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3.2. Fatigue Loading Application

Compared to the model size of cement-based materials on the macro-scale, the size of the C-S-H
molecular model on the macro-scale is far too small, and the fatigue loading cannot be applied directly
to the molecular model of the C-S-H pore structure. Considering that the pore structure of C-S-H
will change under fatigue loading, a periodic loading is applied along the z-axis direction for the
molecular model constructed in Section 3.1.3. An isothermal-isobaric (NPT) ensemble is adopted in
MD simulation, in which the volume of the structural system can change freely. The temperature is also
set at 298 K, which is controlled by the Nosé–Hoover method. The periodic loading is controlled by the
Parrinello–Rahman method [22], which can change the volume of the C-S-H pore structure. The MD
simulation of NaCl transport properties in C-S-H nanopores with a size of 1.5 nm under periodic loading
is conducted. Since the effect of external mechanical loading (compressive and tensile) on chloride
diffusivity has been systematically investigated by Du [34]. In this study, the authors focus on the effect
of fatigue loading on chloride diffusivity using MD simulation. During MD simulation, fatigue loading
is regarded as sustained loading (compressive and tensile) that do not change for a period of time.
The cyclic loadings are employed by considering the loading frequency and loading pattern [35,36].
The calculated diffusion coefficient depends on the loading process. Jiang [37] employed the number
of fatigue cycles as the damage index which established the quantitative relationship between the
fatigue damage degree and chloride diffusion coefficient. The results show that the diffusion coefficient
of chloride ion in the structural concrete increases with the increase of loading frequency. In our
investigation, only one loading frequency (0.25 MPa/fs) is adopted to examine the effect of fatigue
loading on chloride diffusion in C-S-H pore structure. The adopted loading pattern is uniaxial alternate
tension–compression fatigue loading (shown in Figures 4 and 5), and the simulation is completed for
30 cycles in total.

Figure 4. Loading process.

Figure 5. Schematic diagram of pressure application.
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3.3. Mean Square Displacement (MSD)

The MSD can be obtained directly from the particle positions in an MD simulation, as shown in
Equation (3)

MSD(∆t) =
1

T − ∆t

∫ T−∆t

0
[r(t− ∆t) − r(t)]2dt =

〈
[r(t− ∆t) − r(t)]2

〉
(3)

where T is the total simulation time; r(t) is the position at time t; r(t + ∆t) is the position an interval ∆t
later; [r(t + ∆t) − r(t)]2 is the squared displacement of the particle during that interval.

If the particle diffuses, the MSD becomes linear in time, and the slope defines the diffusion
coefficient Da, as shown in Equation (4)

Da =
1

6Nα
lim
t→∞

d
dt

Nα∑
t=1

〈
[ri(t) − r0(t)]

〉
(4)

where N is the number of diffusing atoms in the system.

4. Results and Discussion

4.1. Influence of Pore Size on NaCl Transport Properties in C-S-H Nanopores

In this section, the transport properties of NaCl in C-S-H nanopores with different pore sizes and
structural organization changes are investigated using the model constructed in Figure 3. Snapshots of
molecules in the C-S-H pore structure after the completion of computation are shown in Figure 6. It is
observed from the figure that the interlayer spacing of C-S-H is stable. Some chloride ions and sodium
ions are transported to the wall of the pore structure. The number of chloride ions transported to the
pore wall decreases with increasing pore size, which can be attributed to the interaction potential of
the pore wall on chloride ions decreasing with increasing pore size [17].

Figure 6. Cont.
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Figure 6. Transport properties of NaCl in C-S-H nanopores with different pore sizes (green balls are
Ca2+, yellow balls are Si atoms, purple balls are Na+, light green balls are Cl−, red balls are O atoms,
white balls are H atoms). (a) Pore diameter: 1.5 nm. (b) Pore diameter: 3 nm.

4.2. Influence of Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores

In this section, the fatigue loading is exerted on the C-S-H pore structure with a pore size of 1.5 nm
using the loading process shown in Figure 4. The transport properties of NaCl in C-S-H nanopores
under fatigue loading are shown in Figure 7. It can be seen from the figure that the applied fatigue
loading affects the C-S-H pore structure dramatically, leading to an increase in the interlayer spacing of
C-S-H. The interlayer spacing increases from 2 Å to 3.5 Å, and lattice distortion occurs in part of the
C-S-H pore structure. Some of the C-S-H is pulled out of the lattice range, and the pore structure is no
longer a straight passage. It is also shown in Figure 7 that portions of Cl− and Na+ are attracted by the
pore wall, and part of the free Ca2+ leaves the C-S-H and enters the C-S-H nanopores.

Figures 6 and 7 show that the amount of Na+ attracted to the surface of the C-S-H nanopores is
higher than the amount of Cl− attracted to the surface of C-S-H nanopores. Cl− attracted to the pore
wall surface is in the vicinity of Na+. The part of Cl−, that enters the pore wall is close to Ca2+, which
indicates that the C-S-H pore wall provides strong adsorption for the cations. Na+ is attracted to the
pore wall surface and combines with the silicon tetrahedron of the C-S-H structure. When the amount
of combined Na+ increases, the effect of adsorption on Cl− in the solution increases. Cl− moves slowly
towards the pore wall, which is adsorbed to the pore wall surface. Part of the Cl− is attracted by the
free Ca2+ in the pore wall structure and moves into the C-S-H nanopores.
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Figure 7. Transport properties of NaCl in C-S-H nanopores with pore size 1.5 nm under fatigue loading
(green balls are Ca2+, yellow balls are Si atoms, purple balls are Na+, light green balls are Cl−, red balls
are O atoms, white balls are H atoms).

Figure 8 shows that the pore diameter of the C-S-H pore structure continuously increases with
increasing simulation time. Compared with that of the C-S-H pore structure without subject fatigue
loading, the diameter of C-S-H nanopores under fatigue loading increases approximately 7 times,
which indicates that the C-S-H pore structure is continuously deformed by extrusion, leading to a
looser structure and a wider pore size, thus affecting particle diffusion. With the increase of pore size,
more particles will penetrate the concrete cover and diffuse to the surface of reinforcement, which
leads to reinforcement corrosion.

Figure 8. Pore diameter change of the C-S-H structure under different working conditions.
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4.3. Discussion

The chloride ion diffusion rate perpendicular to the C-S-H nanopores with a diameter of 1.5 nm is
calculated as shown in Figure 9. The figure shows that the chloride ion diffusion rate perpendicular to
the C-S-H nanopores after the completion of fatigue loading is 4 times faster than that without fatigue
loading. For the C-S-H nanopores without fatigue loading, Cl− appears in the range of 20–40 Å. For the
C-S-H nanopores under fatigue loading, Cl− appears in the range of 20–50 Å, which indicates that the
fatigue load forces a large amount of Cl− into the pore wall. Ca2+ in the pore wall creates the potential
for Cl-, which attracts Cl− to move to the pore wall, thus affecting the chloride ion diffusion rate. As is
shown in Figure 7, the application of loading leads to the weakness of the stiffness and cohesive force
of C-S-H, in which case, different deflections and bending of calcium silicate sheet can be observed [38].
The discrepancy between interlayer connections results in the inhomogeneous diffusion of chloride
ions in C-S-H pore structure.

Figure 9. Distribution of the chloride ion diffusion rate in the C-S-H pore structure with a pore diameter
of 1.5 nm. (a) Without fatigue loading; (b) Under fatigue loading.

During the transport process of chloride ions, the transport characteristics of water molecules are
particularly important for studying the transport characteristics of NaCl solutions in pore structures [39].
Therefore, the mean square displacements of water molecules and chloride ions in pore structures
are displayed in Figure 10. The MSD of water molecules for both working condition are small, which
indicates that the water molecules confined in the interlayer of C-S-H move slowly. The reasons can be
attributed to the ionic bonds and H-bonds of C-S-H. The related diffusion coefficients under different
conditions are calculated according to Figures 10–12. The different trends shown in these figures at the
time around 5 ps are attributed to the positive offset method adopted during the calculation [40,41].
The middle section of the curve is recommended for calculation to avoid errors [42]. The decrease of
MSD curve is attributed to that the calculation of MSD is a function of time T instead of a function of
time interval. As is shown in Table 2, the diffusion coefficient of water molecules is 1.794 × 10−9 m2/s
when the pore diameter of the C-S-H nanopores is 3 nm. The diffusion coefficient of water molecules
in nanopores can be experimental obtained by neutron scattering [43] and NMR [44]. Krynicki [23]
measured the diffusion coefficient of water at temperatures between 275.2 and 498.2 K and at pressures
up to 1.75 kbar, the measured value is (2.3± 0.1)× 10−9 m2/s, which is slightly higher than the simulation
result. This is attributed to the adopted pore diameter of C-S-H nanopores in the MD simulation being
3 nm. For the measured cement-based materials, the pore diameter of the C-S-H nanopores ranged
from 0.5 nm to 10 nm. The diffusion coefficient of the particles obtained by the experiment is the result
of the particles being transported in a large number of pores with different pore sizes.
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Figure 10. MSD diagram of water molecules in C-S-H nanopores without fatigue loading. (a) Pore
diameter: 1.5 nm. (b) Pore diameter: 3 nm.

Figure 11. MSD diagram of chloride ions in C-S-H nanopores without fatigue loading. (a) Pore
diameter: 1.5 nm. (b) Pore diameter: 3 nm.

Figure 12. MSD diagram of particles in C-S-H nanopores under fatigue loading. (a) Water. (b) Chloride.

It is also shown in Table 2 that the diffusion coefficient of water molecules and chloride ions
increases with the increased pore diameter of C-S-H nanopores. This rapid increase in the diffusion
coefficient is attributed to the potential of the C-S-H pore wall for water molecules and chloride ions.
As the C-S-H pore size increases, the effect of the interatomic potentials on the internal particles
decreases, resulting in an increase in the diffusion coefficient of the particles.

Fatigue loading has a significant influence on the particle transport process. The pore diameter
of C-S-H nanopores increases continuously under fatigue loading, which causes a decrease in the
interatomic potentials on the particles in C-S-H pore structures, thus further increasing the diffusion
coefficient of chloride ions and water molecules in the C-S-H structure. Moreover, since the C-S-H
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nanopores are constantly subjected to fatigue loading, the solution in the nanopores is continuously
extruded, in which case, the transportation speed of the particles in the nanopores is greatly increased
on the microscopic scale. Due to the influence of the various factors mentioned above, the diffusion
coefficient of the particles in C-S-H nanopores is greatly increased.

Table 2. Diffusion coefficient of water molecules and chloride ions under different working conditions

Diffusion Coefficient
(×10−9 m2/s)

Without Fatigue Loading
Under Fatigue Loading

Pore Diameter: 1.5 nm Pore Diameter: 3.0 nm

Chloride ion 0.287 0.896 2.502
Water molecule 0.383 1.794 4.779

As mentioned before, the diffusion coefficient obtained from MD simulation is different from the
effective diffusion coefficient of C-S-H. However, MD simulation can get the results which is hard to be
obtained by experiments. Furthermore, MD simulation can reveal the essence of transport process
of particles in cement composites, which can add significant additional molecular scale insight to
experimental results for structural concrete.

5. Conclusions

In this paper, the molecular models of C-S-H, NaCl solution, and C-S-H nanopores containing
NaCl are established using MD simulation software. The influence of pore size and fatigue loading
on the transport properties of NaCl in C-S-H nanopores were investigated. The main findings are
summarized below:

(1) Ca2+ and Na+ in the pore wall of C-S-H nanopores can adsorb chloride ions, attracting chloride
ions to move towards the pore wall. The attraction effect varies with the pore diameter of C-S-H
nanopores. The larger the pore diameter is, the weaker the attractive interaction of the pore walls
to chloride ions. The C-S-H pore wall had a strong adsorption effect for cations. The amount
of Cl− adsorbed in the solution increases with the increase of the amount of Na+ adsorbed on
the pore wall, in which case, chloride ions will be adsorbed to the surface of the pore wall of
C-S-H nanopores. In addition, some Cl− will be adsorbed by free Ca2+ in the pore wall of C-S-H
nanopores and move to the interior of the C-S-H pore structure.

(2) The C-S-H pore structure is continuously deformed by extrusion under fatigue loading, which
leads to the expansion of pore size, thus increasing the chloride diffusion rate. At the same time,
more chloride ions will penetrate the concrete cover and diffuse to the surface of reinforcement,
which leads to a great increase in the corrosion probability of reinforcement and a decrease in the
durability of reinforced concrete structure.

(3) The diffusion coefficient of water molecules in C-S-H nanopores with a pore size of 3 nm obtained
from the MD simulation is 1.794 × 10−9 m2/s, which is slightly lower than that obtained from
the experiment. This is attributed to the diffusion coefficient of the particles obtained by the
experiment being the result of the particles being transported in a large number of pores with
different pore sizes.

(4) In this paper, only the transmission process of chloride ions in a single nanopore is considered.
The concrete composites contain variety of pore structures with different size. A molecular model
with different pore sizes and structures should be established, which can further improve the
accuracy of numerical simulation.
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