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immune infiltration-related biomarkers for diabetic nephropathy using 
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ABSTRACT
Immune cell infiltration (ICI) plays a pivotal role in the development of diabetic nephropathy (DN). 
Evidence suggests that immune-related genes play an important role in the initiation of inflam-
mation and the recruitment of immune cells. However, the underlying mechanisms and immune- 
related biomarkers in DN have not been elucidated. Therefore, this study aimed to explore 
immune-related biomarkers in DN and the underlying mechanisms using bioinformatic 
approaches. In this study, four DN glomerular datasets were downloaded, merged, and divided 
into training and test cohorts. First, we identified 55 differentially expressed immune-related 
genes; their biological functions were mainly enriched in leukocyte chemotaxis and neutrophil 
migration. The CIBERSORT algorithm was then used to evaluate the infiltrated immune cells; 
macrophages M1/M2, T cells CD8, and resting mast cells were strongly associated with DN. The 
ICI-related gene modules as well as 25 candidate hub genes were identified to construct 
a protein-protein interactive network and conduct molecular complex detection using the 
GOSemSim algorithm. Consequently, FN1, C3, and VEGFC were identified as immune-related 
biomarkers in DN, and a related transcription factor–miRNA–target network was constructed. 
Receiver operating characteristic curve analysis was estimated in the test cohort; FN1 and C3 
had large area under the curve values (0.837 and 0.824, respectively). Clinical validation showed 
that FN1 and C3 were negatively related to the glomerular filtration rate in patients with DN. Six 
potential therapeutic small molecule compounds, such as calyculin, phenamil, and clofazimine, 
were discovered in the connectivity map. In conclusion, FN1 and C3 are immune-related biomar-
kers of DN.
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Introduction

The incidence of diabetes has increased rapidly in 
recent years and has emerged as a major cause of 
chronic kidney disease worldwide. As of 2015, 
approximately 415 million people were living 
with diabetes worldwide and this is expected to 
increase to 693 million by 2045 [1]. Approximately 
40% of these patients develop end-stage renal dis-
ease and require renal replacement therapy, such 
as peritoneal dialysis, hemodialysis, and kidney 
transplantation [2]. Current treatment strategies 
rely on renin-angiotensin-aldosterone system 
(RAAS) blockers and sodium glucose co- 
transporter 2 (SGLT2) inhibitors [3]. However, 
the therapeutic effect of these drugs on diabetic 
nephropathy (DN) is either by reducing 

glomerular intracapsular pressure or by decreasing 
hyperglycemia, but not from specific and precise 
targets of DN. In addition, not all patients benefit 
from these drugs because of the genetic heteroge-
neity and complexity of the disease [4]. Hence, it is 
imperative to identify new targets to enhance the 
efficacy of treatment of DN.

Traditionally, metabolic and hemodynamic fac-
tors have been the major causes of DN. However, 
increasing evidence points to the role of inflam-
mation and immune cell infiltration in its devel-
opment [5]. Compared with healthy controls, 
inflammatory cytokines such as intracellular adhe-
sion molecule (ICAM)-1, tumor necrosis factor 
(TNF)-α, interleukin (IL)-1, and IL-6 are found 

CONTACT Yu Zhang zhangyu8225@126.com Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 
China

Supplemental data for this article can be accessed here

BIOENGINEERED
2021, VOL. 12, NO. 1, 5386–5401
https://doi.org/10.1080/21655979.2021.1960766

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3738-8347
https://doi.org/10.1080/21655979.2021.1960766
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1960766&domain=pdf&date_stamp=2021-08-23


to be increased in serum or peripheral blood cells 
in patients with DN [6]. Macrophages, neutro-
phils, and mast cells are heavily infiltrated and 
functionally active in the kidney and are important 
drivers of the inflammatory response and fibrosis 
in the diabetic kidney [7]. Therefore, exploring the 
immune mechanisms of DN and identifying new 
targets for immunotherapy is of great value.

Immunological mechanisms play a significant 
role in the development and progression of DN, 
with recruitment and activation of innate immune 
cells and the development of proinflammatory 
molecules [8]. The expression of some immune 
and inflammatory genes is upregulated in renal 
cells of animal models of diabetes as well as in 
patients with diabetes [9]. These genes play an 
important role in the initiation of inflammation 
and the recruitment of immune cells. Toll-like 
receptors (TLR)2 and TLR4 are highly expressed 
in tubular epithelial cells, endothelial cells, podo-
cytes, and mesangial cells of patients suffering 
from diabetic injury in the kidney [10]. Elevated 
TLR4 levels in kidney samples of patients with 
diabetes are positively correlated with the infiltra-
tion of macrophages and negatively correlated 
with the glomerular filtration rate [11]. In diabetic 
patients, chemokine monocyte chemoattractant 
protein 1 (MCP1) is upregulated in the glomerular 
and renal tubular epithelium [12,13]. MCP1 is 
responsible for the migration of monocytes 
through the endothelium after adhesion and is 
a major factor influencing macrophage accumula-
tion in renal disease patients and in animal models 
of renal damage [14]. With the rapid increase in 
high-throughput data, bioinformatic approaches 
have been applied to identify immune-related bio-
markers in hypertension [15] and lung adenocar-
cinoma [16]. However, limited evidence is based 
on low-throughput experimental verification, and 
the study of immune genes in diabetic nephropa-
thy through high-throughput data mining is still 
lacking.

With the development of bioinformatic technol-
ogy, it has been gradually realized that human 
diseases are not caused by a single molecular 
defect but are driven by complex interactions 
between various molecules. The complexity of 
these interactions encompasses different types of 
information, ranging from cell-molecular level 

protein-protein interactions to related studies of 
gene expression and regulation, metabolic and dis-
ease pathways, and drug-disease relationships [17]. 
As a rapidly developing new field, network medi-
cine combines molecular biology and network 
science and is expected to reveal the causes of 
human diseases and radically change their diagno-
sis and treatment [18]. Network medicine-based 
algorithms, such as protein-protein interaction 
(PPI) [19], switch genes miner (SWIM) [20] and 
weighted correlation network analysis (WGCNA) 
[21], have also been successfully used to investigate 
the mechanisms of chronic obstructive pulmonary 
disease [22], cancer, and other diseases [23–26]. In 
addition, network medicine-related algorithms, 
such as the connectivity map (CMap) and the 
search for off-label drugs and networks 
(SAveRUNNER), can be used to predict the link 
between diseases and drugs, significantly shorten-
ing the development cycle of new drugs [27].

In this study, we aimed to explore potential 
immune-related biomarkers in DN and elucidate 
the underlying mechanisms using bioinformatic 
approaches. By identifying the status of immune 
cell infiltration and immune-related biomarkers 
using bioinformatic approaches, new diagnostic 
and therapeutic targets can be identified for 
patients with DN.

Material and methods

Data acquisition and preparation

Five DN-related gene datasets, GSE96804 [28], 
GSE111154 [29], GSE104948-GPL22945 [30], 
GSE104948-GPL24120 [30], and GSE142025 [31] 
were obtained from the Gene Expression Omnibus 
(GEO). The details of the gene datasets are pre-
sented in Table 1. Four microarray datasets 
(GSE96804, GSE111154, GSE104948-GPL22945, 
and GSE104948-GPL24120) were merged, normal-
ized, and utilized as the training cohort, and the 
RNA-sequencing gene dataset, GSE142025, was 
used as the test cohort. Probes with missing expres-
sion values were eliminated, and the average expres-
sion value was obtained when different probes 
pointed to the same gene. The batch effects were 
eliminated by employing the surrogate variable ana-
lysis (SVA) algorithm in the R environment [32]. 
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Additionally, two-dimensional principal component 
analysis (PCA) was used to evaluate the distribution 
patterns in DN and normal samples and the micro-
array datasets.

Differentially expressed immune-related genes 
(DEIRGs) screening

We obtained 3046 immune-related genes from 
Immport [33], TISIDB [34] and InnateDB [35], 
which are comprehensive databases that curate 
immune-related genes from research articles, 
books, and digital resources. We then intersected 
these immune-related genes in the training cohort. 
Ultimately, 1980 immune-related gene expression 
profiles were acquired. DEIRGs between the dia-
betic nephropathy and control groups were then 
analyzed by using the ‘limma’ package in R [36]. 
The cutoff criteria for DEIRG identification were 
|log2-fold change (FC)| ≥ 1 and Benjamini & 
Hochberg adjusted p-values < 0.05.

Enrichment analysis of pathways and biological 
functions

The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) is 
a bioinformatics platform for the annotation and 
assessment of biological functions of genes [37]. 
Functional enrichment analysis was performed 
using DEIRGs, including the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) databases using 
DAVID v6.8. GO analysis is a commonly used 
bioinformatics tool to identify biological pro-
cesses in terms of molecular function (MF), bio-
logical processes (BP), and cellular components 
(CC), and to perform gene annotation [38]. The 
KEGG pathway database includes a variety of 
biochemical pathways and is a resource for 

understanding the advanced functions and utili-
ties of biological systems [39]. The enrichment 
terms with Benjamini and Hochberg adjusted 
p-values < 0.05, were considered statistically 
significant.

Evaluation of infiltrated immune cells

To explore the association between infiltrated 
immune cells and diabetic nephropathy, data on 
the proportions of the 22 immune cells in the 
standardized training dataset were obtained using 
the ‘cell-type identification by estimating relative 
subsets of RNA transcripts’ (CIBERSORT) algo-
rithm. The immune cell infiltration matrix only 
included samples with p < 0.05. The proportions 
of infiltrated immune cells in each sample and 
each group were visualized in boxplots and violin 
plots, respectively. We selected immune cells that 
were significant (p < 0.05) between the two groups 
in the matrix for further analysis.

Identification of significant modules with 
immune infiltration characteristics using WGCNA

To further understand the association between 
immune cells and their related gene expression 
profiles, we constructed a weighted co-expression 
network (WGCNA) and identified the significant 
gene modules related to the infiltrated immune 
cells. Before we utilized WGCNA, the gene expres-
sion matrix and the immune cell infiltration pro-
file (which were acquired previously), were 
combined as one matrix for further analysis. We 
constructed the WGCNA network with the freely 
accessible R package, ‘WGCNA’ [40].

In this study, we analyzed the combined matrix 
to construct gene co-expression networks that 
were associated with immune cell phenotypes. 
Obvious outliers were removed from the data, 

Table 1. The information of GEO datasets in this study.
GEO series DN Normal Tissue Platforms Data type
GSE96804 41 20 glomeruli GPL17586[HTA-2_0] Affymetrix Human Transcriptome Array 2.0 Train
GSE111154 4 4 glomeruli GPL17586[HTA-2_0] Affymetrix Human Transcriptome Array 2.0 Train
GSE104948-GPL22945 7 18 glomeruli GPL22945[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array Train
GSE104948-GPL24120 5 3 glomeruli GPL24120[HG-U133A] Affymetrix Human Genome U133A Array Train
GSE142025 28 9 glomeruli GPL20301Illumina HiSeq 4000 (Homo sapiens) Test

DN, Diabetic Nephropathy. 
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and a correlation matrix was constructed for all 
genes using Pearson’s correlation analysis. The co- 
expression network was constructed using a one- 
step method. We set a soft threshold R2 of 0.9, 
according to the criterion of scale-free topology 
[40], and an average linkage hierarchical clustering 
approach was used to classify genes into several 
co-expression modules.

Module membership (MM) and gene impor-
tance (GS) revealed the correlation between co- 
expressed genes and immune cell characteristics. 
Genes with higher MM and GS values indicated 
that these genes were more strongly correlated 
with modules and clinical characteristics, respec-
tively. The genes with the highest immune cell 
correlation were extracted for further study (GS 
> 0.5; MM > 0.5). Candidate biomarkers were 
identified by cross-linking the genes obtained 
from the WGCNA and DEIRG analyses.

PPI network construction and critical 
immune-related biomarker identification

To demonstrate the functional interactions among 
proteins, the overlapping genes from the WGCNA 
and DEIRG analyses were utilized to construct the 
PPI network, which was built using the STRING 
online platform (https:// string-db.org) [19] by 
setting the interaction score at high confidence 
(0.700). Furthermore, we identified significant 
gene clusters and hub immune-related genes 
using the Molecular Complex Detection 
(MCODE) algorithm in Cytoscape software [41]. 
We explored key immune-related biomarkers by 
applying the ‘GOSemSim’ package in R software to 
score the semantic similarity of GO terms in the 
gene clusters [42].

Transcription factors (TFs)-microRNA 
(miRNA)-messengerRNA (mRNA) network 
construction

MicroRNAs and TFs control gene regulation. 
Therefore, further research on the regulatory rela-
tionship between TFs and miRNAs can elucidate 
the underlying mechanisms of immune-related 
gene markers in DN. The MIENTURNET (http:// 
userver.bio.uniroma1.it/apps/mientumet/) web 
tool was used to assess miRNA-mRNA 

interactions [43]. We uploaded the hub immune- 
related genes to MIENTURNET and obtained 
miRNA-mRNA interactions. Furthermore, for the 
purpose of finding regulatory relationships 
between TFs and miRNAs, these miRNAs were 
input into the TransmiR platform [44], which is 
a database for TF-miRNA regulation. Finally, 
a TF-miRNA-mRNA network was constructed by 
merging the miRNA-mRNA and TF-miRNA 
interactions.

Correlation analysis between immune-related 
biomarkers and infiltrated immune cells

We performed a Pearson correlation analysis on 
the key immune-related DN markers and infiltrat-
ing immune cells, and the results were visualized. 
The absolute value of correlation coefficient (r) 
greater than 0.5 was considered have positive or 
negative correlation.

Validation of biomarkers in the testing cohort

To verify the biomarkers, we analyzed them based 
on the GSE142025 RNA-seq dataset. First, box-
plots showed the differences in expression between 
the DN and normal samples. Then, we calculated 
the area under the curve (AUC) to assess the 
diagnostic value of these genes. If a gene had 
a high expression value in the DN sample (upre-
gulated in the sample), then its AUC would be 
greater than 0.5; otherwise, it was < 0.5. A larger 
|AUC-0.5| value indicated that the gene could be 
distinguished between DN and control samples.

Verification of the clinical relevance of 
biomarkers and the prediction of drug 
interactions

The clinical relevance of these genetic markers in 
patients with DN was explored using the 
Nephroseq database (https://www.nephroseq.org/) 
[45]. Nephroseq is an internet-based free access 
platform that includes a variety of human renal 
disease clinical and gene expression data sets that 
have been collected and managed by a team of 
experienced data scientists, bioinformaticians, 
and nephrologists, and allows researchers to con-
duct comprehensive data mining. We analyzed the 
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correlation between hub genes and the glomerular 
filtration rate (GFR) in patients with DN based on 
the Woroniecka Diabetes Dataset in the 
Nephroseq database. Statistical significance was 
set at p < 0.05.

Given that the existing treatments for DN are 
not fully satisfactory, there is a need to propose 
novel tactics and develop new therapeutic 
approaches. The Connectivity Map (CMap; 
https://clue.io/) is a public database that collects 
expression profiles of cultured human cells trea-
ted with small molecules that have previously 
been used to explore drug mechanisms and 
identify new potential drugs [46]. DEIRGs were 
uploaded to the CMap online database to 
explore potential drugs for the treatment of 
DN. Enrichment scores ranged from −100 to 
100, and the results were selected based on the 
magnitude of the correlation coefficient scores, 
with negatively correlated small molecule com-
pounds being selected. After acquiring the 
results of CMap analysis, compounds with 
a mean coefficient of < −90 were selected and 
ranked according to their correlation scores. All 
cell lines provided by CMap were preserved in 
this study.

Results

We screened DEIRGs and analyzed their biolo-
gical enrichment to reveal the underlying immu-
nological mechanisms in DN. Differentially 
expressed immune-related genes (DEIRGs) in 
multiple microarray glomerular datasets were 
identified. The proportion of infiltrated immune 
cells was calculated using the ‘cell-type identifi-
cation by estimating relative subsets of RNA 
transcripts’ (CIBERSORT) algorithm. Key bio-
markers and their functional enrichment were 
correlated with the pathogenesis and progression 
of DN. The biomarkers were verified using a test 
cohort and clinical databases, and therapeutic 
molecules related to the DEIRG were identified 
in DN.

Data preprocessing

There were 45 control tissue samples and 57 DN 
glomeruli tissues in the GSE96804, GSE111154, 

GSE104948-GPL22945, and GSE104948- 
GPL24120 datasets. The clinical characteristics 
of the datasets are shown in Table S1.

The inter-batch difference was removed from 
the gene expression matrix after merging the 
datasets. The Q-Q plots and boxplots show that 
the inter-batch differences were removed (Figure 
S1). Before and after standardization of the 
training cohort, PCA results demonstrated that 
the batch effects in different datasets were elimi-
nated (Figure 1(a,b)), and standardization 
resulted in a more pronounced clustering of 
samples from the DN and normal groups 
(Figure 1(c,d)), indicating that the sample 
sources were reliable.

DEIRGs identification and biological enrichment

We screened DEIRGs and analyzed their biological 
enrichment to reveal the underlying immunologi-
cal mechanisms in DN.

After normalization and annotation of the 
training cohort with 45 control tissue samples 
and 57 DN glomeruli tissues, DEIRGs were iden-
tified. With |(logFC)| ≥ 1 and adjusted p-values > 
0.05, a total of 55 significant DEIRGs were found 
in the DN group compared to the normal samples, 
of which 28 were upregulated and 27 were down-
regulated. Volcano and heatmap plots of the 
DEIRGs are shown in Figure 2(a), S2. The list of 
DEIRGs is shown in Table S2.

GO analysis showed that most upregulated 
genes were particularly enriched in BP, including 
the immune response, inflammatory response, and 
chemokine-mediated signaling pathway (Figure 2 
(b), Table S3). Major enrichment in CC included 
extracellular space, extracellular region, and blood 
microparticles (Figure 2(b), Table S3). Primary 
enrichment in MF consisted of chemokine activity, 
heparin binding, and serine-type endopeptidase 
activity (Figure 2(b), Table S3). KEGG pathway 
analysis revealed that the upregulated DEIRGs 
were mainly enriched in cytokine-cytokine recep-
tor interaction and chemokine signaling pathways 
(Figure 2(c), Table S4).

However, the results of GO terms for biological 
processes showed that the downregulated DEIRGs 
were mainly concentrated in cellular oxidant detox-
ification, platelet degranulation, and the 
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inflammatory response (Figure 2(b), Table S5). The 
enriched GO terms for CC of downregulated DEIRGs 
included the extracellular region and extracellular 
space (Figure 2(b), Table S5). In addition, enriched 
GO terms for MF revealed that downregulated 
DEIRGs were mainly involved in antioxidant activity 
and phospholipid binding (Figure 2(b), Table S5). 
Moreover, downregulated DEIRGs were significantly 
enriched in pathways such as the MAPK, estrogen, 
and oxytocin signaling pathways (Figure 2(c), 
Table S4).

Immune infiltration analysis

Due to technical limitations, the immune infiltra-
tion of DN was not fully elucidated. Using the 
CIBERSORT algorithm, we explored the differ-
ences in immune infiltration between DN and 
normal glomerular tissue. Compared with normal 
tissues, DN tissues generally contained a higher 
proportion of T cells CD8, Macrophages M1, 
Macrophages M2, and resting mast cells, whereas 
the proportion of neutrophils was lower (Figure 3 
(a), Figure 3(b)).

Figure 1. Samples PCA clustering plots for before and after calibration. (a, b) PCA Figures display inter-batch differences removed 
before and after correcting for GSE96804, GSE111154, GSE104948-GPL22945, and GSE104948-GPL24120, respectively. (c, d) Figures 
show batches differences of PCA cluster for DN and control samples before and after correction. PCA, principal components analysis. 
DN, diabetic nephropathy.

Figure 2. The DEIRGs and their functional enrichment results. (a) DEIRGs volcano plot; red represents up-regulated DEIRGs, and blue 
represents down-regulated DEIRGs. (b) GO biological function enrichment analysis for DEIRGs (c) KEGG pathway enrichment analysis 
in DEIRGs. DEIRGs, differently expressed immune-related genes. DN, diabetic nephropathy. DEIRGs: differently expressed immune- 
related genes. GO: gene ontology. KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Identification of immune-related gene modules 
using WGCNA

Using the WGCNA algorithm, genes associated 
with infiltrated immune cells were explored. 
A total of 11,221 genes were included in the 
WGCNA analysis, and the sample clustering 
results showed good consistency within groups 
and significant differences between groups 
(Figure S3A, S3B). The topology analysis showed 
that 10 was the minimal soft threshold power 
above the scale-free topology fit index of 0.9 
(Figure S3C). After clustering, the genes were 
divided into 11 color-coded modules (Figure 
S3D), of which the genes in the gray module 
were those that could not be classified.

We computed the module-trait correlation fac-
tors (Figure 4(a)). The black module (r = 0.65, 
p = 3E-13) had the highest correlation with the 
macrophage M2 trait, while the purple module had 

the best correlation with the neutrophil trait 
(r = 0.83, p = 3E-27). The GS and MM values for 
the two modules are presented in scatter plots, and 
genes with MM > 0.5, and GS > 0.5 were selected 
as candidate genes (Figure 4(b), 4(c); Table S6). 
Twenty-five overlapping genes from DEIRGs and 
candidate genes in the black and purple modules 
were retained for subsequent analysis 
(Figure 4(d)).

PPI network construction and critical 
immune-related biomarker identification

To understand protein function, 25 candidate key 
biomarkers were obtained from the intersection of 
the DEIRGs and candidate genes in the black and 
purple modules. The gene list was uploaded to 
STRING, setting the interaction score at a high 
confidence level (0.700). Then, a PPI network 

Figure 3. Assessment of immune infiltration. (a) Bar plot displays the proportion of infiltrated immune cells between DN and control 
groups. (b) box plot for difference immune cell infiltration between DN and normal samples (Wilcoxon’s test; *, p < 0.05; ***, 
p < 0.001). The horizontal coordinate represents the variety of infiltrated immune cells, and the vertical axis represents the fraction 
of infiltrated immune cell. DN, diabetic nephropathy.
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with 22 nodes and 50 edges was constructed, 
where each node represented a protein, and each 
edge represented an interaction between proteins 
(Figure 5(a)). By applying the MCODE algorithm, 
a densely connected gene cluster was identified, 
which included seven key genes whose GO enrich-
ment analysis was mainly enriched in leukocyte 
chemotaxis, leukocyte migration, and cell chemo-
taxis (Figure 5(b)).

To further mine the key genes, we used the 
‘GOSemSim’ package in R to calculate the GO 
semantic similarity of these seven genes. The 
higher the semantic similarity, more important 
the role that the gene plays in the function. Our 
results revealed that FN1, C3, and VEGFC had 

higher functional similarities (similarity score > 
0.5) and immune-related DN hub genes 
(Figure 5(c)).

Construction of the TF-miRNA-mRNA regulatory 
network

We uploaded the immune-related gene markers 
FN1, C3, and VEGFC into the MIENTURNET 
platform to search for interacting microRNAs 
(miRNAs). Then, we filtered the microRNAs by 
setting the species to ‘Homo sapiens’ and the tissue 
to ‘kidney’, and obtained seven regulating 
microRNAs (Table S7). These miRNAs were 
input into the TransmiR platform, which is 

Figure 4. Screening candidate immune-related diabetic nephropathy biomarkers by using WGCNA. (a) Correlation between the gene 
module and infiltrated immune cell. The correlation coefficient in each cell represented the correlation between the gene module 
and the infiltrated immune cell, which decreased in color from red to blue. The corresponding p-value is also annotated. (b, c) 
Scatter plots depict the relationship between module membership (MM) and gene significance (GS) in black and purple module. 
Genes with MM>0.5 and GS>0.5 are labeled with solid dots. (d) Venn diagram shows the biomarkers intersected with DEIRGs and 
candidate genes in black and purple module. WGCNA, weighted correlation network analysis.

Figure 5. Construction of PPI network and identification of hub genes. (a) The PPI network constructed by STRING. Genes labeled red 
color are candidate hub genes chosen by MCODE algorithm. (b) PPI network and functional enrichment of candidate hub genes 
identified by MCODE algorithm. (c) The bar plot displays functional similarity analysis of candidate immune-related biomarkers, with 
the abscissa as the similarity score. PPI, protein-protein interaction. MCODE: molecular complex detection.
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a database for TF-microRNA regulation. After 
merging miRNA-mRNA and miRNA-TF regula-
tion, we constructed a TF-miRNA-mRNA net-
work, which included three miRNAs, three 
mRNAs, and twelve transcription factors 
(Figure 6).

Association analysis of diagnostic biomarkers 
with infiltrating immune cells

We wanted to determine whether these hub genes 
were related to immune cell infiltration using 
Pearson’s correlation analysis. Correlation analysis 
showed that FN1 had a positive relationship with 
macrophages M2 (r = 0.73, p = 1.30E-18); C3 had 
a positive correlation with macrophage M2 cells 
(r = 0.63, p = 1.74E-12), and VEGFC and macro-
phages M2 cells were also positively correlated 
(r = 0.62, p = 2.25E-12) (Figure 7, Table S8).

Validation of biomarkers based on the test 
cohort

To test the applicability and robustness of these 
biomarkers, we validated them in the test cohort. 
The expression levels of these biomarkers in the 
test cohort were confirmed. Two markers (FN1 
and C3) were statistically higher in the DN group 
than in the normal group (Figure 8(a,b)). 
However, VEGFC was not significantly different 

between the DN and normal groups (Figure 8(c)). 
The receiver operator characteristic (ROC) curve 
analysis illustrated that FN1 and C3 had large 
AUC values (0.837 and 0.824, respectively), 
which indicated that FN1 and C3 had the strongest 
predictive ability among the four biomarkers 
(Figure 8(d)).

Verification of the clinical relevance of 
biomarkers and prediction of drugs

With regard to the correlation between biomarkers 
and clinical features, FN1 and C3 were found to be 
significantly negatively correlated with GFR in DN 
glomerulus (r = −0.68, p = 4.94E-4 and r:-0.58, 
p = 0.005) and tubule (r = −0.755,p = 4.95E-5 and 
r = −0.842, p = 8.95E-7) samples based on 
Woroniecka diabetes data in the Nephroseq plat-
form, suggesting a pathogenic role of biomarkers 
(Figure 9(a), 9(d); Figure 9(b, 9(e)). However, 
VEGFC showed a statistically significant correla-
tion with GFR in DN (Figure 9(c), 9(f)).

DEIRGs were compared to the reference gene 
list in the connectivity map database. Twenty-eight 
upregulated DEIRGs and twenty-seven downregu-
lated DEIRGs were imported into the connectivity 
map to map potential agents. Compounds with 
a mean coefficient of < −90 were selected and 
ranked according to their correlation scores. The 
results showed that there were six chemical 

Figure 6. The alluvial diagram demonstrated the ‘TF-miRNA-mRNA’ regulatory network constructed by 12 TFs, 3 miRNAs, and 3 
mRNA targets. TF, transcription factor.

5394 Y. WANG ET AL.



Figure 7. Lollipop figures for the correlation between candidate immune-related biomarkers of DN and infiltrated immune cells. (a) 
FN1 is positively correlated with macrophages M2 cells. (r = 0.79, p = 3.00E-23). (b) Correlation analysis presents that C3 has positive 
relationship with macrophages M2 cells. (r = 0.65, p = 2.0E-13). (c) Positive association was also found in the relationship between 
VEGFC and macrophages M2 cells (r = 0.64, p = 5.37E-13). DN: diabetic nephropathy.

Figure 8. Validation of immune-related hub genes based on RNA-seq dataset GSE14025. (a-c) Gene expression levels of hub genes 
between DN and control group. (d) The receiver operating characteristic curve of hub genes in GSE14025. DN: diabetic nephropathy.
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compounds, including calyculin, forskolin, phena-
mil, clofazimine, LY-2,183,240, and NVP-AUY922 
that were negative and < −90. These findings indi-
cated that the overall perturbation of DN by these 
chemical compounds was opposite to that of the 
differentially immune-related genes. Thus, these 
compounds or their analogs may potentially play 
antagonistic roles in DN (Figure 10).

Discussion

In this study, we explored infiltrated immune cells 
and related biomarkers in DN using bioinformatic 
methods. The conventional view of the pathogen-
esis of DN maintains that the main agonistic fac-
tors are hemodynamic and metabolic disorders 
caused by the hyperglycemic environment [47]. 
However, mounting evidence suggests that 

Figure 9. Pearson correlation analysis of GFR and target genes. FN1 is negatively related to GFR in diabetic nephropathy tubule 
samples(a) (r = −0.755, p = 4.95E-5) and glomerulus samples (d) (r = −0.68, p = 4.94E-4). C3 has also negatively relationship with 
GFR in nephropathy tubule samples(b) (r = −0.842, p = 8.95E-7) and glomerulus samples (e) (r = −0.58, p = 0.005). The expression of 
VEGFC has not statistically significance with GFR in patient’s tubule samples(c) (r = −0.407, p = 0.06) and glomerulus samples (f) 
(r = 0.282, p = 0.203). GFR, glomerular filtration rate. DN: diabetic nephropathy.

Figure 10. Potential therapeutic molecular compounds predicted by connectivity map. Compounds with a mean coefficient less than 
−90 were selected and ranked according to the correlation score. Note: PC3, human prostatic carcinoma cell line. VCAP, vertebral 
cancer of the prostate cell line. A375, human melanoma cell line. A549, adenocarcinomic human alveolar basal epithelial cells. HA1E, 
human embryonic kidney cell line. HCC515, human lung cancer cell line. HT29, human colorectal adenocarcinoma cell line. MCF7, 
breast cancer cell line. HEPG2, human hepatocyte carcinoma cell line.
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immune cell infiltration and inflammation play an 
essential role in the etiopathogenesis of DN [48]. 
According to the analysis of functional enrich-
ment, we found that most upregulated DEIRGs 
were enriched in the extracellular matrix and par-
ticipated in the biological processes of immune 
and inflammatory responses. Using single nuclear 
RNA sequencing technology, a recent study found 
that immune cell infiltration and aberrant angio-
genesis are early signs of DN [49]. Hyperglycemia 
can activate macrophages and cytokines, which 
leads to the accumulation and infiltration of 
immune cells in the kidney tissues of patients 
with DN [50,51]. Therefore, it is not surprising 
that cytokine-cytokine receptor interactions were 
among the most active pathways in our KEGG 
analysis.

Moreover, using the CIBERSORT algorithm, we 
found that macrophages were the most infiltrative 
immune cells in DN. Previous studies have 
reported that the accumulation of macrophages 
can be discovered in the renal tissue of patients 
with DN and portend renal function decline 
[52,53]. Macrophage infiltration is an important 
feature of DN [54], and the high glucose and 
glycosylation end products in the DN environment 
promote the recruitment and migration of macro-
phages, which release inflammation-promoting 
factors, leading to kidney injury and fibrosis [55]. 
The increase in macrophages is also associated 
with upregulated ICAM-1 and MCP-1 by kidney 
tubular cells in response to hyperglycemia and 
advanced glycation end products (AGEs) [56,57]. 
Macrophages are divided into M1 and M2 macro-
phages. M1 macrophages secrete excessive 
amounts of pro-inflammatory and chemotactic 
factors that promote an inflammatory response 
and damage normal kidney tissue [58]. However, 
the role of M2 macrophages in renal tissue fibrosis 
remains controversial, as they can differentiate 
into fibroblasts and contribute to the proliferation 
and activation of myofibroblasts, as well as parti-
cipate in the repair and reconstruction of DN 
kidney injury by phagocytosing damaged cells, 
downregulating the expression of inflammatory 
cytokines and chemokines, and inhibiting the 
toxic effects of T cells [59]. It has been found 
that macrophages have an M1 phenotype in the 
early stages of kidney injury and an M2 phenotype 

in the repair stage, and M1 macrophages can be 
converted to an M2 phenotype over time [60]. 
Promoting M2 macrophages and reducing the 
M1 phenotype could be promising therapeutic 
strategies for DN. Current research shows that 
neutrophils are mainly involved in acute kidney 
injury [61], but their role in chronic DN remains 
unclear. In our study, we found that the propor-
tion of neutrophils was relatively higher in normal 
samples, which may be a potential limitation of the 
CIBERSORT algorithm, because the higher pro-
portion of macrophages in patients with DN 
makes the proportion of other immune cells, 
including neutrophils, appear lower. Mast cells 
are reported to increase in patients with DN, and 
their levels are related to serum creatinine levels 
[62]. Although there is evidence of stenosis if 
T cells are engaged in the development of DN, 
limited animal experiments have found that CD6 
+ and CD4 + T cells are moderately increased in 
type 2 diabetes patients and are correlated with 
proteinuria [63]. Other immune cells did not 
demonstrate substantial differences in our study, 
and their roles in DN require further exploration.

Next, we combined multiple bioinformatic 
approaches, including WGCNA and computational 
biology algorithms such as MCODE and 
GOSemSim, to identify gene markers and found 
FN1, C3, and VEGFC to be candidate markers. 
TFs and miRNAs regulate mRNA gene expression. 
Additionally, miRNAs and TF could alter the 
expression of each other. We constructed the TF- 
miRNA-mRNA network by using bioinformatics 
tools, which revealed that miRNAs (has-miR-26b- 
5p, has-miR-661, has-miR-7703) and TF (ARNT, 
CTCF, JUN and so on) might regulate the gene 
expression in the DN. Aryl hydrocarbon receptor 
nuclear translocator (ARNT) is a transcription fac-
tor that has been reported to play a vital role in 
regulating glycolysis, angiogenesis, and apoptosis. 
Low-dose tacrolimus exerts antifibrotic, renopro-
tective effects in a model of renal fibrosis via 
ARNT-mediated transcription of bone morphoge-
netic protein receptor type 1A [64]. It is reported 
that CTCF can regulate miR-185-5p/NPHS2 axis 
with a net effect of alleviating renal interstitial 
fibrosis in chronic kidney disease [65]. In our 
study, only FN1 and C3 showed statistical signifi-
cance in the test cohort and clinical database, so 
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they were ultimately identified as immune-related 
DN biomarkers. In our study, fibronectin 1 (FN1) 
was found to be highly expressed in patients with 
DN and was positively correlated with macro-
phages M2. It is known that FN1 is an accumula-
tion constituent of the extracellular matrix in the 
case of hyperglycemia and plays an essential role in 
renal fibrosis [66,67]. FN1 encodes fibronectin, 
a glycoprotein present in plasma and in extracellu-
lar matrix, which is heavily upregulated in inflamed 
tissues and in vitro can serve as a substrate for 
leukocyte migration [68], and may prove beneficial 
in promoting T cell accumulation in tissues and 
enhancing local immunity to infection or cancer 
[69]. Further verification showed that FN1 expres-
sion is related to the decline in GFR in patients with 
DN. C3, which plays a central role in the activation 
of the complement system, was overexpressed in 
patients with DN and was negatively correlated 
with GFR in this study. It has been shown that 
complement synthesis is closely associated with 
the development and progression of renal disease 
and that C3 secreted by macrophages leads to IL- 
17A-mediated inflammatory cell infiltration in 
renal tissue. C3 further promotes M1 polarization 
of macrophages, promotes the expression of 
inflammatory factors and exacerbates renal inter-
stitial fibrosis [70,71].Our KEGG results also 
showed that the complement and coagulation cas-
cade pathways were involved in the pathogenesis of 
DN, which is consistent with existing knowledge 
[5]. Researchers have suggested that complement 
C3 is activated in podocytes and renal tubules in 
animal models of diabetic nephropathy, causing 
fibrosis and renal dysfunction, and that administra-
tion of C3 receptor blockers protects diabetic 
nephropathy podocytes from injury [72,73]. Large 
clinical studies have shown that C3 is involved in 
diabetic microangiopathy and is associated with the 
progression of diabetic nephropathy [74,75]. 
Moreover, patients with glomerular complement 
C3 deposition have worse clinical outcomes [76]. 
However, the best methods for targeting the 
immune system to prevent DN progression still 
need to be investigated. We identified six potential 
small-molecule compounds in our study using the 
connectivity map database. Of these compounds, 
forskolin has been proven to protect podocytes by 
inhibiting protein biosynthesis in a cAMP- 

dependent pathway [77]. Another study also 
revealed that forskolin may inhibit blood glucose 
levels and macrophage activation, thereby exerting 
antioxidant and anti-inflammatory effects in 
a diabetic rat model [78]. However, future studies 
would benefit from experimental validation to fully 
elucidate the mechanisms underlying immune- 
related biomarkers in DN.

Conclusion

In summary, we identified the status of immune 
cell infiltration and immune-related biomarkers 
using bioinformatic approaches. FN1 and C3 
were screened and found to be closely related to 
the pathogenesis and progression of DN, as well as 
macrophage infiltration.

Clinical database verification showed that they 
were positively correlated with the GFR. Six small- 
molecule compounds were identified as potential 
therapeutic agents. Further exploration of these 
immune cells and biomarkers may provide new diag-
nostic and therapeutic targets for patients with DN.

Highlights

(1) FN1 and C3 were identified as the immune 
infiltration-associated biomarkers of DN

(2) The infiltrated immune cell landscape of 
DN was demonstrated

(3) Six potential therapeutic molecular com-
pounds of DN were predicted
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