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Abstract

Background: Numerous prediction models for gestational diabetes mellitus (GDM) have been developed, but their
methodological quality is unknown. The objective is to systematically review all studies describing first-trimester
prediction models for GDM and to assess their methodological quality.

Methods: MEDLINE and EMBASE were searched until December 2014. Key words for GDM, first trimester of
pregnancy, and prediction modeling studies were combined. Prediction models for GDM performed up to

14 weeks of gestation that only include routinely measured predictors were eligible.

Data was extracted by the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction
Modelling Studies (CHARMS). Data on risk predictors and performance measures were also extracted. Each study

was scored for risk of bias.

Results: Our search yielded 7761 articles, of which 17 were eligible for review (14 development studies and 3
external validation studies). The definition and prevalence of GDM varied widely across studies. Maternal age and
body mass index were the most common predictors. Discrimination was acceptable for all studies. Calibration was
reported for four studies. Risk of bias for participant selection, predictor assessment, and outcome assessment was
low in general. Moderate to high risk of bias was seen for the number of events, attrition, and analysis.

Conclusions: Most studies showed moderate to low methodological quality, and few prediction models for GDM
have been externally validated. External validation is recommended to enhance generalizability and assess their true

value in clinical practice.
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Background

Gestational diabetes mellitus (GDM), diabetes diagnosed
by oral glucose tolerance test (OGTT) in the second or
third trimester that is not clearly overt diabetes [1], is
becoming the number one complication in pregnancy.
Over the past decade, the prevalence of GDM has rap-
idly risen and ranges from 3 up to 35% [2, 3] depending
on the definitions used and populations studied [4, 5].
This parallels the emerging trends in obesity, population
aging, and diabetes mellitus type II. The rising preva-
lence of GDM contributes to an increasing number of
adverse perinatal outcomes, such as macrosomia,
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shoulder dystocia, caesarean delivery, and neonatal
hypoglycemia [6]. Moreover, GDM has a major impact
on long-term maternal health as well as neonatal
health. The mother is at high risk to develop dia-
betes mellitus type II within 5 years after pregnancy
[7-9], and her child is at increased risk of developing
childhood obesity and metabolic syndrome [10-12].
Early diagnosis of GDM will allow for timely treatment,
such as dietary counseling or pharmacotherapy, which has
been shown to be effective for the improvement of
perinatal outcomes [13-15].

Early risk stratification by prediction modeling might
offer opportunities to improve care for those women at
high risk of developing GDM. As timely intervention is
the key to preventing (or reducing) adverse outcomes in
GDM, clinicians need prediction models that can be
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used in the first trimester. Additionally, as all pregnan-
cies should be assessed for the risk of developing GDM,
models that only require easily obtained information are
preferable. Although various prediction models for
GDM have been developed, they are not widely used in
routine clinical practice. Ideally, new prediction models
are externally validated and updated before they are im-
plemented. A systematic review describing the charac-
teristics of the model development, the included
predictors, outcome measurement, and whether they
have undergone external validation will provide insight
into the current quality of first-trimester GDM predic-
tion models. This will improve validation and implemen-
tation of prediction models for GDM. For this purpose,
we generated a comprehensive overview of all published
first-trimester prediction models for GDM consisting of
routinely measured predictors and assessed the meth-
odological quality of these studies.

Methods

The specifics of our research question, which was
framed according to the CHecklist for critical Appraisal
and data extraction for systematic Reviews of prediction
Modelling Studies (CHARMS) guidance [16], are shown
in Table 1. The results have been reported conforming
to the PRISMA statement [see Additional file 1].

Search strategy

We performed a computerized systematic search in
MEDLINE and EMBASE on December 17, 2014. Key
words for GDM and first trimester of pregnancy were
combined with a validated search strategy for prediction
modeling studies [17]. Detailed information on the exact
search syntax is presented in Additional file 2. Reference
lists of the selected articles were scanned to ascertain
that no relevant articles were missed.

Study selection

In this systematic review, we aimed to identify all pub-
lished prognostic prediction models that are applicable
in the first trimester of pregnancy (up to 14 weeks of
gestational age). Moreover, we focused on reviewing the
prediction models including routinely measured

Table 1 Framework of the research question
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predictors only (i.e., predictors based on maternal char-
acteristics, anthropometric measures, or glucose meas-
urement) to enhance the generalizability of our review.
Model development studies as well as validation stud-
ies were eligible. Eligibility assessment of studies was in-
dependently performed by two authors (MLdR, MPHK)
by screening the title and abstract. Exclusion criteria for
selection were preconception prediction, univariate pre-
diction studies, diagnostic models, prediction models in-
cluding invasive measures (e.g., biomarkers, ultrasound
measures), association studies of one or more variables
and the outcome, no primary reports (e.g., systematic re-
views), conference abstracts, and other languages than
English, French, or German. Next, full-text articles were
thoroughly reviewed by two authors (MLdR, MPHK).
Any disagreement between reviewers was resolved by
consensus. Authors of the original studies were con-
tacted by e-mail for further information if necessary.

Assessment of methodological quality

For critical appraisal of the individual studies, we used
the recently published CHARMS checklist [16]. In sum-
mary, the following items of the CHARMS checklist
were handled: study characteristics and participants; out-
come to be predicted; candidate predictors (for develop-
ment studies only); sample size and handling of missing
data; model development (for development studies only);
model evaluation; and results and interpretation.

One reviewer (MLdAR) extracted data according to
the CHARMS checklist from the included studies. A
second author (MPHK) checked the extracted data.
Disagreements were resolved by consensus between
these two authors. After data extraction, each study
was scored for risk of bias as follows: “low” if bias
was unlikely; “moderate” if there were no essential
shortcomings, but not all criteria were satisfied; and
“high” if bias was very likely due to essential errors in
one or more of the domains [18].

Data extraction

For each included study, the method of GDM diagnostic
strategy and criteria were obtained in detail. Moreover,
risk predictors that were included in the prediction

[tem Description

Intended scope of the review
diabetes in pregnancy

Type of prediction modeling studies

Target population to whom the prediction
model applies

Outcome to be predicted

Intended moment of using the model

Reviewing prognostic models that are aimed at predicting the development of gestational

Both model development and model validation studies

Low- and medium-risk pregnant women in the first trimester of pregnancy

Probability of developing gestational diabetes in current pregnancy

First trimester of pregnancy
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model as well as indicators of performance measures
were extracted. The actual predictive performance was
also extracted and reported as the area under the (re-
ceiver operating) curve (AUC or c-statistic) or as classifi-
cations measures, such as sensitivity, specificity, positive
predictive value, and negative predictive value.

Results

Study selection

An overview of the flow of the systematic review process
is given in Fig. 1. Our computerized search yielded a
total of 7761 unique articles. Of these, 7621 articles were
excluded on the basis of the title and abstract and an-
other 123 articles on the basis of full-text screening. Ref-
erence cross-checking of the selected papers yielded no
additional studies. Thus, a total of 17 studies on first-
trimester prediction modeling for GDM were identified
for inclusion in this review [19-34]. Fourteen studies
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were development studies and another three studies
were external validation studies. All studies were pub-
lished between 1997 and 2014 and conducted in 11 dif-
ferent countries: three in the UK, two in Italy, two in the
Netherlands, two in Greece, two in Canada, and one in
Australia, Iran, Russia, Turkey, the USA, or Vietnam.

Outcome assessment

All extracted data on diagnostic strategies for GDM are
shown in Additional file 3. Eight different diagnostic
outcome (i.e., GDM) criteria were used in the included
studies. The prevalence of GDM within the included
studies ranged from 2.4% (model 14) to 26.5% (model 7).
The diagnostic criteria differed in the dose of oral glu-
cose to be administered, number of glucose levels mea-
sured, time interval of glucose measures, and cutoff
point of glucose levels. The oldest criteria used, by Car-
penter and Coustan and the National Diabetes Data
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Fig. 1 Flow chart of systematic review. Flow chart of systematic review of first-trimester prediction models for gestational diabetes

Validation studies

15. Lovati 2013 (model 12)

16. Theriault 2013 (model 1, 5, 12, 14)
17.Van Leeuwen 2009 (model 5)
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Group, were the only criteria that prescribed a 100-g
dose of glucose and a four-point blood glucose level
measurement. All other, more recent, GDM criteria
used a 75-g dose of glucose.

The included studies had different strategies for setting
the diagnosis of GDM: six studies used a one-step ap-
proach by applying an OGTT to all participants for diag-
nosing GDM (models 2, 6, 8, 10, 13, and 15). In another
five studies, a two-step approach was performed using a
50-g glucose challenge test followed by an OGTT
(models 1, 3, 5, 12, and 16). Five studies used another
two-step approach, in which a screening method (ie.,
random glucose, risk factor, or a combination of screen-
ing) was followed by an OGTT (models 4, 9, 11, 14, and
17). The remaining study did not clearly report their
strategy, but they did report on their diagnostic criteria
(model 7).

Risk of bias assessment

Table 2 shows the risk of bias for each included study
based on six predefined domains, and Fig. 2 provides a
summarized overview of potential bias. For participant
selection, predictor assessment, and outcome assess-
ment, the majority of the studies were scored as low risk
of bias (n =13-15; 76—88%). None of the studies had a
high risk of bias in these categories. A moderate risk of
bias for participant selection was mainly due to debat-
able inclusion or exclusion criteria. Predictor assessment
was at moderate risk for three models because assess-
ment of predictors was performed in retrospect, after

Table 2 Risk of bias assessment
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Risk of bias assessment

0 5 10 15 20

Participants
Predictor assessment
Outcome assessment
Number of events

Attrition

Analysis .

Fig. 2 Risk of bias assessment summary. Risk of bias assessment for
six predefined domains for each included study. Legend: green, low

risk of bias; yellow, medium risk of bias; red, high risk of bias

the outcome (GDM) was known. Two studies had a
moderate risk of bias regarding outcome assessment
due to different reasons: (1) two different diagnostic
criteria for GDM were used in the study period
(model 15) and (2) diagnosis of GDM based on risk
factor screening only, which is a less sensitive ap-
proach (model 9) [35].

The number of events was scored as high risk of bias
for four models (24%) because they had less than six
events per variable (EPV) or because we were unable to
extract the EPV. A moderate risk was scored for three
(18%) other prediction models with an EPV between six
and ten or with a very low number of cases (<50) for ex-
ternal validation.

Study Participants Predictor Outcome No. of events Attrition Analysis
1. Caliskan 2004 L L L L M H
2. Eleftheriades 2014 M L L M L M
3. Gabbay-Benziv 2014 L L L H M M
4. Nanda 2011 L L L L H M
5. Naylor 1997 L L L M M M
6. Pintaudi 2014 L M L L M M
7. Popova 2014 L M L L H M
8. Savona-Ventura 2013 M M L L M M
9. Sawvidou 2010 L L M L H M
10. Shirazian 2009 L L L H M M
11. Syngelaki 2011 L L L H M M
12. Teede 2011 L L L L H M
13. Tran 2013 L L L L M M
14. Van Leeuwen 2010 M L L H L L
15. Lovati 2013 M L M L L M
16. Theriault 2014 L L L L M M
17. Van Leeuwen 2009 L L L M L L

Abbreviations: L low risk of bias, M medium risk of bias, H high risk of bias



Lamain - de Ruiter et al. Diagnostic and Prognostic Research (2017) 1:3

Assessment of attrition (i.e., no loss to follow-up)
showed a high risk of bias for four (24%) of the predic-
tion models. These four studies were scored as high risk
due to lack of information on sample flow or on missing
data. Most studies (n=9, 53%) performed a complete
case analysis; these models were scored as moderate risk
of bias.

Information on development of the prediction models
was insufficiently reported in almost all studies (n =14;
82%), and therefore, all scored a moderate risk. Only
two studies (from the same research group) reported a
complete description of the analysis performed (models

Table 3 Calibration and discrimination of development studies
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14 and 17). A high risk of bias was present in one study
where no information on model development was pro-

vided (model 1).

Predictors in the final model

An overview of the predictors in the final models in each
study is shown in Table 3. The smallest final prediction
model consisted of two predictors and the largest of
eight predictors. Age and body mass index were the
most common predictors; both were included in 11 pre-
diction models. Four models included other anthropo-
metric measures, i.e., maternal weight, blood pressure,

Study Risk predictors AUC Calibration  Sensitivity Specificity
Predictors and no. of predictors Original External External
study validation 1 validation 2
1. Caliskan 2004 Poor outcome, age, BM|, 5 NR 0.68 85.7 67
fam hx of DM, hx of [0.65-0.71] [67.4-100] [59.4-74.8]
macrosomia
2. Eleftheriades 2014 Weight, age 2 073 324 90
[0.65-0.81] NR NR
3. Gabbay-Benziv 2014 Age, ethnicity, hx of GDM, 5 081 p=0.18 85 62
hx of macrosomia [0.77-0.87] (746-932]  [574-64.0]
4. Nanda 2011 Age, BMI, ethnicity, hx of 5 079 529 90
GDM, hx of macrosomia [0.76-0.82] NR NR
5. Naylor 1997 Age, BMI, ethnicity 3 069 067 064 p=093 65.9 84
NR [0.64-0.70] [0.56-0.72] NR NR
6. Pintaudi 2014 BMI, glucose, hx of 4 NR 89 40
macrosomia, NR NR
fam hx of DM
7. Popova 2014 BMI, glucose, AC, PCOS 4 NR NR NR
8. Savona-Ventura 2013 Age, glucose, blood pressure 3 0.89 96.6 375
[0.86-0.91] NR NR
9. Savvidou 2010 Age, BMI, ethnicity, hx of 7 082 NR NR
GDM, mode of conception, NR
parity, smoking
10. Shirazian 2009 Age, BMI, fam hx of DM 3 NR NR NR
11. Syngelaki 2011 Age, BMI, ethnicity, mode of 8  NR NR NR
conception, smoking, hx of
chronic hypertension,
parity, hx of macrosomia
12. Teede 2011 Age, BMI, ethnicity, fam 5 070 0.74 0.60 68.0 70.8
hx of DM, hx of GDM NR [0.70-0.78] [0.56-0.64] [61.3-73.9] [68.8-72.6]
13.Tran 2013 Age, BMI 2 071 799 48.5
ADA criteria [0.68-0.75] NR NR
13. Tran 2013 Age, BMI, fam hx of DM 0.65 704 525
IADPSG criteria [0.62-0.67] NR NR
13. Tran 2013 Age, BMI 0.63 65.1 53.7
WHO criteria [0.60-0.65] NR NR
13. Tran 2013 Age, BMI 0.64 64.1 56.8
ADIPS criteria [062-067] NR NR
14. Van Leeuwen 2010 BMI, ethnicity, fam hx 0.77 0.76 p=025 458 884
of DM, hx of GDM [0.69-0.85] [0.73-0.79] [28.2-64.5] [87.9-88.8]

Abbreviations: AC abdominal circumference, AUC area under the (receiver operating) curve, BVl body mass index, DM diabetes mellitus, fam family, GDM
gestational diabetes, hx history, NR not reported, PCOS polycystic ovary syndrome
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and abdominal circumference. Risk factors based on ob-
stetric history were often included; five models included
a history of GDM and four a history of macrosomia. Five
models included a positive family history of diabetes.
Routine obstetric care often includes a blood glucose
level measurement at the beginning of pregnancy to rule
out pre-existing diabetes. Three models included this
glucose level measurement.

Predictive performance

Table 3 summarizes the predictive performance of the
prediction models. The c-statistic of nine of the develop-
ment studies that reported predictive performance
ranged from 0.63 to 0.89. The three external validation
studies showed c-statistics from 0.60 to 0.76. Median
sensitivity and specificity were 67 and 71% and 66 and
65% for development and validation studies, respectively.

Although external validation is necessary to assess the
true value of prediction models, the majority of devel-
oped models (71%) has not yet been externally validated.
Two models (models 5 and 12) used an internal valid-
ation technique, and four of the developed models were
externally validated (models 1, 5, 12, and 14). Their ex-
ternal performance measures were slightly lower com-
pared to the original results.

Calibration was reported for four studies (24%; models
3, 5, 14, and 17), by means of a Hosmer-Lemeshow test,
a x> goodness of fit, or a calibration plot. The exter-
nal validation of model 5 showed a poor goodness of
fit (p =0.06); the other three models showed adequate
calibration.

Discussion

Main findings

In this systematic review on first-trimester prediction
models for GDM, consisting of routine measures only,
we identified 14 development studies and three external
validation studies based on four of the developed
models. Assessment of methodological quality revealed
various shortcomings on the model development studies,
resulting in a moderate to low quality of the reviewed
models.

These shortcomings all lead to overfitted prediction
models. Overfitting means that a prediction model is too
closely tailored to the data at hand, which makes it less
likely for a model to perform well in practice, in the
same or in a different population. The likeliness of over-
fitting is high, as most authors did not report on the
number of candidate predictors they considered or on
the predictor selection technique used (e.g., dichotomi-
zation of variables, univariable significance criteria for
inclusion). Additionally, handling of missing data can
also be a source of bias. Only two studies handled miss-
ing data according to the most preferable standards, i.e.,
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by multiple imputation [36]. At last, as a crucial step
prior to implementation, validation of developed predic-
tion models in external datasets (i.e., datasets that were
not used to develop the model) is needed. All develop-
ment studies described in this review have a high risk of
bias, which often show overestimated performance mea-
sures. We found that only four out of the 14 identified
models have been externally validated, despite knowing
that external validation in independent data is all that
matters. The models showing the highest c-statistic in
our review have not yet been externally validated (ie.,
models 3, 8, and 9).

Strengths and limitations

To our knowledge, this is the first systematic review on
prediction models for GDM. As the number of predic-
tion models for GDM is rapidly increasing, it is import-
ant to generate an overview of the quality and
characteristics of models that are already available. A
major strength of our review is that it is based on a vali-
dated search strategy for prediction models. Further-
more, all prediction models were thoroughly assessed on
quality by means of the CHARMS guideline.

However, some limitations need to be addressed. We
restricted our inclusion criteria to models consisting of
routine measures only. Therefore, promising prediction
models that also use more invasive measurements may
have been missed. Leaving aside that studies on the
added value of biomarkers to noninvasive models are
scarce, the biomarkers that have been studied for the
prediction of GDM show that their predictive perform-
ance is limited and contradictory results have been pub-
lished [32, 37-39]. For future studies, we recommend to
assess the added value of biomarkers only for prediction
models that have been proven to perform well in exter-
nal validation studies.

A second limitation of our systematic review might be
the highly variable measures of outcome, which hampers
the comparison of prediction models for GDM. GDM
was diagnosed by eight different criteria and by even
more diagnostic strategies, reflecting the variation in
currently used international diagnostic criteria [40, 41].
Though sub-analysis according to the criteria used
would be interesting, we expect subgroups to be so small
that this will severely limit the value of sub-analysis.
Moreover, it is known that the differentiation in diagnos-
tic strategies and criteria has a major impact on the
prevalence of GDM [31, 41]. There is an international
guideline for diagnostic strategies and criteria for GDM
[42], but international implementation is hampered by
the ongoing debate on a “gold standard.” For a fair com-
parison of prediction models for GDM, universally im-
plemented diagnostic strategy and criteria of GDM
would be of great benefit.
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Interpretation

Our systematic review identified multiple prediction
models for GDM in the first trimester of pregnancy con-
sisting of routine measures only, most of them showing
moderate to low methodological quality. Correspond-
ingly, other systematic reviews on prognostic models in
different fields (i.e., cancer prognosis, low back pain
prognosis, and prognosis of pregnancy complications)
also report the frequent occurrence of inadequate
methods for development of prediction models [43-45].
The recently published guidelines that advocate for
transparent reporting of prediction models may function
as a tool to improve reporting on methodological qual-
ity, also in obstetric research [46].

Although most studies showed promising predictive
performance in development studies, this systematic
review shows there is an urgent need of external val-
idation of the most promising ones. A recently pub-
lished external validation study did not validate the
models with the best performance measures [47]. The
lack of external validation of these results leads to
limited generalizability, as development data often
leads to inaccurate predictions when applied to other
individuals than the individuals in the original study
[16]. Therefore, we strongly advocate an external val-
idation and head-to-head comparison of all models
that were identified in this systematic review.

Assuming that performances reported in develop-
ment studies may be confirmed in external validation
studies, prediction models for GDM show a perform-
ance at least as good as traditional risk factor screen-
ing, as recommended by current guidelines [48, 49].
However, prediction model-based GDM screening
might offer the opportunity to reduce the burden of
diagnosing GDM (e.g., only applying an OGTT to
women at high risk of developing GDM). Current
guidelines for GDM diagnostic strategies show a high
sensitivity (>90%), but a very low specificity (3—-35%),
therefore requiring the administration of an OGTT to
the majority of the population (up to 97%) [4]. Hope-
fully, when prediction models will be implemented
into routine obstetric care, fewer women undergo an
OGTT while still maintaining the high sensitivity.
Therefore, a prediction model based on routine mea-
sures will probably also be a cost-effective interven-
tion. There will also be opportunities for prevention
of GDM as models can be applied as early as the first
trimester of pregnancy. Knowledge on the efficacy of
prevention of GDM is not yet conclusive as several
trials are still ongoing [50]. Preventive strategies and
targeted care would be in line with a greater trend in
health care towards a more personalized approach of
health care delivery: “the right treatment for the right
person at the right time” [51].
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Conclusions

Although many first-trimester prediction models for
GDM have been developed, only few have been exter-
nally validated and most showed moderate to low meth-
odological quality. Before implementation of prediction
models in clinical practice can take place, it is important
that their true value is assessed by external validation in
the population in which they are to be used. As the best
and most promising prediction models have not yet been
externally validated, we recommend an external valid-
ation and head-to-head comparison of these models be-
fore including them in clinical guidelines and daily
practice. Hopefully, this will guide implementation of
prediction models for GDM into clinical practice and
provide room for targeted interventions in pregnancy.
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