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Abstract

Background: The synchronous ionic currents that give rise to neural oscillations have complex 

influences on neuronal spiking activity that are challenging to characterize.

New method: Here we present a method to estimate probabilistic relationships between neural 

spiking activity and the phase of field oscillations using a generalized linear model (GLM) with 

an overcomplete basis of circular functions. We first use an L1-regularized maximum likelihood 

procedure to select an active set of regressors from the overcomplete set and perform model 

fitting using standard maximum likelihood estimation. An information theoretic model selection 

procedure is then used to identify an optimal subset of regressors and associated coefficients that 

minimize overfitting. To assess goodness of fit, we apply the time-rescaling theorem and compare 

model predictions to original data using quantile-quantile plots.

Results: Spike-phase relationships in synthetic data were robustly characterized. When applied 

to in vivo hippocampal data from an awake behaving rat, our method captured a multimodal 

relationship between the spiking activity of a CA1 interneuron, a theta (5–10 Hz) rhythm, and a 

nested high gamma (65–135 Hz) rhythm.

Comparison with existing methods: Previous methods for characterizing spike-phase 

relationships are often only suitable for unimodal relationships, impose specific relationship 

shapes, or have limited ability to assess the accuracy or fit of their characterizations.

Conclusions: This method advances the way spike-phase relationships are visualized and 

quantified, and captures multimodal spike-phase relationships, including relationships with 

multiple nested rhythms. Overall, our method is a powerful tool for revealing a wide range of 

neural circuit interactions.
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1. Introduction

Neural oscillations in extracellularly recorded signals arise from repeated, synchronous 

transmembrane currents across a population of neurons (Buzsáki and Draguhn, 2004; 

Buzsáki et al., 2012; Herreras, 2016; Jones, 2013; Pesaran et al., 2018). These currents 

have the ability to create temporal windows in which neurons are more or less depolarized. 

Consequently, the probability of observing spiking activity in neurons affected by these 

currents often stereotypically changes according to the phase of the oscillatory signal. 

However, the relationship between neural spiking activity and the phase of an oscillation 

is not always straightforward for a number of reasons. In particular, neurons often 

receive a convergence of different inputs that can have conflicting influences upon 

their depolarization. For example, a neuron that consistently receives a large number of 

synchronized excitatory inputs from one source might also receive behaviorally dependent 

inhibitory inputs from another source that affect the timing and probability of its spiking 

activity in a complex manner. In this scenario, the spiking activity of the neuron exhibits a 

dynamic relationship with the phase of the oscillation, which changes depending upon the 

behavior of the organism. Another source of complexity and unpredictability in determining 

spike-phase relationships arises from the fact that extracellularly recorded local field 

potential (LFP) and electroencephalography (EEG) reflect spatially averaged signals that 

can have both local and distant influences (Buzsáki et al., 2012; Herreras, 2016; Jones, 

2013). This means that while some neurons exhibit spiking activity closely related to the 

phase of a particular oscillation, neighboring neurons might be more or less influenced by 

the currents generating the oscillation, or may not be affected at all. Thus, the relationship 

between neural spiking activity and oscillatory phase cannot be assumed a priori, and must 

be characterized experimentally.

By characterizing the relationship between neural spiking activity and the phase of a 

particular neural oscillation, we gain insight into the manner in which different neurons 

interact to support information processing. Since the oscillatory frequencies that manifest in 

a region can be the product of repeated interactions between neurons (Buzsáki and Draguhn, 

2004; Kramer et al., 2008; Roopun et al., 2008; Sherman et al., 2016; Whittington et al., 

2000), examining the strength of spike-phase relationships across populations of neurons 

can provide insight into the degree of their mutual engagement in rhythmic circuits. For 

example, certain gamma frequency oscillations arise from interactions between principal 

neurons and local inhibitory interneurons (Fries et al., 2007; Tiesinga and Sejnowski, 2009; 

Whittington et al., 2000). In this scenario, the frequency of the gamma oscillation is dictated 

by the decay time of inhibition, and both populations exhibit synchronized spiking activity 

tightly linked to the phase of the gamma oscillation. Identifying populations of principal 

cells and interneurons in a region that exhibits strong spike-phase relationships to the 
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same gamma frequency range can thus indicate that a similar interaction is occurring. In 

addition, strong spike-phase relationships across brain regions can suggest that the rhythmic 

input from one region influences the spiking activity of another, providing evidence for 

cross-regional interactions (Engel and Fries, 2010; Fries et al., 2007; Fries, 2009). Thus, 

characterizing spike-phase relationships can lead to the identification of local and cross­

regional interactions that contribute to the dynamic information processing abilities of a 

region.

There are a number of methods currently implemented in neurophysiological studies to 

characterize spike-phase relationships. For spike-phase relationships that are thought to be 

unimodal, researchers often quantify the preferred phase of spiking and the strength of this 

preference by calculating the circular mean θpref and the mean resultant length vector R as 

follows (Berens et al., 2009; Lowet et al., 2016; Siapas et al., 2005):

θpref = arctan
∑k = 1

K sin θk

∑k = 1
K cos θk

(1)

R =
∑k = 1

K sin θk
K

2
+

∑k = 1
K cos θk

K

2
(2)

where k indexes spike times, K is the total number of spikes, and θk is the phase of an 

oscillation at the time of each spike. Using the above expressions, it is possible to assess 

the degree to which spiking activity demonstrates a particular phase preference on average. 

This quantification method, and other methods that similarly quantify the consistency of 

spike-phase relationships through averages, can prove useful when assessing the degree to 

which unimodal phase preferences change across neurons or behavioral conditions (Siapas 

et al., 2005; Sirota et al., 2008; Siegel et al., 2009). In addition, researchers often implement 

standard coherence measures to gauge consistency of spike-phase relationships (Chalk et al., 

2010; Fries et al., 2008; Pesaran et al., 2002, 2008). A spike spectrum Gspike(f) at frequency 

f is created from a sequence of spike counts over time and compared to a field potential 

spectrum Gfield(f) using the following formula:

Cspike‐field (f) = Gspike‐field (f)
Gspike (f)Gfield (f) (3)

where Gspike-field(f) is the cross-spectrum and Cspike-field(f) is the coherency between the 

two spectra. One major pitfall of these commonly used quantification methods, however, is 

that they are only applicable to unimodal spike-phase relationships. As such, they reduce 

potentially complex multimodal relationships (e.g. Skaggs et al., 1996) to single values 

for phase and strength. In addition, these methods do not statistically capture the inherent 

discrete (e.g. binary) temporal nature of neural spiking. Another concern is that the number 

of spikes in a data set and the length of the time series can strongly bias these measures 

(Lepage et al., 2011). Although several research groups have developed methods to quantify 

these influences and account for them when comparing across trials or conditions (Aoi et 
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al., 2015; Vinck et al., 2011, 2012), the uncertainty in the estimated relationships due to low 

spike counts or small data sizes is seldom fully quantified or reported.

Several promising methods for relating neural spiking activity to predictive variables, such 

as the phase of an oscillation, utilize parametric point process likelihood models (Barbieri et 

al., 2001; Czanner et al., 2008; Eden et al., 2018; Lewis et al., 2012; Truccolo et al., 2005). 

Rather than attempting to fully uncover the relationship between spiking and the phase of 

a neural oscillation, these methods often aim to predict neural spiking using a range of 

extrinsic covariates, including the phase of an oscillation. By performing model-fitting with 

point process maximum likelihood estimation, several useful and robust statistical methods 

may be implemented to both ensure goodness of fit and to quantify uncertainty. Models 

and methods that do not perform (or do not have the ability to perform) goodness of fit 

techniques are vulnerable to the imposition of inaccurate relationships onto the data. For 

example, a function (e.g. sine, polynomial, square) utilized by the model to fit the data 

imposes a shape that can be quite different from the true relationship (Fig. 1). In addition, 

when using a single function (and not a mixture of functions), complex relationships 

are forced into much simpler representations. To avoid these scenarios, the shape of the 

underlying relationship would need to be known a priori so that an appropriate function 

could be chosen. As described above, however, it is not always possible nor appropriate 

to assume a specific spike-phase relationship, given that neuronal engagement in larger 

rhythmic circuits is often unpredictable and dynamic.

In order to capture potentially complex spike-phase relationships without any a priori 
information regarding the underlying relationships, we propose the generation of a point 

process generalized linear model (GLM) using an overcomplete basis set of circular 

functions of phase. Specifically, we use Von Mises functions with a range of mean and 

inverse variance combinations. We propose a two-step process increasingly used in modern 

high-dimensional sparse statistical modeling (Belloni et al., 2013; Chételat et al., 2017). We 

first perform regressor selection with a penalized estimation procedure, and then perform 

maximum likelihood estimation with respect to the active set of regressors previously 

identified. Specifically, we select an active set of regressors from the overcomplete set by 

implementing an ℓ1-penalized maximum likelihood estimation procedure and then selecting 

the regressors with nonzero coefficients. The ability to flexibly incorporate different 

numbers and combinations of regressors into the active set renders this workflow highly 

adaptable to any spike-phase relationship. In the next step, we perform standard maximum 

likelihood model-fitting with regressors from the active set. In order to obviate overfitting, 

we use model selection criteria, specifically the Akaike information criterion (Akaike, 

1974), to identify the optimal active set.

In this paper, we demonstrate a robust ability to characterize a range of spike-phase 

relationships in both simulated and experimental data. We also present novel results from 

the rodent hippocampus, characterizing a multimodal interneuron relationship to both a 

theta (5–10 Hz) and a nested high gamma (65–135 Hz) rhythm. These results highlight 

a novel use of this method in identifying and quantifying the temporal coordination of 

spike coupling to multiple, co-occurring rhythms. Our method is thus a powerful tool for 

visualizing and characterizing neuronal engagement in rhythmic circuits.
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2. Methods

2.1. Constructing an overcomplete basis of circular functions

Characterizing the relationship between spiking and neural oscillatory data first requires 

developing a method for relating two qualitatively different datasets. Neural spiking data is 

often represented as a point process, with action potentials occurring at discrete time points 

and irregular intervals. In contrast, phase data describing neural oscillations is continuous 

and circular, with regularly repeating values ranging from −π to π radians. In order to 

characterize the conditional probability of observing a spike given the phase of a neural 

oscillation, we regress upon functions that are continuous on a circular plane. The Von Mises 

function, a circular variant of the normal function, of mean μ and inverse variance κ, is given 

by

V (θ; μ, κ) = eκcos(θ − μ)

2πI0(κ) (4)

where I0 is the Bessel function of order 0. We chose this function to form the overcomplete 

basis in this study because it is a well-defined function that is commonly used when 

representing circular datasets (Kim et al., 2013; Masseran et al., 2013; Mooney et al., 2003; 

Olson et al., 2017). While we have chosen to use Von Mises functions, alternative circular 

functions (e.g sine, cosine) can also be used to form the overcomplete basis. The phase θ is 

converted into a set of regressors by defining

V i, j(θ) = V θ; μi, κj , i = 1, …, I, j = 1, …, J (5)

where i indicates one of I = 19 possible means spanning from −π and π in steps of 

0.314 radians, and j indicates one of J = 20 possible inverse variance values ranging from 

0.01 to 30 in steps of 1.5005. For reference, these inverse variance values translate to 

approximate widths at half-maximum spanning one half to 3/50th of a cycle. A total of 380 

continuous functions were generated using (5) from each unique mean and variance pair, 

forming an overcomplete basis of functions through which spike-phase relationships could 

be represented.

2.2. Calculating the conditional probability of a spike given the phase of an oscillation

We discretize spiking activity into time bins matching the LFP sampling frequency (e.g. 1 

ms), treating the resulting time series as a sequence of Bernoulli random variables which can 

take values 0 (no spike) or 1 (spike). We use a generalized linear model (GLM) with logit 

link function (canonical for the Bernoulli probability model) as a discrete time statistical 

model of neural spiking (Haslinger et al., 2010; Lewis et al., 2012). Specifically, at time bin 

t, we use the logit link function to associate spiking probability to oscillatory phase θt as 

follows:

logit P Y t = 1 θt = ∑
i = 1

I
∑
j = 1

J
xi, jV i, j θt (6)
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where logit(u) = log u
1 − u , Yt is a binary random variable at time t which is 1 when a spike 

occurs and 0 otherwise, and x = [xi,j : i =1, …, I, j = 1, …, J] is a vector of length I × J 
pertaining to the weights applied to each base function Vi,j.

We can define the regressor vector of length I × J at time t as

Rt = V i, j θt : i = 1, …, I, j = 1, …, J (7)

and the inner product as

Rt, x ≜ ∑
1 = 1

I
∑
j = 1

J
V i, j θt xi, j (8)

so that (6) can be rewritten succinctly as

P Y t = 1 θt = e Rt, x

1 + e Rt, x . 9

The likelihood of a model is a quantitative measure for determining the plausibility 

of a model given observed data. Maximizing the likelihood is a well-known procedure 

for determining x values that optimize the model fit (Poor, 2013). Since −log(u) is 

a monotonically decreasing function of u, maximizing the likelihood is equivalent to 

minimizing the normalized negative log likelihood, given by:

l(x) = 1
N ∑

t = 1

N
− yt ⋅ Rt, x + log(1 + e Rt, x ) . (10)

Although directly minimizing l(x) provides an estimated weight, xi,j, for each basis function 

Vi,j, this would lead to overfitting in our setting given the use of this overcomplete basis. 

As such, the resultant model would be less generalizable, and less likely to represent the 

underlying relationship because of poor bias-variance tradeoffs (Poor, 2013) that arise when 

performing maximum likelihood with large numbers of parameters.

2.3. Active regressor selection with an ℓ1-regularized generalized linear model

In this section, we first discuss challenges in selecting functions for models of different 

complexity, and then propose a solution for optimizing both the number and identity of 

basis functions used in the model to represent the data. While some basis functions, such 

as Zernike polynomials, have a natural ordering based upon increasing complexity and 

orthogonality (Barbieri et al., 2002; Coleman and Sarma, 2010; Lakshminarayanan and 

Fleck, 2011), there is no natural ordering for basis functions such as Von Mises functions. 

One possible method for increasing the number of Von Mises functions in the model adopts 

a stepwise approach. In this approach, an ordering is established by systematically adding 

one additional function to the model at a time. Each new function optimizes the fit given 

the functions already within the model. This stepwise approach increases model complexity 

in an ordered fashion, but can cause inefficient selection of function identity and possible 
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inflexibility in the shape of the model. For example, the first Von Mises function selected 

to characterize a spike-phase relationship with two neighboring peaks may be a function 

that spans both peaks due to their proximity. Additional functions added using a stepwise 

approach must improve upon an existing poor fit, rather than allowing functions in the 

model to flexibly change as complexity is increased. To solve this problem, we propose the 

use of a term proportional to the ℓ1 norm of x,

‖x‖1 = ∑
i = 1

I
∑
j = 1

J
xi, j , (11)

to impose sparsity in the number of regressors used to characterize the data:

minx l(x) + λq x 1 (12)

where λq is a non-negative regularizer coefficient that controls the magnitude of 

regularization and thus the sparsity in the solution. We define the active set S[q] to be 

the set of (i, j) pairs for which the weights associated with the solution of (12) are nonzero. 

By systematically varying the magnitude of the regularization λq as a function of index q, 

the active set can be varied, allowing greater or fewer numbers of regressors to be used in 

the model. Unlike adding an additional regressor to the model in a stepwise manner, this 

method allows the regressors within the active set to change as λq changes, making this 

method more adaptable than a stepwise method. Thus, ℓ1-regularization provides a method 

for both increasing the model complexity and selecting the most appropriate set of Von 

Mises basis functions for any given model order. Note that while the x is a term within 

(12), the purpose of this step is to identify the active set S[q] associated with λq, and 

not to identify the optimal weights. This is in part because of a well-known drawback of 

ℓ1-regularized estimators is the systematic shrinkage of the large coefficients towards zero 

(Belloni et al., 2013).

2.4. Model fitting

By defining the inner product with respect to the active set

Rt, x S = ∑
(i, j) ∈ S

V i, j(p)xi, j, (13)

we can define the likelihood of x with respect to S as the likelihood in (10), but only 

operating on the (i, j) components of x and Rt within S:

l(x; S) = 1
N ∑

t = 1

N
− yt ⋅ Rt, x S + log(1 + eS

Rt, x ) . (14)

Thus, after finding the active set S[q], weights can be calculated for each Von Mises function 

using standard maximium likelihood procedures operating upon regressors in the active set:

x[q] = argmin
x

l(x; S[q]) (15)
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where it is assumed that for any (i, j) pair that is not in S[q], the coefficient x[q]i,j = 0. Now 

that the Von Mises functions have been ordered using a method that best allows them to 

represent the data, another method is required to select the active set that optimally describes 

the data while minimizing overfitting.

2.5. Model selection

To minimize overfitting, we implement a model selection procedure that utilizes the Akaike 

information criterion (AIC) (Akaike, 1974). This method applies an additive penalty term 

to l according to the number of degrees of freedom for the qth model, which in the case of 

ℓ1-regularized problems pertains to the size of the active set (Tibshirani and Taylor, 2012; 

Zou et al., 2007):

Aq = l(x[q]; S[q]) + dq
N , (16)

where dq is the number of elements in S[q]. We then select q* as a local or global minimum 

of Aq and select

S* = S q* , x* = x q* . (17)

As such, S* is the active set that optimally characterizes the data while minimizing 

overfitting. This approach thus provides an unbiased method for determining the optimal 

number of regressors and associated weights to use with the model.

2.6. Calculating the final conditional probability using the selected model

Following the selection of the optimal active set, the optimal conditional probability of a 

spike given the phase of an oscillation is calculated given the following equation:

P Y t = 1 θt =
eS*

Rt, x*

1 + eS*
Rt, x* (18)

where S* and x* are the optimal active set and optimal weights, respectively, as described in 

(17).

2.7. Goodness of fit

To evaluate whether or not a proposed statistical model of neural spiking appropriately 

characterizes the spike train time series, a goodness-of-fit measure is needed to 

quantitatively assess the agreement between the model and neural spiking activity. The 

time-rescaling theorem (Brown et al., 2002) indicates that with an accurate model, a 

transformation of inter-spike-intervals (ISIs) can be performed to construct a new spike 

train with independent, identically distributed ISIs. Standard goodness-of-fit with quantile­

quantile (Q-Q) plots can be applied to these ISIs. Altogether, performing this procedure 

allows for an assessment of whether the statistical model indeed characterizes the statistical 

nature of the measured spike train (Brown et al., 2002). Confidence intervals (e.g. 95%) 
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alongside the Q-Q plot can be used to assess the extent to which the model accurately 

represents the data. In addition, a χ2 test can be performed in order to assess the extent 

to which the estimated conditional probability deviates from a theoretically equiprobable 

distribution, with p < 0.05 used as a significance threshold. The entire workflow is illustrated 

in Fig. 2.

2.8. Simulated neural data

To simulate neural oscillations in the local field potential, we generated 60 s of continuous, 

circular phase data that repeatedly spanned −π to π radians in uniform steps. To emulate 

theta oscillations typical of the rodent hippocampus, the phase data completed a cycle every 

125 data points, corresponding to an 8 Hz oscillation recorded at a sampling rate of 1000 

Hz.

In order to evaluate the effectiveness of the model in characterizing different spike-phase 

relationships, simulated unimodal and multimodal relationships were created. To generate 

these relationships, the same Von Mises distributions used to form the overcomplete basis 

described in Section 2.1 were chosen to create ground truth probability values obeying the 

following relationship:

P Y t = 1 θt = Rt, w (19)

where P  is the simulated conditional probability of observing a spike at time t for a specific 

phase θt, Rt is the vector of Von Mises functions evaluated at θt, given by (7), and w is a 

length I × J vector of coefficients. Note that this method of generating the simulated data 

does not contain the logit function and thus differs from (6) used in the model. Since the 

simulated dataset falls outside the class of parametric statistical models for which we will 

perform inference, this allows us to test the ability to approximately recover spike-phase 

statistical relationships that lie outside the model class.

To create unimodal spike-phase relationships, an (i, j) pair was chosen at random to select 

a single Von Mises distribution fi,j. This process was repeated for every cycle of the phase 

data set. The associated w vector contained all zeros except in the (i, j) position, where wi j, 

was randomly selected to scale the Von Mises function while ensuring that 〈Rt w〉, at each 

t remained between 0 and 1. At each time point t, spikes were generated according to the 

probability dictated by (19). To generate multimodal spike-phase relationships, multiple (i, j) 
pairs were chosen at random, and each coefficient wi j, was scaled to ensure that 〈Rt w〉, at 

each time point remained between 0 and 1.

2.9. Identification of data limitations

In order to simulate similar spike-phase relationships from neurons exhibiting a range of 

different firing rates, wi j, was adjusted to create peak probability values ranging from 0.001 

to 0.9 for the unimodal condition. In a data set in which phase data completes a cycle every 

50 data points (corresponding to a 20 Hz oscillation recorded at a sampling rate of 1000 

Hz) these peak probability values correspond to a range of firing rates from approximately 

0.3 Hz to 314.2 Hz. This method substantially adjusts the probability of observing a spike 
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on any given cycle, while maintaining the degree of phase modulation within a cycle. To 

increase the size of the dataset, these cycles were repeated for larger or smaller intervals 

depending on the desired data length. Spikes were generated for data sets ranging from 1 to 

300 s.

Since the workflow requires at least one spike to attempt characterization of the data, there 

is a limited ability to test the effectiveness of the model in low firing rate and small data 

size conditions. In these circumstances, our methodology will generally overestimate spiking 

probabilities. Given the tendency for inaccurate spike probability estimates in small data 

sizes, the approximate mean firing rates for simulated data sets (Fig. 4) were calculated from 

the total number of spikes in a 300 s interval. To compare the conditional intensity functions 

estimated by our method to the ground truth functions used to simulate the spiking data, 

two-sample Kolmogorov–Smirnov (K-S) tests were performed between P  and P. In addition, 

the normalized root mean squared error (NRMSE) was calculated as:

NRMSEN, g = log
∑t = 1

T g−1P(Y = 1 θt) − P(Y = 1 θt)
2

T (20)

where P(Y = 1|θ) is given by (18), P(Y = 1 θ) is given by (19), g is the maximum probability 

of the simulated conditional intensity function, and T is the duration of the simulated data. 

Note that in (20), the predicted conditional intensity function is normalized using g to ensure 

that the calculated error is consistent across all neuron firing rates.

As neural oscillations are often non-sinusoidal, it is important to assess the extent to 

which model estimates are influenced by an uneven distribution of phase data. To this 

end, we generated 60 s of a sinusoidal and a non-sinusoidal 8 Hz signal (Fig. 5A). The 

non-sinusoidal signal was generated from a bursty oscillator, with approximately 20% of 

the signal dedicated to the rise time of the oscillator and 80% dedicated to the decay 

time. The Hilbert transform was then applied to extract phase data from both signals. We 

then generated simulated spiking activity such that the probability of observing a spike 

at any given phase was the same across both sinusoidal and non-sinusoidal signal types. 

Using our method, we estimated the probability of observing a spike given the phase 

of an oscillation under three different conditions: (1) a unimodal spike-phase relationship 

centered at 0 radians where there is a higher sampling of phases in our non-sinusoidal 

signal, (2) a unimodal spike-phase relationship centered at π radians where there is a lower 

sampling of phases in our non-sinusoidal signal, and (3) a condition in which spiking is 

statistically independent of phase such that there is an equal probability (approximately 

0.035) of observing a spike at every phase, based upon the average firing rate of the neuron 

in conditions 1 and 2.

2.10. Local field potential and single neuron recordings in rat hippocampus

Single neuron spiking activity and local field potential signals from rat hippocampus 

were acquired as described previously (Rangel et al., 2016). Briefly, tetrodes of 12 μm 

nickel-chrome wire were lowered into the CA1 region of the right dorsal hippocampus. 

Final tetrode locations were verified via a Nissl stain in 40 μm coronal sections. Neural 
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recordings were acquired using a 96-channel recording system (OmniPlex, Plexon, Dallas, 

TX), bandpass filtered between 400 and 8000 Hz to digitally isolate spikes, and bandpass 

filtered between 1 and 400 Hz to digitally isolate local field potentials. The spikes from a 

single neuron were isolated by comparing waveform features across tetrode wires (Offline 

Sorter, Plexon, Dallas, TX), including peak and valley voltage amplitudes, total peak-to­

valley distance, and principal components analysis. Principal cells and interneurons were 

differentiated according to both firing rate and waveform characteristics. Specifically, 

neurons were clustered according to mean firing rate, mean width at half-maximum 

amplitude, and mean temporal offset from the peak to the trough of the waveform. This 

resulted in the identification of interneurons with mean firing rates of at least 5 Hz, a mean 

width half-maximum amplitude of less than 150 μs and a mean peak to trough waveform 

width of less than 350 μs. A 3rd-order Butterworth filter was used to bandpass filter the LFP 

for theta (5–10 Hz) or high gamma (65–135 Hz), and the instantaneous phase was calculated 

by taking the arctangent of the complex Hilbert transform of the filtered signal (Rangel et 

al., 2016). For this study, local field potential activity and the spiking activity from a single 

CA1 interneuron were simultaneously acquired from the same tetrode during 300 s when the 

rat was allowed to freely explore an approximately 4 ft2 platform for randomly spaced cereal 

pieces.

3. Results

3.1. Simulated data

To generate unimodal spike-phase relationships, a single Von Mises distribution was selected 

at random to be used as a ground truth conditional probability function, as described in 

Section 2.8. For our example unimodal spike-phase relationship, our workflow selected six 

basis functions as the optimal number for characterizing the spike-phase relationship (Fig. 

3A left, χ2 =9960, p < 0.0001, d.f. =59,993).

To generate a multimodal spike-phase relationship, five Von Mises distributions were 

selected at random, averaged, and scaled to create a ground truth conditional probability 

function, also as described in Section 2.8. For our example multimodal spike-phase 

relationship, our workflow selected fourteen basis functions as the optimal number for 

characterizing the spike-phase relationship (Fig. 3B left, χ2 = 8820, p < 0.0001, d.f.= 

59,985).

For both simulated unimodal and multimodal spike-phase relationships, the predicted 

distributions of spikes across phase closely matched the ground truth conditional probability 

functions that were utilized (Fig. 3A and B, middle). This is corroborated by the fact that 

QQ plots associated with the time-rescaled inter-spike intervals for both data sets remained 

within the 95% confidence interval (Fig. 3A and B, right).

3.2. Simulated data with a range of spike probabilities and data sizes

In order to assess the effectiveness of our method in capturing spike-phase relationships 

given neurons of different firing rates and data sets of various sizes, both the firing rate 

and the data size were systematically adjusted, as described in Section 2.9. The NRMSE 
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between the actual (i.e. ground truth) and model predicted conditional probability functions 

was calculated using (20) (Fig. 4A). This measure assesses the degree to which conditional 

probability functions estimated by our workflow are different from the ground truth function 

used to generate the spiking data. In addition, two-sample Kolmogorov–Smirnov tests were 

performed to assess whether ground truth and model predicted conditional probability 

functions were statistically different (Fig. 4B). In general, models generated from our 

workflow captured ground truth best given higher firing rates and longer data sets. Notably, 

Q-Q plots of actual and theoretical (i.e. model predicted) spiking data remained within the 

95% confidence interval for all firing rate and data size combinations.

3.3. Simulated spike-phase relationships to sinusoidal and non-sinusoidal signals

While the simulated sinusoidal signal contained a uniform distribution of phases (Fig. 5B), 

the simulated non-sinusoidal signal contained a larger number of phases centered around 

0 radians (Fig. 5C). To assess the extent to which this non-uniform phase distribution 

may influence model estimates, spiking data was generated with either (1) a statistical 

dependence to phase with a higher probability of firing centered at 0 radians, (2) statistical 

dependence to phase with a higher probability of firing centered at π radians, or (3) 

statistical independence from phase. These spike-phase conditions were created for both 

sinusoidal and non-sinusoidal signals. For both sinusoidal and non-sinusoidal signals, our 

workflow selected two basis functions as the optimal number for characterizing a unimodal 

spike-phase relationship centered at 0 radians (Fig. 5D; sinusoidal: χ2=1980, p < 0.0001, 

d.f.=60,029; non-sinusoidal: χ2=1760, p < 0.0001, d.f.=59,997). Our workflow selected 

three basis functions to characterize a unimodal spike-phase relationship to the sinusoidal 

signal centered at π radians (Fig. 5E, χ2=2020, p < 0.0001, d.f.=60,028), and two basis 

functions to describe the same relationship to the non-sinusoidal signal (Fig. 5E, χ2=1690, p 
< 0.0001, d.f.=59,997). Lastly, our workflow selected two regressors and a single regressor 

to characterize statistically independent spiking activity with respect to the phase of the 

sinusoidal and non-sinusoidal signal, respectively (Fig. 5F; sinusoidal: χ2=3.34, p < 0.188 

n.s., d.f.=60,029; non-sinusoidal: χ2=3.39, p < 0.0656 n.s, d.f.=59,998). In all conditions, 

our method accurately estimated the ground truth probability functions used to generate the 

spiking data (bottom, Fig. 5D–F).

3.4. Rat hippocampal data

Our methodology predicted one basis function as the global minimum of (16) for 

characterizing the relationship between the spiking activity of a CA1 interneuron and the 

phase of a simultaneously recorded hippocampal theta (5–10 Hz) oscillation (Fig. 6D, χ2 

=497, p < 0.0001, d.f.=299,998). The Q-Q plot comparing the actual spiking distribution to 

the probability distribution described by the model reveals aspects of the data that deviate 

outside of the 95% confidence interval (Fig. 6G). Comparing actual and theoretical spiking 

data for isolated 10 s intervals within the larger 300 s dataset revealed epochs in which Q-Q 

plots remained within the 95% confidence interval (Fig. 6H). Notably, when examining Aq 

in (16) across model orders, a local minimum was also observed at a model order containing 

22 basis functions (Fig. 6D, χ2=517, p < 0.0001, d.f.=299,977). The associated probability 

distribution revealed an additional multimodal rhythmic modulation occurring at intervals 

within the theta cycle when spiking probability is decreased (Fig. 6E). As the period for 
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the theta (5–10 Hz) ranges from 100 to 200 ms, we estimated the period of the nested 

rhythmic modulation to correspond to approximately 65 Hz to 135 Hz. To further explore 

this activity, a high gamma (65–135 Hz) filter was applied to the local field potential and our 

workflow was reapplied to examine spike-phase relationships to this new frequency range. 

Our methodology selected seven basis functions as the optimal number for characterizing 

the spike-phase relationship to gamma (Fig. 6I, χ2=110, p < 0.0001, d.f.=299,992).

4. Discussion

In this paper, we propose an objective method for creating a point process statistical model 

to characterize spike-phase relationships. Contrary to most other approaches, our method 

does not impose a unimodal spike-phase relationship shape upon the data. Rather, we utilize 

an overcomplete basis of Von Mises basis functions with varying mean and inverse variance 

combinations as potential regressors for the model. By establishing an overcomplete basis, 

our methodology is better able to characterize any possible spike-phase relationship shape. 

We then utilize a modern high-dimensional statistics approach to perform active set selection 

with ℓ1-regularized maximum likelihood estimation, followed by maximum likelihood on 

the active regressors to calculate model weights. As ℓ1-regularization imposes sparsity, our 

methodology is able to flexibly select the active set of functions that best characterizes the 

data at different levels of model complexity, thereby minimizing the imposition of biases 

regarding the shape and modality of spike-phase relationships upon the data. We then utilize 

the Akaike information criterion (AIC) to select the active set and corresponding model 

weights that best describe the data while minimizing overfitting. This method robustly 

characterizes a wide range of spike-phase relationships, and reveals coordinated, rhythmic 

relationships that were previously difficult to identify.

In simulated data, the conditional probabilities estimated by our workflow for both unimodal 

and multimodal spike-phase relationships were in high agreement with the ground truth 

relationships, as demonstrated by every Q-Q plot remaining within the 95% confidence 

interval (Figs. 3 and 4). This is particularly noteworthy given that the ground truth 

distribution was created using an identity link function in (19), whereas the model was 

fit according to a logit link function in (18). These results demonstrate a capacity of the 

model to recover the underlying shape of the spike-phase relationships even when the 

parametrization in our model is different than the parametrization used to generate the data.

The performance of the workflow given different neuronal firing rates and data sizes 

illustrates several potential issues that can arise from attempting to characterize spike-phase 

relationships with minimal data. For example, although the Q-Q plots suggest a good fit to 

the data, the ground truth and predicted spike-phase relationships are often quite different 

when low firing rates are combined with small data sizes (Fig. 4A and B). Thus, even 

though the model accurately captures spike-phase relationships in the data available, the 

data is not sufficient to appropriately represent the ground truth probability. In addition, 

as at least one spike is required to attempt characterization of spike-phase relationships, 

our methodology will generally overestimate spiking probability for low firing rate and 

small data size combinations. These issues, however, are not unique to our method. Instead, 

this demonstrates the limitations of this type of data and serves as a valuable reference 
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for spike-phase relationship characterization methods in general. Researchers may refer to 

Fig. 4 to assess the feasibility of characterizing spike-phase relationships given the firing 

rates of the neurons in the data sizes available. Researchers can further use Fig. 4 to guide 

future experiments in determining appropriate data sizes for a given range of neuronal firing 

rates to ensure that the data being modeled is representative of the underlying relationship. 

In future work, theoretical approaches to bound errors in the model fit (e.g. with Fisher 

Information (Lewi et al., 2007)) could be applied to analytically assess the uncertainty in our 

estimates as a function of data size or firing rate.

While our proposed workflow is agnostic to the method used to extract phase from the local 

field potential, it is important to address potential issues that may arise when attempting to 

characterize spiking relationships to non-sinusoidal waveforms. For example, there is often 

a concern that spurious spike-phase relationships can arise from a nonuniform distribution 

of phases in non-sinusoidal signals (Fig. 5C). Under conditions in which there is a statistical 

dependence between the simulated neuronal spiking and local field potential phase, our 

method accurately estimates spike probabilities to both sinusoidal and non-sinusoidal signals 

(Fig. 5D and E). Notably, under conditions in which the probability of observing a spike 

is independent of phase, conditional probability estimates did not significantly deviate 

from a theoretically equiprobable distribution. This indicates that our method does not 

introduce spurious spike-phase relationships to non-sinusoidal signals (Fig. 5F). Since our 

method estimates the probability of observing a spike at a given phase, a larger number 

of spikes observed at a particular phase due to a larger sampling of that phase is balanced 

by having a greater number of instances of that phase. Small deviations in phase value 

representation (e.g. slightly non-uniform phase distributions) such as those observed in our 

non-sinusoidal examples will therefore only affect the rate at which the workflow converges 

to the true value of that relationship. Our method therefore minimizes biases that may be 

introduced due to non-uniform distributions of phase, and accurately estimates spike-phase 

relationships to both sinusoidal and non-sinusoidal oscillations.

In addition to being able to characterize simulated data, this methodology captures spike­

phase relationships in rodent hippocampal data. Interneurons in the rat hippocampus have 

well-established relationships to a theta (5–10 Hz) rhythm that commonly manifests in the 

region during periods of free exploration (Buzsáki, 2002; Colgin, 2013; Czurkó et al., 2011). 

Our model selection procedure identified a global minimum when using a single Von Mises 

function to characterize the spike-phase relationship of a CA1 interneuron to the local theta 

oscillation during a 300s period of random foraging. Although the Q-Q plot of actual and 

theoretical spiking data deviated from the 95% confidence interval (Fig. 6G), Q-Q plots 

of isolated 10 s intervals within the 300 s period revealed multiple intervals in which the 

estimated conditional probability was in high agreement with the data (Fig. 6H). Thus, 

the estimated conditional probability likely captures a spike-phase relationship that changes 

throughout the 300 s interval. This is not surprising, as spike-phase relationships in the 

hippocampus are tightly linked to behavior and the random foraging epoch contains intervals 

of free exploration, grooming, sitting, and consummatory behaviors. These results highlight 

the need to tightly control for behavior when characterizing spike-phase relationships, while 

also demonstrating the capability of the methodology at discerning relationships that evolve 

over time.
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Our analysis of hippocampal data showcases the use of our approach as a powerful 

data visualization and quantification tool. The simultaneous assessment of spike-phase 

relationships to multiple rhythms is challenging to characterize without any a priori 
knowledge of typically co-occurring oscillations and their frequency ranges. Our model 

selection procedure identified a local minimum when using twenty-two Von Mises 

functions, revealing a relationship between a CA1 interneuron and a 65–135 Hz high 

gamma frequency range nested within a larger 5–10 Hz theta oscillation. Although it is 

well-established that the hippocampal 5–10 Hz theta rhythm exhibits coupling to a 65–135 

Hz high gamma rhythm during behavioral periods of active exploration (Colgin et al., 2009; 

Colgin and Moser, 2010), here the high gamma frequency range was empirically defined 

by estimating the period of multiple peaks within the conditional probability function for 

a spike-phase relationship to theta. The 65–135 Hz range was thus identified through 

a regularly occurring spiking relationship nested within theta cycles rather than through 

spectral decomposition and interpretation of the LFP. Ultimately, these results prompted 

the development of new regressors to estimate interneuron spike-phase relationships to 

a 65–135 Hz high gamma rhythm. Notably, the spike-phase relationship to the gamma 

frequency range appears to occur at a phase of theta when the probability of observing a 

spike is lowest, revealing an engagement in potentially distinct rhythmic circuits. Combining 

regressors that characterize spike-phase relationships to multiple rhythms in a single model 

will ultimately allow researchers to uncover the manner in which neurons dynamically 

participate in multiple rhythmic circuits during information processing.

Previous studies examining spike-phase relationships have often utilized a combination 

of circular histograms to visualize spiking activity across the phases of an oscillation, 

coherence measurements to quantify relationships, and circular statistics to test for non­

uniformity (e.g. Rayleigh statistic). Some studies employ statistical modeling techniques, 

utilizing a single regressor function (e.g. cosine) to capture gross, unimodal spike-phase 

relationships (Barbieri et al., 2001; Canolty et al., 2010; Dragoi and Buzsáki, 2006; Siapas 

et al., 2005; Siegel et al., 2009; Whittingstall and Logothetis, 2009). Using a single 

shape, however, such as a sine wave, imposes a constraint onto the modeled spike-phase 

relationship that does not necessarily represent the true relationship within the data. Some 

studies have attempted to capture potentially complex, multimodal relationships by using 

smoothing or binning techniques. One such study utilizes kernel polynomials in concert 

with kernel smoothing techniques to increase the adaptability of the generated model 

(Kim et al., 2013). These smoothing techniques, however, have the potential drawback 

of arbitrarily smoothing out aspects of spike-phase relationships that are potentially 

meaningful, if at relatively lower scale. Overcomplete basis functions have shown promise 

in better approximating underlying probabilistic relationships, particularly with sparse 

data representations (Lewicki and Sejnowski, 2000; Nakanishi-Ohno et al., 2016; Yang 

et al., 2011). We demonstrate in this paper that using ℓ1-regularization coupled with an 

overcomplete basis set enables an unbiased characterization of a large range of potentially 

complex spike-phase relationships beyond what was previously possible.

Our proposed workflow can be adjusted as desired at several important stages. For example, 

while we have chosen Von Mises functions as regressors for our models, additional 

circular functions (e.g. sine waves) can also be used. In addition, while we have proposed 
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a particular set of Von Mises functions for the purpose of characterizing spike-phase 

relationships in this study, one can easily adjust the range of means and inverse variances 

to select the desired number of potential regressors as needed. A variety of model 

selection procedures may also be implemented in our workflow as an alternative to AIC 

that use different approaches to minimize overfitting (e.g. Bayesian information criterion, 

cross-validation, etc). Notably, our hippocampal data highlights the fact that interesting 

characteristics, such as nested rhythms, may be found at local minima that are not captured 

at the global minimum determined by AIC. This suggests that it may be important to 

consider more models than the optimal model selected by our method. Lastly, to improve the 

goodness of fit, additional intrinsic and extrinsic covariates can be added to the methodology 

akin to those previously proven to enhance spiking predictability (Truccolo et al., 2005). 

For example, regressors can be added pertaining to previous spiking activity for capturing 

refractory effects, and ensemble spiking activity for capturing local network activity effects. 

In addition, relating each spike-phase pair at time t with a distinct behavioral state during 

our sample 300 s foraging interval could drastically improve the model fit. While we 

acknowledge that the inclusion of additional intrinsic and extrinsic covariates will improve 

the goodness of fit of a model, the focus of this paper is improving the method in which a 

single covariate is constructed.

Overall, our method provides researchers with a robust tool for investigating rhythmic 

influences on neural spiking activity and the complex manner in which these influences 

can be further temporally coordinated. The inherent flexibility in our method allows 

researchers to explore a wide range of potential spike-phase relationships, thereby enabling 

the discovery of previously unknown rhythmic interactions. This new information can then 

be used to develop novel hypotheses regarding the temporally coordinated interactions 

underlying the processing abilities of neural networks.
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Fig. 1. 
Illustration of select methods for visualizing and quantifying spike-phase relationships. A 

multimodal spike-phase relationship simulated from a mixture of Von Mises functions is 

shown in black. The estimated conditional probability of observing a spike given the phase 

of an oscillation using a single line function (blue), a single Von Mises function (green), 

a single sine function (purple), and 7 Von Mises functions assembled with our proposed 

workflow (red) is shown. In addition, we calculate the mean resultant length vector for the 

data, and show the estimated strength and preferred phase using this method (orange arrow). 

Our method is the only method capable of capturing the multimodal nature of this example 

spike-phase relationship. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 2. 
Illustration describing the methodological pipeline for predicting the probability of a spike 

given the phase of an oscillation. (A) Raw local field potential signal (gray), filtered signal 

in the theta (5–10 Hz) frequency range (red), and instantaneous phase of the theta oscillation 

(green) with corresponding spike times above (black tick marks). (B) A sample set of 

Von Mises basis functions used to construct model regressors. (C) Equation for calculating 

basis function weights using a ℓ1-regularized generalized linear model, where the regularizer 

coefficient (λq) is systematically varied in order to selectively order the number of basis 
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functions used. (D) Sample ordering of Von Mises basis functions used to characterize the 

data in Fig. 1, showing the active set of Von Mises functions with increasing model order 

complexity (gray). Our method selected seven functions as the optimal number of functions 

to represent the data (bottom), and we show the weighted combination of these functions 

for comparison (see also red line in Fig. 1). (E) Equation for calculating the weights for 

each basis function based upon the ordering determined in step C. (F) Normalized negative 

log likelihood (black) and penalized normalized negative log likelihood (red). (G) Sample 

Q-Q plot of actual and theoretical spiking data with associated 95% confidence interval. 

(H) Conditional probability estimated by the model that best characterizes the data while 

minimizing overfitting according to F. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)

Johnson et al. Page 22

J Neurosci Methods. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Model results for simulated unimodal (A) and multimodal (B) spike-phase relationships. 

Left: Normalized negative log likelihood (black) and penalized normalized negative log 

likelihood (red). Middle: Ground truth conditional probability function (black) and predicted 

conditional probability function (red). Right: Q-Q plots (solid line) with associated 95% 

confidence intervals (dashed lines). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Model results given data sets with a range of different spiking probabilities and data 

sizes. (A) Log of the normalized root mean squared error (NRMSE) between conditional 

probability functions estimated by our method and the ground truth function used to 

generate the spiking data (see Eq. (20)). Maximum spiking probabilities (x-axis) range from 

0.001 to 0.9 and data sizes (y-axis) range from 1 to 300 s (for method, see Section 2.9). 

Approximate firing rates, indicated below spike probabilities on the x-axis, are calculated 

from the total number of spikes in a 300 s interval. (B) Color map indicating whether ground 

truth spike-phase distributions and model predicted distributions are significantly different 

(red), assessed using a Kolmogorov–Smirnov test with a significance threshold of p=0.05. 

(C) The number of basis functions utilized after implementing model selection procedures. 
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White labels D, E, and F within figures A–C indicate the spike probabilities and data sizes 

for examples in D–F. (D–F) Top: Distribution of simulated spikes across the phases of a 20 

Hz oscillation. Middle: Ground truth conditional probability function (black) and predicted 

conditional probability function (red). Bottom: Q-Q plots (solid line) with associated 95% 

confidence intervals (dashed lines). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Model results for spike-phase relationships to sinusoidal and non-sinusoidal signals. (A) 

Single cycle of a simulated sinusoidal and non-sinusoidal signal. Distribution of phases for 

60 s of a (B) sinusoidal (blue) and (C) non-sinusoidal (red) 8 Hz signal. While the sinusoidal 

signal contains a uniform distribution of phases, the non-sinusoidal condition contains a 

larger number of phases centered around 0 radians. (D–F) The estimated probability of 

observing a spike given the phase of a sinusoidal (dashed cyan) and non-sinusoidal (dashed 

magenta) oscillation for three different conditions: (D) a unimodal spike-phase relationship 

centered at 0 radians where there is a higher sampling of phases in our non-sinusoidal 

signal, (E) a unimodal spike-phase relationship centered at π radians where there is a lower 

sampling of phases in our non-sinusoidal signal, and (F) a condition in which there is an 

equal probability (0.035) of observing a spike at every phase that is based upon the average 

firing rate in D and E. Ground truth conditional probability functions for D–F are shown 

in black dashed lines. Corresponding Q-Q plots (colored dashed lines) with associated 95% 

confidence intervals (black dashed lines) are shown directly below (D–F). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 6. 
Rat hippocampal neuron data. (A) Histogram of interneuron spikes across the phases of a 5–

10 Hz theta oscillation (black, left axis) and a histogram presenting the distribution of theta 

phases from the filtered LFP (blue, right axis). (B) Representative segment of raw local field 

potential data (gray), theta phase (green), and spiking times (black tick marks). (C) Raw 

local field potential data (gray), 5–10 Hz theta filtered local field potential (red), gamma 

filtered local field potential (blue), and spike times (black tick marks). (D) Normalized 

negative log likelihood (black) and AIC penalized normalized negative log likelihood (red). 

(E) Estimated conditional probability of observing a spike given the phase of theta using 

one basis function (red) and twenty-two basis functions (black). (F) Raw local field potential 

data (gray), theta filtered local field potential (red), single basis function theta conditional 

intensity function (magenta), and spike times (black tick marks). (G and H) Q-Q plots of 

actual and theoretical spiking data for (G) 300 s and (H) isolated 10 s intervals using the 

model selected by the workflow. (I) Raw local field potential data (gray), gamma filtered 

local field potential (blue), gamma conditional intensity function (cyan) and spike times 

(black tick marks). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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