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Abstract

The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if
not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we
encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed
information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the
correspondingly complex biological functions these structures perform. To help close this information gap we define here
several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both
histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used
to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge,
there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph
theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors
using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain,
breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native
tissues and their corresponding in vitro engineered cell culture models.
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Introduction

Heart disease and cancer remain the top two causes of death in

the US. One fundamental characteristic of both diseases is tissue

failure: namely, errors in the structural organization and function of

cells in the affected tissues. Traditional approaches for uncovering

the source of these errors have relied heavily on reductionist

approaches (e.g., genomics, proteomics, gene expression micro-

arrays), yielding tremendous amounts of information about the

genetic and biochemical makeup of these cells. Yet, the

fundamental question remains: exactly what cellular structures

and functions initiate the transition from healthy to diseased

tissues, and why? We believe that one reason we have yet to

answer this question is that the structure/function paradigm has

developed a ‘‘gap’’ at this critical cell-to-tissue level; we have

accumulated more information than we can integrate into a cell/

tissue-level understanding of disease, such that the abundance of

genetic and biochemical details are not being fully utilized to

uncover how cells and tissues function. Likewise, we have an

abundance of markers for many diseases, but we don’t fully

understand the rules that link the molecular constituents of

diseased tissues to the clinical symptoms of the disease itself.

A dramatic example of this problem lies in the detection and

diagnosis of cancer, where, despite a multitude of genetic screens,

biochemical assays, and imaging techniques, the ‘‘gold standard’’

for diagnosis remains the expert opinion of highly trained

pathologists who visually scan samples of the tissues in histology

slides. In other words, the human eye is currently the most accurate

tool we have available for identifying telltale alterations in the

structure and function of diseased tissues. The same is true for

diagnosis of heart disease, arthritis, and most other debilitating

diseases. We believe that a more rigorous approach to linking the

structural organization of healthy and diseased tissues to

fundamental cellular behaviors will help close the gap in tissue

structure/function, and provide clinicians a powerful tool for more

accurately detecting and diagnosing disease.

Numerous techniques have been developed to extract informa-

tion at the molecular, cellular, tissue or organ level to distinguish

and classify distinct disease types, such as tumor types in cancer

but none of these approaches can model the structure-function

relationship in tissues as we discuss in the next section. In this

paper, through the use of graph theoretical tissue representation

[1], we model the structure-function relationship in tissues.

Furthermore, our approach combines this representation with

matrix and tensor factorization methods in order to identify sets of

structural properties that discriminate between healthy and

cancerous forms of three morphologically distinct tissues (brain,

breast, and bone) and quantify the structural differences between

these tissues and their tissue engineered counterparts. Both

histological images of human tissue samples and fluorescence

images of three-dimensional cultures of human cells are used to

compare the accuracy of in vitro culture models (3D cell cultures
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and in vitro samples will be used interchangeably in the

manuscript) with their corresponding human tissues (referred to

as histology samples throughout the paper). To the best of our

knowledge, there is no prior work on a quantitative comparison of

histology and in vitro samples.

Methods

1. Tissue and Cellular Analysis
In the literature, four different types of approaches have been

used to define quantitative features at the cellular and tissue levels.

The first uses morphology to quantify the size and shape of a cell

or its nucleus [2–7]. The second employs intensity or the

distribution of the color values of pixels to define features [8–

11]. The third exploits textural descriptors and considers spatial

dependency of the intensity values to quantify the smoothness,

regularity or coarseness of the image [2,5,6,12–17]. Finally, the

fourth approach, which most closely resembles ours, is based on

drawing a Voronoi graph of cells from a tissue image and

computing graph-theoretical features that quantify how the cells

are distributed over the tissue [7,8,18]. Nevertheless, none of these

approaches can model the structure-function relationship in

tissues.

2. Cell-graph Mining of Tissue Structures
Recently we introduced a powerful technique called the cell-

graphs to model structural organization of histology tissue samples.

Cell-graphs capture the characteristic structural properties that

distinguish healthy, damaged, and cancerous states of brain

[1,19,20,21], breast [22], and bone tissues [23]; and properly

classify follicular lymphoma [24]. We further extended this

method for in vitro studies to model mesenchymal stem cells in

three dimensional space [25], to ECM interactions during cell-

mediated compaction and collagen remodeling in 3D [26], and to

in vitro cancer data analysis, as explained in [27]. We also showed

preliminary results of the applicability of cell-graph technique for

capturing the distinctive epithelial and mesenchymal features in an

embryonic branching organ – the salivary gland [28].

2.1 Data Acquisition. In this manuscript we used the

histopathology data as explained in our previous publications

[1,19–22] and in vitro cancer data [27]. Below we summarize the

basic techniques and details of the data.

N Histopathology Data Acquisition: Our data has two different

functional states (healthy and cancerous) of three different tissue

types: brain, bone and breast. The data used in the study follows

the specifics below:

Our brain tissue data set is a mixture of healthy tissue and

diseased (glioma) samples. For preliminary studies, these tissues are

randomly selected by a neuropathologist from Oregon Health and

Science University (OHSU) Pathology Department archives,

arbitrarily limiting the search to the years 2001–2004, and

selecting well-preserved, technically adequate samples that best

represent the different tissue states mentioned earlier, without

excluding any particular patient population. Healthy tissue

samples were taken when available from surgical specimens or

autopsies. All diseased (glioma) samples were high-grade; and

glioblastoma, anaplastic astrocytoma and anaplastic oligodendo-

glioma were included as diagnostic categories. Each sample

consists of a 5–6 mm thick tissue section stained with hematoxylin

and eosin (H&E) technique and mounted on a glass slide. In each

case, a representative H&E-stained glass slide was chosen by the

pathologist, and the patient identifiers (i.e. the accession numbers

on slide labels) were removed after diagnostic tabulation in a

coded manner. Subsequently, digital photomicrographs of differ-

ent fields of the lesion were obtained in a standardized way in a

Nikon Coolscope digital camera/scanner by the pathologist.

Uniformity of the images was obtained by keeping the magnifi-

cation and illumination at selected levels, allowing sufficient

resolution to detect individual tumor cell nuclei. Special attention

was given to avoid areas of hemorrhage and necrosis, treatment

effects, blood vessels and tissue artifacts. Different sets of pictures

were obtained of the tumor parenchyma, interface of the tumor

and the surrounding brain, and histologically normal areas when

available. Areas of low and high cellularity were also sampled as

images in different entities. Prior to segmentation, we converted

the RGB values of pixels to their corresponding values in the

La*b* color space. Unlike the RGB color space, the La*b* color

space is a uniform color space and the color and detail information

are completely separate entities. Therefore, using the La*b* color

space yielded much better quantization results. Data set in this

study contains 210 images of 14 patients with healthy histology

samples and 329 images of 41 patients with malignant glioma

histology samples.

The data set for breast tissue modeling was randomly

selected from the archived Mount Sinai School of Medicine

(MSSM) Pathology Department archives. The two different states

of breast tissue cases were reviewed by two breast pathologists at

MSSN to reach a consensus. The data set, we used in this study

contains 128 invasive cancerous tissue images of 19 patients, and

195 healthy tissue images from 19 patients.

The data for bone tissue modeling and classification was

provided by the Pathology Department at Hospital for Special

Surgery (HSS) in NYC. H&E stained images of two different states

of bone tissue (healthy and diseased [cancerous]) were collected

with 106magnification. The data set used in this study contains

20 images of healthy bone tissue, and 49 images of osteosarcoma

(diseased) bone tissue.

N In Vitro Data Acquisition: Regarding to the cell culture

techniques, the different cell types and their respective culture

conditions are listed in Table 1 and the functional categories of

each cell type are listed in Table 2 of our previous work in [27].

For fluorescence imaging, gels were fixed using 3% paraformal-

dehyde at 11 different time points (hours): 0, 1, 2, 4, 6, 10, 16, 24,

72, 120, 168. Each was washed with PBS, then stained with

nucleic acid dye (sytox green). Images of cells encapsulated within

collagen-I hydrogels were captured using a Zeiss LSM 510 META

confocal microscope with a 106 dry objective. Representative Z-

stack images of 100 mm thickness with 900 mm6900 mm cross-

section area were collected for five samples of each time point.

2.2 Cell Graph Construction and Feature

Extraction. Our overall methodology used for obtaining the

cell-graphs in this work can be summarized in two phases. First,

we build 2D cell-graphs to represent a tissue state (Figure 1

illustrates the cell graphs for different tissue types and states).

Second, the graph theoretical features of these cell-graphs are

computed.

In cell-graph generation phase, we have three steps: (i) color

quantization, (ii) node identification, and (iii) edge establishment.

Details of these steps can be found in our cited publications above.

We explain these steps briefly here:

N Image Processing and Segmentation: In this step we used

standard image processing tools to distinguish the cells from their

background based on the color information of the pixels. For that

we use the k-means algorithm. The k-means algorithm clusters the

data based on their features. There are k cluster vectors and each

sample is assigned to its closest cluster and represented with this

clustering vector. Subsequently, each of these clustering vectors is

Coupled Analysis: Structure-Function Relationship
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assigned either to be ‘‘cell’’ or ‘‘background’’ class by the

pathologists.

N Node Identification Step: In a cell-graph, cells or cell clusters

of a sample tissue are the vertices. We have several methods to

extract vertices of a cell graph from data. The method applied to

the histology data used in this manuscript can be described as

follows: In the node identification step, we translate the class

information of the pixels to the node information of a cell-graph.

In this step, we have two control parameters: (i) the size of the grid,

and (ii) the threshold value. The grid size determines the down

sampling rate, i.e., the resolution of the resultant image. After this

step, a node can represent a single cell, a part of a cell, or a bunch

of cells, depending on the grid size. We embed a grid over the

tissue image and assign a value of 1 to the pixels of ‘‘cell’’ class and

a value of 0 to the pixels of ‘‘background’’ class. Subsequently, for

each grid entry, we compute a probability of being a cell or

background by computing the average values of pixels located in

this grid entry. At the end of this step, the spatial information of

the cells is translated to their locations in the two-dimensional grid.

After computing the probabilities, we compare these against a

threshold value. The grid entries with a probability value greater

than the threshold are considered as the nodes of the cell-graph.

Thus, the second control parameter is the threshold value, which

eliminates the noise that arises from the stain artifacts and mis-

assignment of black pixels in the color quantization step.

Considering the large number of images that need to be

processed, we employ Otsu’s simple but effective automatic

threshold selection algorithm that determines a global (single)

threshold for the image based on the histogram of image values.

Each connected component in the resulting binary image

corresponds to a nucleus and the coordinates of the centroids of

these nuclei are calculated to identify the coordinates of the node

(vertex) set for cell-graph generation.

N Edge Establishment Step: In the edge establishment step, we

set the links between the nodes to generate a cell-graph. Formally,

let G~(V ,E) denote a cell-graph with V and E being the set of

nodes and edges of the graph, respectively. After determining V in

the node identification step, we define an edge (u, v) between a

pair of nodes u and v by making use of the biological insight and

knowledge on the interaction of the cells in a specific tissue type.

For example, it may be more likely that physically adjacent cells

signal each other than the ones far away. Such distance based

interaction among the elements is well understood in physical

systems based on energy minimization. In the absence of multiple

markers (recall that images are H&E stained) we rely on a

proximity based establishment of pairwise relationships between

nodes. Therefore, we translate the pairwise spatial relation

between every two nodes to the possible existence of links in a

cell-graph. We can establish the edges probabilistically or

deterministically or use a combination of these two methods. For

example, in [1] we constructed probabilistic cell-graphs in which

the probability of creating a link between any two nodes decays

exponentially with the Euclidean distance between them with a

function P(u,v)~ae{d(u,v)=BL, or with a power law probability

function such that P(u,v)~d(u,v){a where d(u, v) is the distance

between these nodes. Intuitively, the closer two cells are, the more

likely that they share a relationship. This probability quantifies the

possibility for one of these nodes to be grown from the other thus,

aiming to model the prevalence of the disease state in a tissue.

An edge (u, v) can also be deterministically established if the

distance d(u, v) is less than a threshold (e.g., two cells are physically

touching each other). This is indeed the method used for

constructing the cell-graphs analyzed in this paper. The

motivation is that if cell membranes are touching or close enough

(we quantify this by parametric search) then there is some signaling

between them. We have identified link thresholds, corresponding

to the approximate radii of spread mammalian cells, of 65, 70, and

75 microns (from a distortion free sphere representation of the cell

membrane to observable distortion) and performed parametric

search to maximize the classification accuracy of our modeling.

Note that the presence of a link between nodes does not specify

what kind of relationship exists between the nodes (cells); it simply

indicates that a relationship of some sort is proposed to exist, and

that it is dependent on the distance between cells. Surprisingly, the

distance measure alone is sufficient to reveal important, diagnostic

structural differences in human tissues.

If the images carry multichannel information by applying more

sophisticated staining techniques (e.g., multispectral fluorescence

imaging), it is possible to build cell-graphs that have different types

of nodes corresponding to different types of cells that co-exist (e.g.,

epithelial vs. fibroblast) and other ECM entities (e.g., basement

membrane underlying epithelial cell layers and blood vessels).

With 3D images and 3D cell-graphs, such representation becomes

more accurate and powerful; this is indeed currently investigated

by our group.

The second phase is feature extraction from cell graphs. The cell-

graphs enable us to apply well-established principles of graph

theory and provide a rich set of features defined precisely by these

principles to be used as quantitative descriptor features. They can

Figure 1. Examples of different tissue types and states as well
as their representations as cell-graphs.
doi:10.1371/journal.pone.0032227.g001
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be classified into three groups: connectivity indicators such as degree,

clustering coefficient, giant connected component; distance indica-

tors such as diameter, radius, hop plot exponent; compactness

indicators such as closeness, central points, isolated points, link

lengths. We showed in our previous work that these features obtain

different values based on different functional states thus one can

train classifiers to quantify the relationship between feature values

and functional states [1,19–27]. The features we included in this

paper are the ones used commonly in our previous work and listed

in Table S1.

We consider two types of features: (i) local features at the

individual cell level, and (ii) global features at the tissue level to be

used by the algorithms to distinguish different tissue types. By

computing the distribution of local features, we can obtain global

features. However, some global features can only be computed

over the entire graph. For example the ratio of the size of the giant

connected component over the size of the entire graph can be used

as a global feature. Other global features are related to the

spectrum of a graph, which is the set of graph eigenvalues

computed from the adjacency matrix or its Laplacian. The

spectral radius and eigen exponent are such features. The

eigenvalues of the Laplacian relate to the graph invariants better

than the eigenvalues of the adjacency matrix. For example, the

number of eigenvalues with a value of 0 gives the number of

connected components in the graph. Moreover, as the eigenvalues

of the Laplacian lie in the range of [0,2], it is easier to compare the

spectra of graphs with different sizes. We also use global features to

characterize the spectra of cell-graphs, i.e., the eigenvalue

distribution of the Laplacian of the cell-graph. While some of

these features are easier to relate to underlying biology such as

degree, closeness; some others are hard to associate with biology

such as the spectral one. However, these features collectively

describe the structural organization of underlying tissue sample as

we demonstrated in our previous work.

3. Matrix and Tensor Factorizations
Using cell-graph features, the data can be arranged as a matrix

(cell-graph features by histology samples) or a three-way tensor

(cell-graph features by in vitro samples by time) (see Figure 2). We

analyze the data arranged as in Figure 2 to (i) differentiate between

different tissue functional states, (ii) identify the features respon-

sible for such differentiation, and (iii) discriminate between

histology samples and their corresponding in vitro engineered cell

cultures using matrix and tensor factorizations.

Matrix factorizations, in particular Singular Value Decompo-

sition (SVD) [29], are commonly used for exploratory data analysis

to extract the underlying factors in complex data sets [30]. Given a

matrix X[RI|J of rank R, SVD computes orthogonal matrices

U[RI|I and V[RJ|J such that X~USVT, where S is a diagonal

matrix with s1, s2, …sR on the diagonal and s1$s2$…$sR. The

columns of U and V are the left and right singular vectors, respectively,

and the diagonal entries of S are the singular values. In order to find

a low-rank approximation of the data, we can use only the first K

(K,R) singular values and vectors; and this gives the best rank-K

approximation of the data (Figure 3a).

Tensor factorizations are generalizations of matrix factoriza-

tions to higher-order tensors. An N-way tensor (or an Nth-order

tensor) is a multidimensional array represented using N indices,

e.g., a vector is a first-order tensor; a matrix is a second-order

tensor. N-way arrays, for N§3, are called higher-order tensors.

Here, we use one of the most popular tensor models, i.e.,

CANDECOMP/PARAFAC (CP) [31,32], which has proved

useful for finding the underlying structures of higher-order data

sets in various disciplines such as chemometrics, computational

neuroscience and social network analysis [33,34]. Given a tensor

X[RI|J|K , its R-component CP factorization is expressed as

follows:

X&
XR

r~1

ar0 br0 cr,

where 0 denotes the vector outer product, and ar[RI , br[RJ , and

cr[RK for r = 1,…,R. The matrices A~½a1 a2 :::aR�[RI|R,

B~½b1 b2 ::: bR�[RJ|R and C~½c1 c2 ::: cR�[RK|R correspond

to the CP factor matrices (component matrices) extracted from the first,

second and third mode (or dimension) of the tensor, respectively. We

use the compact notation, X& DA,B,CD½ � to denote the CP model

[34]. Just as SVD represents a matrix as a sum of rank-one

Figure 2. Analysis of histology and in vitro data sets using
coupled matrix and tensor factorization (CMTF). Time mode is
slotted as 0, 1, 2, 4, 6, 10, 16, 24, 72, 120, 168 in hours. Features mode
contains the cell graph features: average degree, clustering coefficient
C, clustering coefficient D, clustering coefficient E, average eccentricity,
diameter, radius, average eccentricity 90, diameter 90, radius 90,
average path length, effective hop diameter, hop plot exponent, giant
connected component ratio, # connected components, average
connected component size, % isolated points, % end points, # central
points, % central points, mean, std, skewness, kurtosis, # nodes, #
edges. These features are defined in Table S1.
doi:10.1371/journal.pone.0032227.g002

Figure 3. Singular Value Decomposition and R-component CP
model.
doi:10.1371/journal.pone.0032227.g003
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matrices, the CP model expresses a tensor as a sum of rank-one

tensors (Figure 3b).

4. Joint Analysis of In vitro and Histology Samples
While clinical biopsies (histology samples) represent the current

standard for determining human tissue state, their limited

availability, sample variability, and high cost are often prohibitive

for studying the underlying mechanisms that control tissue

function. Despite their limited simplicity, three-dimensional

engineered cultures of human cells grown in vitro offer the

advantages of providing complete control over environmental

conditions and permitting invasive analyses that are difficult or

impossible to perform with human subjects. The costs and benefits

of using histology and in vitro samples are therefore an important

consideration in any study of tissue structure and function. In this

study, we used image data from both sources.

Joint analysis of data from multiple sources can improve our

understanding of the underlying structures in complex data sets.

For instance, we represent our in vitro samples as a set of features

changing over time, which forms a third-order tensor with modes:

Figure 4. Three-way and Two-way analysis of in vitro brain tissue data. (a) CP factorization of the tensor with modes: features, samples and
time. The 1st component separates the 2 different functional states: cancer (red-triangle sign) from normal (green-plus sign) tissue samples; (b) SVD of
matrix of type: features by samples (across all times); (c) features projected over the 1st component of the CP model. Cell-graph features such as % of
end points, number of connected components, average connected component size, average path length, average eccentricity are identified as influential
in the analysis since their coefficients diverge the most from zero. (Note that we have 23 features on the plot since three features have been identified
as outliers and excluded).
doi:10.1371/journal.pone.0032227.g004
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features by samples by time. We express our histology samples using

the same set of features as a features by samples matrix. By analyzing

these two datasets (arranged as in Figure 2) jointly and extracting

the same factors from the features mode, we may capture the

common dynamics in both in vitro and histology samples. We can

then use these dynamics to differentiate between different tissue

functional states or to understand what features are influential for

differentiating between those functional states.

We analyze the two data sets in Figure 2 using coupled matrix

and tensor factorizations [35]. Given a third-order tensor

X[RI|J|K and a matrix Y[RI|M
, the tensor and the matrix

are factorized jointly using coupled matrix and tensor factorization

(CMTF), where an R-component CMTF model of a tensor X and

a matrix Y can be computed by solving the following optimization

problem:

min
A,B,C,D

DDX{ DA,B,CD½ �DD2zDDY{ADT DD2

where A is the factor matrix corresponding to the common mode,

i.e., features modes; B, C,and D correspond to factor matrices in

other modes. DD:DD denotes the norm of a tensor and it is defined as

DDXDD2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i~1

PJ
j~1

PK
k~1

x2
ijk

s
. We solve the optimization problem by

Figure 5. Coupled matrix and tensor factorization (CMTF) on in vitro brain samples represented by tensor X and histology samples
represented by matrix Y (see Figure 2). (a) The first column of matrix B, that is the factor matrix corresponding to the in vitro samples mode
extracted using CMTF, separates cancer (blue-square signs) from normal (light blue-plus signs) tissue samples; (b) The first column of matrix D, that is
the factor matrix corresponding to the histology samples mode extracted using CMTF, can separate cancer (red-triangle sign) from healthy (green-
star sign) samples; (c) features captured by the common component extracted by CMTF.
doi:10.1371/journal.pone.0032227.g005
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Figure 6. Three-way and two-way analysis of in vitro bone tissue data. (a) CP factorization of the tensor with modes: features, samples and
time. Both the 1st and the 2nd components separate the two different functional states: cancer (red-triangle sign) from normal (green-plus sign)
tissue samples; (b) SVD of matrix of type: features by samples (across all times); (c) features projected over the 1st component of CP model. Cell-graph
features such as % of end points, number of connected components, giant connected component ratio, average path length, average eccentricity are
identified as influential in the analysis since their coefficients diverge the most from zero; (d) since the 2nd component can also distinguish between
two functional states we also show the 2nd CP component in features mode. Note that the influential features are different in the 2nd component,
e.g., while the number of connected components has a high coefficient in the 1st component, its coefficient in the 2nd component is close to 0.
doi:10.1371/journal.pone.0032227.g006

Figure 7. Coupled factorization of in vitro bone samples represented by tensor X and histology samples represented by matrix Y.
(a) Both the 1st and the 2nd column of matrix B extracted by a CMTF model separate cancer (blue-square sign) from normal (light blue-plus sign)
samples; (b) Matrix D corresponding to the histology samples mode extracted using a CMTF model is useful to narrow the coupled analysis since only
the 1st component can separate cancer (red-triangle sign) from healthy (green-star sign) samples; (c) features captured by the 1st CMTF component.
doi:10.1371/journal.pone.0032227.g007

Coupled Analysis: Structure-Function Relationship
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solving the problem for all factor matrices simultaneously, i.e., the

gradient is computed by taking the partial derivative of the

objective function with respect to each factor matrix and

concatenating the derivatives and then we use Nonlinear

Conjugate Gradient to solve the CMTF problem [35].

Results

1. Normal vs. Cancer: Brain Tissues
Our first objective was to test whether the same cell-graph

feature set we used to classify biopsy (histology) samples of brain

[1], breast [22], and bone [23] tissues would be sufficient to permit

us to properly segregate 3D engineered cell cultures containing

healthy or cancerous cells from the same tissues [27]. These

cultures are simpler than their native counterparts, because they

contain only one cell type, and thus cannot recapitulate the full

structure or function of their tissue of origin. However, because

they begin as diffuse clusters of cells encapsulated in a collagen gel,

they are far more disorganized than even the most cancerous

tissues, and thus undergo a complex series of morphological

changes (e.g., gel compaction, establishment of cell-cell junctions,

etc.) that do not normally occur in histology samples. In fact, most

modern 3D cell cultures undergo transformations that more

closely resemble wound healing than embryonic development.

Figure 8. Three-way and two-way analysis of in vitro breast tissue data. (a) CP factorization of the tensor with modes: features, samples and
time. Only the 2nd component can separate the two different functional states: cancer (red-triangle sign) from normal (green-plus sign) tissue
samples; (b) SVD of matrix of type: features by samples (across all times); (c) features projected over the 2nd CP component. Cell-graph features such
as % of end points, number of connected components, average connected component size, average path length, average eccentricity are identified as
influential in the analysis.
doi:10.1371/journal.pone.0032227.g008
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Using cell-graph features, we arrange in vitro tissue samples

measured at different time points as a features by samples by time

tensor. Let X denote this tensor. We compute its CP factorization,

i.e., X& DA,B,CD½ �, and extract the factor matrices A, B and C
corresponding to the features, samples and time modes, respec-

tively. In our analysis, a 2-component CP model is used and the

number of components is chosen based on the core consistency

diagnostic [36]. We focus on the component matrices in features

and samples mode. Figure 4a shows the scatter plots of the factors

in the samples mode, i.e., b1 vs: b2. Figure 4c illustrates the first

factor in the features mode, i.e., a1, since the first component

differentiates between cancerous and healthy samples in Figure 4a.

We also matricize tensor X, in the first mode by arranging the

tensor as a features by samples-time matrix (see [33] for matriciza-

tion), and compute its SVD. Figure 4b shows the scatter plot of the

right singular vectors, i.e.,v1 vs: v2.

The results in Figure 4 illustrate three important aspects of our

analysis. First, healthy and cancerous brain cells grown in 3D

culture (in vitro samples) can be discriminated when we represent

them using cell-graph features and take into account how they

change in time. Three-way analysis can easily discriminate

between them (Figure 4a) (We also illustrate that it is not possible

to separate brain cells at every time sample as healthy or cancerous

(Figure 4b)). Second, this discriminative power relies primarily on

a small subset of the graph features, suggesting they may contain

the telltale signatures of functional state, even in 3D monoculture.

Figure 9. Coupled matrix and tensor factorization on in vitro breast samples represented by tensor X and histology samples
represented by matrix Y (Figure 2). (a) The 1st column of matrix B corresponding to the in vitro samples mode extracted by a CMTF model can
separate cancer (blue-square sign) from normal (light blue-plus sign) tissue samples; (b) Unlike for brain and bone tissues, matrix D corresponding to
the histology samples mode extracted using a CMTF model cannot separate cancer samples (red-triangle sign) from healthy (green-star sign)
samples; (c) features captured by the common component extracted by CMTF. Cell-graph features identified as influential in the coupled analysis are
similar to the features in Figure 5c and 7c with some minor differences.
doi:10.1371/journal.pone.0032227.g009
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These features agree well with our understanding of the cellular

and molecular changes that occur during malignant transforma-

tion. For example, the features # connected components, % end points,

and average connected component size reflect the degree of ‘‘commu-

nication’’ between nodes in a cell graph; as healthy brain becomes

cancerous in vivo, much of this communication is lost due to loss of

synaptic junctions, although the relative position of the cell bodies

may not change much. As the tumor cells proliferate, the increased

number of cells becomes an obvious distinguishing feature,

reflected in our analysis by the metric # nodes. By comparison,

the mean indicating the average edge length is of relatively low

diagnostic value, and contributes very little to the first component

of our three way analysis. Third, because these features are also

quantitative, we now have a statistically rigorous means of

classifying functional state based on the same raw data that

generate qualitative classifications in the clinic.

We gain additional insight by adding the histology samples to

our analysis. We represent them as a matrix of type: features by

samples, using the cell-graph features. This yields two sources of

information: (i) in vitro samples arranged as a tensor (see tensor X
in Figure 2) and (ii) histology samples arranged as a matrix (see

matrix Y in Figure 2). These data sets are coupled in the features

mode in that they use the same set of cell-graph features. Using

coupled matrix and tensor factorizations, we factorize tensor X

and matrix Y in such a way that X& DA,B,CD½ � and Y&ADT ,

where A corresponds to the common factor matrix in the features

mode. B and C represent the factor matrices for samples (in vitro)

and time modes, respectively while D is the factor matrix

corresponding to the histology samples. In coupled analysis, we

observe that there is only one common component (Extracting

more components results in degenerate models, where one

component is highly negatively correlated with another compo-

nent - see [34] for a discussion on degeneracy in the case of tensor

factorizations). Figure 5a plots the factor vector in the in vitro

samples mode, i.e., b1, while Figure 5b plots the factor vector in

the histology samples mode, i.e., d1. The common factor can

differentiate between cancer and healthy samples in both Figure 5a

and Figure 5b. In Figure 5c, we illustrate the common factor in the

features mode, i.e., a1, in order to see the features responsible for

the differentiation of functional states.

The results in Figure 5c further demonstrate that subsets of

graph features can successfully separate distinct functional states in

structurally similar tissues. Note that three-way analysis and

coupled analysis produce similar feature sets to distinguish healthy

and cancerous forms of human tissue samples. This is expected

since our analysis targets only the spatial distribution of nuclei

(although tissue biopsies contain far more structural complexity

than 3D in vitro monocultures of healthy and cancerous cells,).

Figure 10. In vitro vs. histology samples of cancerous tissue (10a Brain, 10b Bone, and 10c Breast samples). The first two components
of SVD analysis explain 72.4%, 65.9%, 66.5% of the variance for each tissue type, respectively. SVD yields a linear separation between in vitro and
histology cancerous tissue samples. Two clusters (red and green) are very well separated, with few outliers. This defines and quantifies a structural
difference between engineered tissues and the native tissues.
doi:10.1371/journal.pone.0032227.g010

Figure 11. In vitro vs. histology samples of normal tissue (11a Brain, 11b Bone, and 11c Breast samples). The first two components of
SVD analysis explain 76.5%, 75%, 62.8% of the variance for each tissue type respectively and shows that there is a linear separation of in vitro and
native healthy tissue samples. The separation confirms that recreating the complex structural organization of native tissue samples in vitro is difficult.
doi:10.1371/journal.pone.0032227.g011
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The # connected components, average connected component size, and giant

connected component ratio are global features that capture patterns

across the entire graph.

2. Normal vs. Cancer: Bone Tissues
We repeated the analysis for bone samples (obtained in our

previous study [23]) by constructing a third-order tensor with

modes: features, samples, and time, and computing its CP

factorization. Similar to Figure 4a, in Figure 6a, we show the

scatter plots of the factors in the samples mode. We observe that

both the first and second factors can separate the healthy and

cancerous in vitro samples. Figure 6c and 6d, therefore, illustrate

the first and second factors in the features mode. As in Figure 4b,

Figure 6b shows the scatter plot of right singular vectors of tensor

X matricized in features mode. The results in Figure 6 are similar

to those in Figure 4, in that three-way analysis can separate the

healthy and cancerous in vitro samples. This is significant because

it demonstrates that the discriminative power of our analysis is

independent of cell/tissue type. While brain and bone tissues are

morphologically quite distinct, our analysis reveals they share

many of the same core structural features. When we compare the

significant features in Figure 6c to those in Figure 4c, we see a

great deal of overlap, suggesting that the first component of our

CP analysis of bone cultures exhibits a discriminative power

similar to the first CP component for our in vitro brain samples. In

addition, the second component of our in vitro bone analysis

(Figure 6d) contains additional significant features.

In Figure 7, we illustrate the results of coupled analysis of in

vitro and histology samples. In this case, it is possible to extract two

common factors. Figure 7a plots the factors in the in vitro samples

mode, i.e., b1vs: b2, while Figure 7b plots the factor vector in the

histology samples mode, i.e., d1vs: d2. The first common factor

can differentiate between cancer and healthy samples in both

Figure 7a and Figure 7b; therefore, we illustrate a1 in Figure 7c to

show the features responsible for the differentiation in both

histology and in vitro samples. A comparison of Figure 5 and

Figure 7 illustrates that our coupled matrix-tensor analysis is

equally powerful for classifying in vitro brain and bone samples,

and that this classification relies on a similar set of features for both

tissue types. This strongly suggests that our analysis of combina-

tions of cell-graph features from histology and in vitro samples,

even from morphologically distinct tissues, converges on a core set

of features that serve as tissue signatures, defined in large part by the

global organization of the entire tissue. Note that while the

absolute values of these features may differ considerably between

different tissue types, we feel the fact that these signatures are

composed of a small set of features uncovers a key underlying

organizational principle in tissue structure and function, and thus

may be important for closing the gap in our understanding of

tissue structure and function.

3. Normal vs. Cancer: Breast Tissues
Figure 8 extends our conclusions from Figures 4 and 6 to include a

ductal tissue as well. Of the three tissue types we examined, breast tissue

structure is by far the easiest to understand intuitively: it is primarily

organized into ducts lined with secretory cells, and clear boundaries

(the basement membranes) separate these secretory cells from the

remainder of the cells in this tissue. Our 3D monocultures of normal

breast cells recreate this epithelial architecture quite well, including the

basement membranes. In contrast, our breast cancer cell cultures are

far more diffuse, reflecting the loss of structural integrity in breast

tumors. It is perhaps somewhat surprising, therefore, to see that our

three-way analysis is necessary to discriminate between the two sets of

in vitro samples, and that only the second component of this analysis

could achieve true separation. This is important, because it indicates

that our graph features are not simple abstractions of patterns

immediately visible to trained pathologists. Instead, we feel these

features reflect an underlying organizational theme that all tissues

follow, regardless of their visible appearance.

Figure 9 further underscores this point, in that we cannot

discriminate between healthy and cancerous histology samples

(Figure 9b), even when they are coupled to their corresponding in

vitro samples; if the cell-graph features reflected obvious visible

patterns, we would expect to segregate them. On the other hand,

we find that the common component extracted by our coupled

analysis (only one component is extracted using CMTF) is

sufficient to differentiate between healthy and cancerous in vitro

samples (Figure 9a). The most influential features in the common

component are nearly identical to those that discriminate brain

and bone samples. Collectively, these findings suggest to us that

this small set of features may constitute a global signature for most,

if not all, human tissues.

4. Clustering of In Vitro vs. Histology Samples
Our second objective was to examine the organizational

limitations of our 3D cell cultures vis-à- vis the actual tissues they

represent. Let Xc and Yc represent the cancerous samples in

tensor X and matrix Y (see Figure 2). We matricize the tensor Xc

Figure 12. In vitro tissue samples remain structurally different from histology samples (blue) over time. We identified no time point in
the development of the in vitro samples that is mathematically similar to histology data. (a) Brain cancer cultures vary considerably over time getting
very close to the histology samples, demonstrating they best resemble the histology samples. In vitro bone cancer (b) and breast cancer (c) samples
remain clustered over all time points and exhibit no mixing of data points with histology data.
doi:10.1371/journal.pone.0032227.g012
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in the features mode as a features by samples-time matrix and then

concatenate with Yc forming a new matrix Zc containing both

cancerous in vitro and cancerous histology samples. The SVD of Zc

is computed to see whether we can extract factors that can

differentiate between in vitro and histology samples. The first two

right singular vectors of Zc are plotted in Figure 10 for different

tissue types. Figure 10 illustrates that all three of our in vitro cancer

models are sufficiently different from actual tumors to permit SVD

to clearly segregate them: the first two components of the SVD

analysis capture 72.4%, 65.9%, and 66.5% of the explained

variance for brain, bone and breast tissue samples respectively. The

same is true for our healthy cell cultures (Figure 11): the first two

components of SVD analysis explain 76.5%, 75%, 62.8% of the

variance for each tissue type, respectively. Thus we conclude that in

vitro sample and native histology samples contain quantifiably

different structural organization of cells.

We examined the amount of cumulative explained variance by

3rd, 4th,.. 20th components to see if there is a significant difference

between healthy and cancerous samples when we grow them in vitro

vs. histology. We noticed that explained variance becomes almost

equal for healthy brain and cancerous brain samples by using the first

5 components and thereafter. Similarly for breast tissue samples using

the first 6 components and thereafter equal the explained cumulative

variance for cancerous and health samples. In case of bone tissue the

difference between in vitro and histology is more significant since

cancerous tissue sample analysis requires always more components

than healthy one for the same explained cumulative variance. This

observation may indicate that organizing cells in vitro to obtain bone

like tissue samples is a more challenging task.

5. Distance Between Time Evolving In Vitro Data and
Histology Data

Based on our conclusions thus far, our next objective was to

explore whether the accuracy distance between our 3D cultures

and histology samples was time dependent. We hypothesized that

because our 3D cultures undergo much more profound organi-

zational changes than histology samples, their ‘‘accuracy’’

improves as they convert from an initial, evenly dispersed culture

to a more mature structure, then become progressively less

accurate as the cells undergo multiple rounds of mitosis and

apoptosis (a product of the growth factors in the culture media and

decreasing diffusion distance as the gels compact, respectively).

This suggests that each culture reaches a ‘‘peak accuracy’’ over the

course of a seven day incubation.

To test this hypothesis, we compute the SVD of the cancerous

histology samples and project the in vitro samples (at different time

points) onto the first two singular vectors of the histology samples

(after centering/scaling according to histology samples). Figure 12

shows that development of all three in vitro tissue types remains

significantly different from histology samples, and quantifies this

difference between in vitro and native tissue organization. In

addition, while our bone and breast cultures (panels b and c) do

not move closer to their histology sample clusters over time, the

distance of brain cultures varies considerably with time getting

very close to the histology samples, demonstrating they best

resemble the histology samples. These data support our hypothesis

for our brain cultures but fail for bone and breast.

Discussion

There is a huge amount of data collected about biological tissues

at the cellular and subcellular level. However, we still do not have

an understanding of what these structural data corresponds to in

terms of biological functions. In order to address this issue and

improve our understanding of structure/function relationship, in

this paper, we use a set of cell-graph features (see [37] for a review

article) that are capable of modeling the structure/function

relationship in tissues and construct matrices and third-order

tensors representing histology and in vitro samples, respectively.

Using tensor analysis of in vitro samples, for three different tissue

types, i.e., brain, bone and breast, we have demonstrated that it is

possible to discriminate between healthy and cancerous brain cells

grown in 3D culture using a small set of graph features. Besides,

we have shown that we can gain additional insight by

incorporating histology samples and modeling matrices and

third-order tensors jointly through coupled matrix and tensor

factorizations. Joint analysis of histology and in vitro samples

enables us to pinpoint the discriminative features for healthy and

cancerous state separation, e.g., for bone samples in our

experiments. Collectively, our study aims to quantify three

significant but traditionally qualitative structure-function relation-

ships in multicellular organisms:

1. The relationship between relative cell positioning in a
tissue and the functional state of that tissue

Epithelial tissues lose structural integrity when they are

damaged, but recover it as healing progresses; epithelial tumors

also pass through this ‘‘damaged’’ stage, and ultimately lose this

integrity altogether. Discriminating between these not-quite-

healthy conditions is one of the most problematic issues in

pathology. A similar case occurs in bone tissues: a healing fracture

(i.e., fracture callus) so closely resembles osteosarcoma in H&E

sections that physicians amputate the limbs of children as a

precautionary measure. Finally, the treatments for traumatic brain

injury and brain tumors differ significantly, so early and accurate

diagnosis would improve outcomes tremendously. Our approach

places several numeric features on the healthy and cancerous

states, thereby clarifying the most significant differences between

them. Both local and global metrics in our cell graphs define these

features.

2. The relative importance of cell clusters vs. single cells
in the functional state of a tissue

Epithelial cells are literally bound together by a series of cell-cell

junctions that permit them to exchange metabolites, restrict

paracellular transport, and even distribute tensile and compressive

forces across a group of cells, thereby reducing the damage in any

single cell. Osteoblasts maintain close communication via canaliculi,

and the importance of intercellular contact between neighboring

neurons is unquestioned. Yet, all of these contacts are somewhat

plastic in even healthy tissues. What types of changes in these

connections are permitted in healthy tissues, and when are the

changes so dramatic as to reflect a loss of functional communica-

tion? While the concepts of dynamics of cell-to-cell communication

are widely accepted, we have yet to develop accurate ways of finding

the most important signs of meaningful changes in this communi-

cation. Our local metrics (e.g., clustering coefficient, degree, etc.) are

representations of this communication between individual cells, and

our global metrics (e.g., number of connected components,

percentage of end points, etc.) sample interactions between

neighboring clusters of cells. The numeric values of these features

collectively quantify the concept of cell-cell cooperativity.

3. The linkage between gene/protein expression and
phenotype in cells and tissues

Reductionist methods have identified thousands of genes in the

human genome, and microarray and proteomic methods can
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routinely quantify their relative expression state in cells and tissues.

Yet, a fundamental question remains: what is the relationship

between combinations of genes/proteins and a given phenotype in

a tissue, or even a single cell? This question will remain

unanswered until we develop quantitatively rigorous methods for

defining phenotypic state, comparable to the molecular expression

methods we now use. While we have yet to address this question

directly, the work described in this manuscript provides a

framework for tackling this question in the near future. By

inducing a known change in gene expression in a cell or tissue and

calculating the change in metrics that capture functional state, we

will be better equipped to identify these relationships, which form

the basis of all structure/function studies in multicellular

organisms.

Even though joint analysis of in vitro and histology samples can

improve our understanding, in this paper, we have also studied

organizational limitations of our 3D cell cultures by comparing

them with the actual tissues and demonstrated that there is a

quantifiable structural difference between our in vitro and in vivo

(histology) samples.
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