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Abstract

Bilirubin acts as a potent endogenous antioxidant, with higher concentrations associated

with lower rates of CVD; the antiretroviral drug atazanavir (ATV) increases bilirubin levels

but may also increase von Willebrand factor levels. We tested the hypothesis that increasing

endogenous bilirubin using ATV would improve cardiometabolic risk factors and vascular

function in older patients with HIV. Ninety participants were enrolled in two study protocols.

In protocol 1, we evaluated markers of inflammation, thrombosis, and conduit artery endo-

thelial function in subjects on non-ATV containing regimens. Participants were randomly

assigned to continue baseline treatment or switch to an ATV-based regimen. Measure-

ments were made at baseline and 28 days. In the protocol 2, we enrolled 30 subjects who

received atazanavir for more than one year and were compared to the aim 1 protocol sub-

jects at baseline. 60 subjects were enrolled in the first protocol (mean age 53, +/- 6 years),

with 31 randomized to ATV and 29 continuing baseline treatment. Atazanavir significantly

increased serum total bilirubin levels (p<0.001) and acutely but not chronically plasma total

antioxidant capacity (p<0.001). An increase in von Willebrand Factor (p<0.001) and reduc-

tion in hs-CRP (p = 0.034) were noted. No changes were seen in either flow-mediated endo-

thelium-dependent or vasodilation. In cross-sectional analysis (second protocol), similar

findings were seen in the baseline attributes of non-atazanavir-based and long-term ataza-

navir users. Increasing serum bilirubin levels with atazanavir in subjects with HIV reduces

hs-CRP, temporarily reduces oxidative stress, but increases von Willebrand Factor. Ataza-

navir does not improve endothelial function of conduit arteries.

Trial registration: ClinicalTrials.gov NCT03019783.
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Introduction

Effective antiretroviral therapy (ART) has dramatically reduced AIDS-related morbidity and

mortality for those with HIV [1]. With increased survival, HIV-infected patients are at

increased risk for diseases of aging, including cardiovascular disease. Some studies suggest that

cardiovascular disease is more common in this population than in HIV-negative age-matched

controls, with possible contributors including residual excess inflammation and immune acti-

vation despite effective ART. Additional potential factors include dyslipidemia, certain antire-

troviral agents, and a high prevalence of modifiable CV risk factors, in particular smoking [2–

9].

While some early HIV protease inhibitors (PIs) unfavorably influenced cardiovascular risk

due to deleterious effects on lipids and insulin resistance, this has not been observed with the

PI atazanavir [10]. Atazanavir raises unconjugated bilirubin—a potent intracellular antioxi-

dant—through inhibition of the enzyme uridine diphosphate glucuronyltransferase (UGT)

1A1. We have demonstrated that higher levels of plasma bilirubin, within the normal range,

are associated with reduced rates of stroke and peripheral artery disease in the general popula-

tion [11, 12]. In addition, patients with Gilbert Syndrome (chronic elevation of bilirubin as a

result of genetically reduced UGT1A1) have a lower rate of myocardial infarction compared

with age-matched controls [13].

However, recent experimental data suggests that bilirubin inhibits A Disintegrin-like and

Metalloprotease with Thrombospondin type-1 motifs (ADAMTS)-13 and may raise von Will-

ebrand factor levels [14] offsetting this cardiovascular benefit. Based on these observations, we

hypothesized that the use of atazanavir in an older stable HIV population would reduce oxida-

tive stress and increase von Willebrand factor levels rendering an unclear impact on vascular

function compared with continuing current therapy. We compared the oxidative stress, von

Willebrand factors, and vascular function subjects randomly assigned to continue their current

ART regimen or switch to a regimen containing atazanavir. We also conducted a cross-sec-

tional analysis comparing these outcomes at baseline (prior to randomization) to a separate

group of subjects receiving long-term (� 1 year) atazanavir therapy.

Materials and methods

Subject selection

Subjects were recruited from affiliated practices and local advertisements. For the randomized

study, inclusion criteria included age� 45 years, stable non-atazanavir-containing regimen

consisting of co-formulated tenofovir disproxil fumarate/emtricitabine (TDF/FTC) as the

nucleoside reverse transcriptase inhibitor (NRTI)s plus a third active agent for 3 months or

longer. The third agent could be any FDA-approved protease inhibitor (PI), non-nucleoside

reverse transcriptase inhibitor (NNRTI), or integrase strand transfer inhibitor (INSTI).

Patients were required to have an HIV RNA< 50 cop/mL at screening and at least once during

the prior year, and no treatment interruptions > 7 days in the 3 months prior to study entry.

For the cross-sectional study, subjects taking atazanavir-based therapy for at least one year

were recruited. Subjects were excluded if they had prior treatment failure on or intolerance to

atazanavir, known or suspected resistance to atazanavir, evidence of unstable cardiovascular

disease within 1 year, renal or liver disease, a history Gilbert Syndrome or elevated bilirubin

levels (> 1.5 mg/dL) at baseline, current receipt of ART different from co-formulated TDF/

FTC plus a third agent (PI, NNRTI, or INSTI) regimen, current receipt of proton-pump inhib-

itor therapy, or recent initiation of hormones or immunomodulators. Active drug abuse,

smoking, pregnancy, or use of medications that interfere with atazanavir precluded

Atazanavir, HIV, and risk factors
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participation. All subjects provided written informed consent. The protocol was approved by

the Partners Human Research Committee of Brigham and Women’s Hospital, all subjects pro-

vided informed consent, and all study visits occurred at Brigham and Women’s Hospital. This

study was approved by the Human Research Committee on November 21, 2011, patient

recruitment began in December 2011, and was completed in May 2015. This study was regis-

tered when Section 801 of the Food and Drug Administration Amendments Act changed the

description of clinical trials in September 2016 after patient recruitment began. Prior to this,

we were not required by the Institutional Review Board to register physiological studies.

Protocols

Protocol 1: In this parallel-design trial, 60 subjects taking non-atazanavir-based regimens were

randomly allocated by the investigational drug pharmacy to remain on their original treatment

or substitute atazanavir (Reyataz, Bristol Myers Squibb, Plainsboro, NJ) and ritonavir for the

non-TDF/FTC component of the regimen; TDF/FTC was continued for all patients (ritonavir

acts solely as a pharmacokinetic booster in this context). Subjects were randomly allocated to

treatment arms in a 1:1 ratio based on a block size of 4 by the Brigham and Women’s Hospital

Investigational Pharmacy. The treatment was applied by an HIV specialist (PS), but blinded to

the cardiovascular specialist (JB). The subjects who were switched received atazanavir 300 mg

with ritonavir 100 mg daily for 28 days. After the 28 days, HIV therapy was continued as per

the subject’s treating physician. Subjects underwent analysis for markers of lipids, oxidative

stress, inflammation, thrombosis, and vascular function occurred on days 1 and 28.

Protocol 2: In this cross-sectional analysis, the parameters of interest were compared in 30

subjects who received atazanavir for more than a year to the baseline attributes of the 60 sub-

jects on non-atazanavir-based regimens recruited for protocol 1.

Laboratory analyses

Blood was collected into Vacutainer tubes (Becton Dickinson) for chemistry and hematologic

analyses at Brigham and Women’s Hospital Clinical Laboratories. Plasma samples were stored

for subsequent analysis at -80˚C from Vacutainer tubes containing K2 EDTA 7.2 mg/4 mL

whole blood following centrifugation (1,200 g) at 4˚C for 10 minutes. Plasma antioxidant

capacity was assessed by ferric reducing ability of plasma (FRAP) assay at the Clinical & Epide-

miologic Research Laboratory of Boston Children’s Hospital [15].

ADAMTS13 (A Disintegrin-like and Metalloprotease with Thrombospondin type-1 motifs

13) was measured with a fluorometric method from AnaSpec Inc (Freemont, CA). The assay

employs an internally quenched vWF73 FRET peptide substrate for the detection of enzyme

activity. High Sensitivity C-Reactive Protein (hs-CRP) was determined using an immunoturbi-

dimetric assay on the Roche P Modular system (Roche Diagnostics—Indianapolis, IN), using

reagents and calibrators from Roche. The FRAP kit (Ferric Reducing Ability of Plasma) from

Arbor Assays (Ann Arbor, MI) is a colorimetric assay used to measure the antioxidant status

of plasma samples. Interleukin-6 (IL-6) was measured by an ultra-sensitive ELISA assay from

R & D Systems, Minneapolis, MN. Myeloperoxidase (MPO) was measured by an ELISA assay

from Alpco Diagnostics (Salem, NH). Soluble intercellular adhesion molecule-1 (sICAM-1)

was measured by an ELISA assay (R & D Systems, Minneapolis, MN). Soluble vascular cell

adhesion molecule-1 (sVCAM-1) was measured by an ELISA assay (R & D Systems, Minneap-

olis, MN). TNFα-receptor II was measured by an ELISA assay from R & D Systems. Von Will-

ebrand factor (vWF) antigen was measured by an ELISA assay from American Diagnostica

(American Diagnostica—Greenwich, CT). The MPO, sICAM-1, sVCAM-1, TNFα-receptor II,

and vWF assays employ the quantitative sandwich enzyme immunoassay technique.

Atazanavir, HIV, and risk factors
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The homeostatic model assessment-estimated insulin resistance (HOMAIR) was calculated

using the following equation: fasting glucose (mg/dL) x fasting insulin (mU/mL) / 405.

Vascular reactivity testing

Subjects were studied in the morning after overnight fast. All vascular studies were performed

in a quiet, temperature-controlled, dimly lit room after the subject rested supine for a mini-

mum of 5 minutes, using an upper-arm sphygmomanometric cuff position, as we have

previously performed and according to guidelines [16–19]. High-resolution B-mode ultraso-

nography using a 7.5 MHz linear array probe (Vivid 7, General Electric) was used to image the

brachial artery. Images were obtained using an electrocardiographic R-wave trigger for end

diastole. Reactive hyperemia was induced through five minutes of cuff suprasystolic pressure

inflation. Flow-mediated, endothelium-dependent vasodilation was assessed 60 to 70 seconds

after cuff deflation. We have shown that vasodilation at this time point is largely dependent

upon endothelium-derived nitric oxide [20, 21]. Vascular function analyses were performed

blinded to study visit.

Ten minutes after cuff release endothelium-independent vasodilation was assessed. The

brachial artery was imaged before and 3 minutes after sublingual administration of 0.4 mg of

nitroglycerin (Nitrostat, Parke-David, New York, NY). Brachial artery blood flow velocity was

determined via pulsed Doppler velocity-time integral measurement at all time points. Nitro-

glycerin was not administered if the subject’s systolic blood pressure was< 100 mmHg or

heart rate was < 50 beats/min. Analysis was performed using Information Integrity custom-

made image acquisition and analysis software (Information Integrity, Stow, MA).

Statistical methods

The effect and sample sizes were modeled based on previous work with another antioxidant

[22]. Descriptive measures are reported as mean ± standard deviation (SD). Vascular function

parameters were compared by analysis of variance in Protocol 1 and paired t-test in Protocol

2. Baseline characteristics are described as mean and SD. Comparison of baseline characteris-

tics between groups was performed using ANOVA, Kruskal–Wallis equality-of-populations

test, or χ2 test, as appropriate. The primary outcome assessment was brachial artery flow-medi-

ated vasodilation (FMD) response during atazanavir-based therapy compared with non-ataza-

navir-based-therapy. The distribution of FMD at both time points was normally distributed

(p = NS by Shapiro–Wilk test); consequently, ANOVA was performed to assess the difference

in mean FMD between atazanavir and non-atazanavir regimens. Other subgroup descriptive

analyses were performed by paired Student t test or the Wilcoxon signed-rank test, as needed.

Statistical significance was accepted at the 95% confidence level (P < 0.05. SPSS version 24 for

MAC (IBM, Armonk, NY) was used for all analyses.

Results

Study participants

102 subjects with HIV signed consent. The first subject started in December 2011 and the last

subject completed participation in May 2015. Nine did not meet study criteria after laboratory

analysis and 3 did not show up for study visits (Fig 1). A total of 90 subjects completed the

study, including 60 in Protocol 1 and 30 in Protocol 2. The study was considered completed

when the full cohort had completed the protocol. Participants had a mean age of 53 years,

included 18 women, and had normal blood pressure, lipid levels and renal function. The mean

body mass index (BMI) was 27 kg/m2 and plasma HIV-1 RNA was 30 copies / ml in the

Atazanavir, HIV, and risk factors
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atazanavir-naïve participants and 37 copies / ml in the atazanavir-treated participants. Between

the two groups, there was no difference in insulin, glucose, or HOMA-IR, lipid levels, and

ICAM-1 or IL-6.

Treatment trial (Protocol 1)

In the parallel-design, randomized, blinded trial (Protocol 1), there was neither a significant

change within group or between groups in renal function, lipids, insulin, glucose, HOMA-IR,

complete blood counts, and blood pressure with a change to atazanavir compared with

remaining on the original regimen. Treatment with atazanavir significantly increased total bili-

rubin by 1.6 ± 0.8 mg/dL compared to 0.0 ± 0.1 mg/dL for subjects who remained on their

original regimen, p< 0.001 (Table 1). Allocation to atazanavir was associated with a reduction

in hs-CRP and an increase in von Willebrand factor (vWF) and FRAP when compared to

Fig 1. Consort flow diagram for treatment trial.

https://doi.org/10.1371/journal.pone.0181993.g001
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Table 1. Baseline demographics, laboratories and vascular function parallel design trial (Protocol 1).

Parameter No Regimen Switch SwitChange (n = 32) Atazanavir Switch (n = 28) p value

N 31 29

Age (y) 53±5 53±7 0.36

Sex (% Female) 43% 21% 0.07

BMI (kg/m2) 27±6 28±6 0.55

Race (% Caucasian) 42% 60% 0.26

Hispanic (%) 13% 13% 0.84

Systolic Blood Pressure (mm Hg) 125±15 125±17 0.99

Diastolic Blood Pressure (mm Hg) 77±9 77±8 0.83

Mean Arterial Pressure (mm Hg) 92±10 91±10 0.70

Total Cholesterol (mg/dl) 182±30 182±35 0.97

LDL (mg/dl) 103±30 107±33 0.59

HDL (mg/dl) 53±19 50±17 0.59

Triglycerides (mg/dl) 141±73 135±68 0.84

Plasma HIV-1 RNA (copies / ml) 28±25 33±30 0.49

Alkaline Phosphatase (IU/L) 86±30 96±37 0.24

AST (IU/L) 29±14 28±13 0.89

ALT (IU/L) 31±13 36±27 0.35

GGT (IU/L) 44±31 93±162 0.10

Total Bilirubin (mg/dl) 0.3±0.2 0.4±0.2 0.35

Direct Bilirubin (mg/dl) 0.1±0.0 0.1±0.1 0.28

Total Protein (g/dl) 7.7±0.7 7.5±0.4 0.20

Albumin (g/L) 4.3±0.4 4.3±0.3 0.90

LDH (IU/L) 172±37 175±46 0.78

CPK (IU/L) 179±128 131±56 0.08

BUN (mg/dl) 14.1±3.9 14.7±3.8 0.56

Creatinine (mg/dl) 0.9±0.1 0.9±0.2 0.22

eGFR (ml/min) 111±24 106±29 0.31

Glucose (mg/dL) 95±19 88±20 0.17

Insulin (IU/L) 15±12 15±11 0.90

HOMA-IR 3.9±4.1 3.4±2.7 0.55

WBC (1000 cells/mcl) 5.8±1.8 6.3±2.2 0.40

HGB (g/L) 13.±1.2 14.2±1.2 0.009

Platelets 219±55 231±65 0.42

Vascular Function

Baseline Diameter (mm) 3.7±0.6 3.6±0.7 0.58

Reactive Hyperemia (FC) 6.9±3.9 5.6±2.7 0.16

Flow-Mediated Vasodilation (%) 9.4±5.6 9.8±4.6 0.78

Nitroglycerin-Mediated Vasodilation (%) 19.1±7.4 15.6±6.8 0.11

hs-CRP (mg/L) 2.6±2.9 3.7±4.1 0.20

VCAM (ng/mL) 712±235 164±322 0.47

ICAM-1 (ng/mL) 239±100 277±103 0.16

IL-6 (pg/mL) 2.2±2.2 2.8±2.7 0.32

Myeloperoxidase (ng/mL) 20.4±16.6 30.5±34.9 0.15

FRAP (uM) 1142±254 1173±277 0.65

ADAMTS-13 (RFU) 0.16±0.03 0.17±0.04 0.40

von Willebrand Factor (mU/mL) 889±687 964±979 0.73

Medications

(Continued )

Atazanavir, HIV, and risk factors
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treatment with the baseline regimen. Increases in bilirubin were directly correlated with

increases in FRAP (Pearson 0.397, p = 0.002) (Table 2).

Basal brachial artery diameter did not vary significantly between the atazanavir-treated and

non-atazanavir treated groups (3.7 ± 0.7 mm at baseline and 3.9 ± 0.6 mm post-treatment,

p = 0.64) (Table 3). There was no significant difference in flow-mediated, endothelium-depen-

dent vasodilation between the two groups (9.6 ± 5.1% at baseline and 9.4 ± 5.5% post-treat-

ment; p = 0.92). Nitroglycerin-mediated, endothelium-independent vasodilation was without

significant difference between the groups. There was no significant difference in baseline

diameter, reactive hyperemic stimulus, flow-mediated vasodilation, and nitroglycerin-medi-

ated vasodilation at any time point, both within and between groups.

Cross-sectional analysis (Protocol 2)

Subjects receiving atazanavir for more than a year had increased total bilirubin levels com-

pared with those never taking atazanavir (2.0 ±1.0 vs. 0.4 ± 0.2 mg / dL, p< 0.001) (Table 4).

Direct bilirubin was modestly higher in the atazanavir group, as well, compared to those not

taking atazanavir (0.2 ± 0.1 vs. 0.1 ± 0.1 mg / dL, p< 0.001). Despite the increase in bilirubin,

Table 1. (Continued)

Parameter No Regimen Switch SwitChange (n = 32) Atazanavir Switch (n = 28) p value

ARB or ACE I 4 4 0.89

Statin 7 8 0.56

Metformin 4 1 0.22

PPAR alpha agonist (%) 2 2 0.89

https://doi.org/10.1371/journal.pone.0181993.t001

Table 2. Change in expression for selected atherosclerotic markers in the parallel design trial.

Parameter No Change in Therapy Atazanavir p

Total Bilirubin (mg/dL) 0.0±0.1 1.6±0.8 <0.001

hs-CRP (mg/L) 0.84±3.05 -0.53±4.6 0.034

HOMA-IR -0.43±4.3 0.55±2.3 0.29

HDL (mg/dL) -1.0±8.3 -4.5±10.8 0.16

TRIGS (mg/dL) -6.9±52.9 19.1±80.2 0.14

MPO (ng/mL) 4.7±20.6 2.1±45.9 0.8

IL-6 (pg/mL) 0.45±3.32 -0.11±3.28 0.5

FRAP (uM) -21±271 219±213 <0.001

VWF (mU/mL) -140±636 171±1026 0.05

https://doi.org/10.1371/journal.pone.0181993.t002

Table 3. Vascular function in the parallel design trial.

No Change in Therapy Atazanavir

Parameter Day 1 Day 28 Day 1 Day 28

Baseline Diameter (mm) 3.7 ± 0.6 3.7 ± 0.5 3.6 ± 0.7 3.6 ± 0.7

Reactive Hyperemic Stimulus (FC) 7.1 ± 3.9 5.9 ± 2.2 5.5 ± 2.8 4.8 ± 2.0

Reactive Hyperemic Diameter (mm) 4.0 ± 0.6 4.1 ± 0.6 3.9 ± .07 4.0 ± 0.7

FMD (%) 9.4 ± 5.6 9.6 ± 4.3 9.8 ± 4.6 10.6 ± 4.1

NMD (%) 18.6 ± 6.8 18.7 ± 6.1 16.0 ± 7.2 15.0 ± 5.4

https://doi.org/10.1371/journal.pone.0181993.t003

Atazanavir, HIV, and risk factors
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Table 4. Cross-sectional comparisons (Protocol 2).

Parameter Atazanavir Naïve (n = 60) Atazanavir User (n = 30) p value

Age (y) 53±6 53±6 0.63

Sex (% Female) 13% 33% 0.04

BMI (kg/m2) 27±6 28±6 0.70

Race (% Caucasian) 42% 60% 0.54

Hispanic (%) 13% 13% 1.0

Systolic Blood Pressure (mm Hg) 125±16 126±16 0.75

Diastolic Blood Pressure (mm Hg) 77±8 79±11 0.2

Mean Arterial Pressure (mm Hg) 91±10 93±14 0.41

Total Cholesterol (mg/dl) 182±32 172±33 0.19

LDL (mg/dl) 105±31 97±31 0.28

HDL (mg/dl) 52±18 49±23 0.60

Triglycerides (mg/dl) 141±73 135±68 0.68

Plasma HIV-1 RNA (copies / ml) 30±27 37±25 0.27

Alkaline Phosphatase (IU/L) 91±34 91±19 0.94

AST (IU/L) 29±13 28±13 0.96

ALT (IU/L) 33±21 33±25 0.97

GGT (IU/L) 67±114 39±38 0.20

Total Bilirubin (mg/dl) 0.4±0.2 2.0±1.0 <0.001

Direct Bilirubin (mg/dl) 0.1±0.1 0.2±0.1 <0.001

Total Protein (g/dl) 7.6±0.6 7.4±0.5 0.037

Albumin (g/L) 4.3±0.3 4.2±0.2 0.90

LDH (IU/L) 173±41 176±43 0.74

CPK (IU/L) 157±103 173±113 0.50

BUN (mg/dl) 14.4±3.8 15.9±5.4 0.14

Creatinine (mg/dl) 0.9±0.2 1.0±0.2 0.01

eGFR (ml/min) 109±26 107±28 0.71

Glucose (mg/dL) 92±20 94±33 0.65

Insulin (IU/L) 15±11 12±7 0.16

HOMA-IR 3.7±3.5 3.0±2.6 0.38

WBC (1000 cells/mcl) 6.0±2.0 6.3±1.9 0.55

HGB (g/L) 15.9±16.7 14.4±12.1 0.01

Platelets 225±60 207±54 0.16

Vascular Function

Baseline Diameter (mm) 3.7±0.7 3.9±0.6 0.07

Reactive Hyperemia (FC) 6.3±3.5 6.1±2.9 0.86

Flow-Mediated Vasodilation (%) 9.6±5.1 9.4±5.5 0.18

Nitroglycerin-Mediated Vasodilation (%) 17.4±7.3 17.1±11.7 0.92

hs-CRP (mg/L) 3.1±3.5 1.9±2.0 0.05

VCAM (ng/mL) 736±278 870±297 0.04

ICAM-1 (ng/mL) 257±102 277±108 0.39

IL-6 (pg/mL) 2.5±2.4 2.3±2.2 0.68

Myeloperoxidase (ng/mL) 25.1±27.0 32.6±39.0 0.30

FRAP (uM) 1157±263 1103±243 0.35

ADAMTS-13 (RFU) 0.17 ± 0.03 0.17 ± .0.4 0.68

von Willebrand Factor (mU/mL) 924±830 1591±922 0.001

Medications

ARB or ACE I 8 6 0.72

(Continued )
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there was no difference in oxidative stress, as measured by FRAP or myeloperoxidase levels.

FRAP, 28 days after switch to atazanavir in the cross-sectional trial was greater than in the sub-

jects taking it for more than a year (1393 ± 321 vs. 1103 ± 243, respectively (p = 0.037). The

inflammatory profile was mixed, with lower levels of hs-CRP in subjects chronically taking ata-

zanavir but higher levels of VCAM. Subjects taking atazanavir had higher levels of vWF com-

pared to subjects not taking atazanavir and no difference in ADAMTS-13 levels. There was a

significant correlation between total bilirubin and vWF levels (Pearson = 0.33, p = 0.001).

There was no significant difference in baseline diameter, reactive hyperemic stimulus, flow-

mediated vasodilation, and nitroglycerin-mediated vasodilation between groups.

Discussion

Through inhibition of UGT1A1, atazanavir induces increases in bilirubin, occasionally signifi-

cant enough to merit discontinuation secondary to jaundice [23–25]. However, the increase in

bilirubin could also have beneficial effects, as bilirubin is a well-described potent endogenous

antioxidant [26, 27]. Atazanavir, presumably through its increase in bilirubin, could improve

the systemic atherosclerotic environment through improvements in lipid profile, inflamma-

tion, and oxidative stress[25, 28–30]. In support of this hypothesis, treatment with atazanavir

slowed-progression in carotid intima media thickness compared to treatments with darunavir

(another protease inhibitor] and raltegravir (an integrase inhibitor)[31, 32]. In the D:A:D

study of more than 49,000 HIV-positive patients, treatment with atazanavir did not increase

the risk of myocardial infarction or stroke, suggesting a safer cardiovascular profile for ataza-

navir compared with other HIV protease inhibitors [10].

We and others have reported an association between high-normal levels of unconjugated

bilirubin and decreased rates of atherosclerosis in the general population. Moreover, acute

increases in bilirubin have been associated with improvements in oxidative stress and endothe-

lial function in patients who have type 2 diabetes. However, our current work raises questions

about the value of pharmacologic-induced increases in bilirubin. This investigation demon-

strates that while atazanavir-based increases in bilirubin exerted short-term improvements in

oxidative stress and a modest short-term impact on inflammation, these benefits were not in

evidence long-term. In addition, bilirubin-mediated inhibition of ADAMTS-13 [14] increased

vWF levels.

The impact of increased bilirubin on vWF levels is a novel finding in humans in vivo.

ADAMTS-13 cleaves vWF at the Tyrosine 1605-Methionine 1606 bond. When this cleavage

occurs in excess, as in von Willebrand disease or aortic valvular stenosis, a bleeding diathesis

ensues [33, 34]. When cleavage is inhibited, resulting in increased vWF, thrombotic thrombo-

cytopenic purpura may occur [35–37]. Unconjugated bilirubin has been shown in vitro to

inhibit vWF cleavage by ADAMTS-13 [14]. Our data are the first to support this finding in

humans. We found higher levels of vWF after 28 days of treatment and even higher levels in

the long-term cross-sectional analysis in patients treated with atazanavir compared to those

not on atazanavir. Further, there was a strong direct correlation in total bilirubin and vWF lev-

els in the cross-sectional aim. The clinical significance of this finding is unclear. Our study

Table 4. (Continued)

Parameter Atazanavir Naïve (n = 60) Atazanavir User (n = 30) p value

Statin 15 5 0.38

Metformin 5 4 0.46

PPAR alpha agonist (%) 4 0 0.15

https://doi.org/10.1371/journal.pone.0181993.t004
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breaks the link reported previously between vWF and endothelial function in the determina-

tion of endothelial health [38]. In addition, higher levels of vWF have been associated epidemi-

ologically with atherosclerosis, in the coronary, cerebrovascular, and peripheral arterial beds

[39–41]. The mean levels in our long-term atazanavir-treated subjects are similar to the levels

in the patients with cardiovascular events in these studies. Thus, the net effect of pharmacolog-

ically-mediated bilirubin raising has yet to be fully elucidated.

The effect of atazanavir on oxidative stress is complex. In our current work, the switch to an

atazanavir-based regimen was associated with an increase in the ferric reducing ability of plasma

(less oxidative stress) at 4 weeks, but there was no variation in the cross-sectional comparison of

subjects taking atazanavir-based regimens versus other regimens for at least a year. Similarly,

Flammer and colleagues reported no difference in oxidative stress 24 weeks after switching to

atazanavir [42]. Our findings stand in contrast to studies in subjects with Gilbert syndrome who

have decreased levels of oxidative stress as measured by advanced glycation end-products, uri-

nary excretion of biopyrrins, reduced concentrations of oxidized LDL, and serum concentra-

tions of malondialdehyde-modified LDL [43–46]. The variation in oxidative stress may reside in

additional targets of atazanavir. Recent data suggests that protease inhibitors increase mitochon-

drial superoxide anion generation that may offset, in the vascular endothelium, any beneficial

effect of higher circulating bilirubin [47, 48]. The effect of atazanavir on the mitochondria

would also provide an explanation for an early decrease in oxidative stress through UGT1A1

only to be eliminated by later induction of mitochondrial superoxide anion production. This

provides one explanation for the variance between the liver-specific Gilbert syndrome-mediated

increases in bilirubin and target/off-target effects of medications that increase bilirubin.

Atazanavir and endothelial function

Our data in older subjects with well-treated HIV extends previous reports in younger cohorts

demonstrating no improvement in endothelial function [42, 49]. Moreover, our data verify a

lack of benefit on endothelial function associated with long-term therapy in older subjects

[50]. The results confirm our prior experience with atazanavir in patients with type 1 diabetes

[28]. The lack of change in endothelial function is surprising given that increases in bilirubin

decreased oxidative stress. The lack of effect may occur as a result of the mechanism by which

bilirubin was increased. Heme Oxygenases (HO), both the inducible, HO-1, and constitutively

expressed versions, HO-2, degrade heme to biliverdin. Biliverdin is, in turn, rapidly converted

by biliverdin reductase to bilirubin. Bilirubin is then conjugated in the liver by UGT1A1 to a

water soluble form destined for bodily elimination [51]. There are two well-described mecha-

nisms for increasing bilirubin: inducing HO-1 and inhibiting UGT1A1. As HO-1 is expressed

in endothelial cells, its induction would be predicted to increase bilirubin production. Both

curcumin and peroxisome proliferator-activated receptor (PPAR)-alpha agonists induce HO-

1 and have been shown in animals models to improve endothelial function [52–55] and

improve vascular function in patients with diabetes [56, 57]. In contrast, a strategy of increas-

ing bilirubin by blocking its conjugation in the liver has failed multiple times to improve endo-

thelial function in subjects with HIV [30, 42, 49, 58] and type 1 diabetes [28], but had its single

success in a 4-day study of subjects with type 2 diabetes [59]. It is possible that the success of

the last study occurred because of factors particular to type 2 diabetes (its microvessel rather

than conduit artery focus), the duration of the study (which was shorter than the length of

time necessary to increase mitochondrial superoxide production), or because of random

chance. Our data concur with most investigations in the finding that atazanavir does not

improve conduit artery flow-mediated, endothelium-dependent vasodilation compared with

other HIV treatment regimens.

Atazanavir, HIV, and risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0181993 October 12, 2017 10 / 14

https://doi.org/10.1371/journal.pone.0181993


Conclusions

We demonstrate that atazanavir-based treatment of HIV temporarily improves oxidative stress

and inflammation, but increases vWF levels, and has no effect on vascular function or the bio-

availability of endothelium-derived nitric oxide. These effects suggest a complex pharmacolog-

ical impact of atazanavir and raises questions about whether atazanavir treatment would

reduce cardiovascular endpoints in HIV patients.
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