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Comparing the effects of non-
homogenous mixing patterns on 
epidemiological outcomes in equine 
populations: A mathematical 
modelling study
Rachael M. Milwid1, Terri L. O’Sullivan1, Zvonimir Poljak1, Marek Laskowski1,2 & Amy L. Greer1

Disease transmission models often assume homogenous mixing. This assumption, however, has 
the potential to misrepresent the disease dynamics for populations in which contact patterns are 
non-random. A disease transmission model with an SEIR structure was used to compare the effect of 
weighted and unweighted empirical equine contact networks to weighted and unweighted theoretical 
networks generated using random mixing. Equine influenza was used as a case study. Incidence 
curves generated with the unweighted empirical networks were similar in epidemic duration (5–8 
days) and peak incidence (30.8–46.4%). In contrast, the weighted empirical networks resulted in a 
more pronounced difference between the networks in terms of the epidemic duration (8–15 days) and 
the peak incidence (5–25%). The incidence curves for the empirical networks were bimodal, while the 
incidence curves for the theoretical networks were unimodal. The incorporation of vaccination and 
isolation in the model caused a decrease in the cumulative incidence for each network, however, this 
effect was only seen at high levels of vaccination and isolation for the complete network. This study 
highlights the importance of using empirical networks to describe contact patterns within populations 
that are unlikely to exhibit random mixing such as equine populations.

Disease transmission models are used to examine disease dynamics and the associated effects of implementing 
different intervention strategies in the population1. In the models, infectious individuals can infect susceptible 
individuals at a rate, β, which comprises the probability of infection and the contact rate2. Often, disease trans-
mission models assume that the entire population has an equal probability of coming into contact3. This assump-
tion is referred to as the assumption of homogenous mixing, and, if not representative of the actual contacts that 
occurred in the population, can result in incorrect model predictions3. One method of correcting for the assump-
tion of homogenous mixing is to incorporate heterogeneous population mixing.

Heterogeneous contact patterns can be integrated into the model by defining contact networks explicitly4. 
Contact networks describe the rate and frequency of the contacts that occurred between individuals in the pop-
ulation of interest. The simulation of disease transmission over a contact network is referred to as a network 
epidemic model2. The nodes in network epidemic models represent individual entities such as people, places, 
or animals, while the edges between the nodes represent contacts between the individual nodes through which 
disease transmission can occur5. While empirical networks describing the effective contacts that occur within 
a population can be useful, it can be challenging to collect these data6,7. Different methods have been used to 
simplify the process of simulating disease dynamics on networks including the use of summary statistics (i.e. net-
work centrality) to generate representative theoretical networks5. Common theoretical networks include random 
networks, small-world networks, and scale free networks8. Random networks are characterized by random edge 
formation between nodes. Random networks tend to have small path lengths and minimal clustering7. While 
small-world networks also have short path lengths, they are characterized by high clustering9. Lastly, scale free 
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networks follow a power law distribution such that most nodes have few connections while a few nodes have 
many connections7,10. In particular, a random network in which each node is connected to every other node is 
referred to as a complete network. Complete networks are often used to represent the assumption of homogenous 
mixing11.

It has long been recognized that the different network structures can affect the disease dynamics that occur 
within a network12. This conclusion has been established through combined theoretical studies and modelling 
approaches11–14. Given the recent advances in technology, combined with the improved level of record keeping 
for animal populations, the collection of contact pattern and movement data has become more common. This 
type of data has been used in past studies to explicitly model the transmission of various pathogens through both 
human15–18 and animal19–21 populations. However, to date, most published studies that focus on disease transmis-
sion modelling of equine infectious diseases assume homogenous mixing which may not correctly characterize 
the types of contact that generally occur within equine populations. This is largely attributable to the scarcity of 
equine contact pattern data. Furthermore, given the paucity of published equine infectious disease data, studies 
tend to focus on Equine Influenza (EI), for which published natural history and incidence data are available. 
Equine influenza is a highly transmissible respiratory disease caused by the equine influenza virus22. The disease 
is most commonly spread by direct contact with an infectious horse, but transmission is also possible via indirect 
mechanisms such as: aerosols, wind, and fomites22–24. While EI has a morbidity rate of up to 100%23, it has a low 
mortality rate, and tends to be self limiting25.

Prevention and control strategies for equine influenza include vaccination of susceptible horses, quarantine 
of exposed horses, and/or isolation of infectious horses26. There are currently two types of vaccines available 
in Canada; a vaccine containing the killed virus and a vaccine containing a modified live virus27. Neither type 
of vaccine confers full protective immunity against infection25. Since the vaccine efficacy is highly dependent 
on an individual’s antibody levels against the glycoprotein haemagglutinin23, the efficacy is improved when the 
vaccine strain matches the challenge strain23. There are currently no regulatory requirements with respect to EI 
vaccination or biosecurity measures in Canada. It is, however, advised that susceptible horses get vaccinated, and 
that horses are quarantined for a two-week period prior to being introduced into a new facility27. Therefore, the 
population level immunity against EI is likely to differ based on the population of interest.

Although vaccination, quarantine, and isolation are recommended biosecurity practices for the prevention 
and containment of EI22,28, existing disease transmission models for EI have focused primarily on vaccination as 
an intervention. These studies have modeled the transmission of EI in both vaccinated and unvaccinated pop-
ulations29–34. The results of the existing studies have highlighted the importance of vaccination as a method for 
reducing the EI disease burden in equine populations.

The purpose of this study was to assess the impact of using empirical contact network data to inform the 
contact rate of equine disease transmission models, as well as to assess the effect of using both vaccination and 
isolation as intervention strategies while using equine influenza as a case study. These research objectives were 
addressed through a multi-step process that included the collection, analysis, and utilization of both weighted 
and unweighted empirical contact pattern data to inform the development of network epidemic models. Briefly, 
empirical contact pattern data were collected using active radio-frequency identification (RFID) proximity sens-
ing tags from 4 equine facilities in Canada. The data were used to generate both weighted and unweighted contact 
networks for each facility, each of which was used to inform the contact rate of a disease transmission model for 
equine influenza. In addition to the models that incorporated empirical contact networks, the model was also 
simulated using random mixing theoretical networks that were generated using the characteristics of the empiri-
cal networks. The results of the disease transmission model informed by the individual networks (both empirical 
and theoretical) were compared to assess the impact of the different network structures on the disease dynamics. 
Given the different network structures, the study hypothesis was that the model simulations would result in dif-
ferent outcomes and trends for each network examined.

Results
No-intervention model.  Unweighted networks.  The base model, in which no interventions were imple-
mented, resulted in similar epidemic curves for each empirical network, as well as the random network, with 
respect to the epidemic duration, and the epidemic peak height and time (Fig. 1a-b and Table 1). While the 
Minimal Network had the smallest peak incidence (25%), the duration of the generation of new cases (7 days) was 
similar to the Random Mixing Network (RMN) and empirical networks (5 and 5–8 days). The peak incidence for 
the Minimal Network occurred on day 3 of the simulation. In contrast to the theoretical networks, the incidence 
curves for each empirical network were bimodal (Fig. 1). The first epidemic peak (30.8–46.4%) was always larger 
than the second peak. The peak incidence occurred at approximately the same time for each of the empirical 
networks (days 2–3). By days 5–8, the incidence had decreased to 0. The peak incidence for the RMN was slightly 
smaller (45.8%) than the peak incidence for the empirical networks and occurred on day 3 of the simulations. The 
incidence had decreased to 0 by day 5 of the simulation. The Complete Network had the largest peak incidence 
(95.8%) which occurred at approximately the same time as the other networks (day 2). The generation period of 
new EI cases was the shortest for the Complete Network (3 days).

Weighted networks.  Similar patterns were observed for the weighted theoretical networks, in which the edge 
weight represented the total contact duration between horses in each network (Fig. 1d and Table 1). In con-
trast to the unweighted Empirical Networks, the weighted Empirical Networks and the Minimal Network had 
the smallest peak incidence (~5–25%) followed by the RMN (~41.7%), and the Complete (~83.3%) networks. 
Furthermore, a larger difference was observed in the peak height of the incidence curves for each of the Empirical 
Networks when the weighted networks were used, as opposed to when the unweighted networks were used to 
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inform the model. Lastly, the generation period of new EI cases was the longest for the Empirical Networks (8–15 
days) compared to the Complete Network (4 days), RMN (5 days), and the Minimal Network (7 days).

Vaccination and isolation model.  Unweighted networks.  Similar trends were observed in the heat maps 
describing the cumulative incidence, defined as the total number of new infectious cases divided by the number 
of nodes in the network, in all the networks other than the Complete Network (Fig. 2). In the majority of the 
networks, the implementation of an isolation-only strategy, in which infectious horses were isolated for a 14-day 
period, resulted in a distinct decrease in the cumulative incidence with an increase in the proportion of infectious 
horses isolated. However, an increase in the proportion of vaccinated horses in a vaccination-only strategy, had 
minimal effect on the cumulative incidence until vaccination rates of 50% had been reached. For the majority of 
the mixed vaccination-isolation intervention strategies, an increase in the isolation rate had a greater effect on 
reducing the cumulative incidence than an increase in the vaccination rate. The incorporation of any isolation 
strategy in addition to a 100% vaccination rate had minimal effect on the cumulative incidence and resulted 
in a cumulative incidence of 50–64%. In contrast, increasing the vaccination rate when high levels of isolation 
(~50–100%) were used caused a decrease in the cumulative incidence. This trend was evident until a ~25–50% 
vaccination rate had been achieved, after which the cumulative incidence increased again (Fig. 2a–d).

Figure 1.  Epidemiological results for the disease transmission model in the absence of interventions. The bands 
represent the 25 and 75% quantiles. Panels (a,b) contain plots of the infection incidence over time when the 
contact rate was informed using unweighted empirical and theoretical networks respectively. Similar curves 
were produced for each empirical network and the Random Mixing Network. The peak incidence was the 
smallest for the Minimal Network, followed by the Empirical Networks and the Random Mixing Network. 
The peak incidence was the largest for the complete network. Panels (c,d) contain plots of the incidence over 
time when the contact rate was informed using weighted empirical and theoretical networks respectively. Each 
empirical network resulted in unique incidence curves. The theoretical networks resulted in similar curves to 
those produced using the unweighted networks.
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The trends in the cumulative incidence for the RMN and the Minimal Network were similar to those of the 
empirical networks (Fig. 2e,g). Furthermore, the non-linear effect of vaccination used in conjunction with an 
isolation program was less obvious in the Minimal Network than in the other networks. The implementation of 
a vaccination and/or isolation program decreased the cumulative incidence for both the RMN and the Minimal 
Network. In contrast, the implementation of any intervention program on the Complete Network was ineffectual 
(Fig. 2f).

Weighted networks.  The incorporation of the weighted Empirical Networks in the model resulted in a wide 
range of disease dynamics (Fig. 3). In each of the Empirical Networks, the incorporation of any intervention 
strategy reduced the cumulative incidence of infection. However, for Empirical Networks 1 and 2, it was pos-
sible to reduce the incidence of EI to 0–10% with a single strategy intervention of at least 50% vaccination for 
Empirical Network 1, 75% vaccination for Empirical Network 2, or 25% isolation for both Empirical Networks 1 
and 2 (Fig. 3a,b). In contrast, with the exception of a 100% isolation program combined with a 75% vaccination 
program for Empirical Network 3, it was impossible to reduce the EI incidence to levels of 0–10% for Empirical 
Networks 3 and 4 (Fig. 3c,d). For both Empirical Networks 3 and 4, a combined program of at least 25% isolation 
and 50% vaccination was required to reduce the cumulative incidence to 50%, or a singular program of high vac-
cination levels (>75%) or 50% isolation.

Each of the theoretical, random mixing networks resulted in different heat maps (Fig. 3e–g). The minimal net-
work resulted in the smallest cumulative incidence, while the complete network resulted in the largest cumulative 
incidence, where every horse in the population became infected. In order to reduce the cumulative incidence to 
at most 50% in the minimal network, isolation levels of at least 25%, or vaccination levels of at least 50% were 
required (Fig. 3g). In contrast, high levels of isolation (75–100%) combined with low to medium levels of vacci-
nation (0–50%) were required to reduce the cumulative incidence in the Random Mixing Network to 50% or less 
(Fig. 3e).

Discussion
Limited data exists describing herd-level mixing patterns of agricultural animals20. This data deficiency is 
especially true for the equine population making it difficult to develop realistic disease transmission models. 
Therefore, it is not surprising that few mathematical modelling studies have focused on facility-wide transmission 
dynamics of equine pathogens including influenza. Furthermore, given the paucity of equine contact pattern data, 
the models that have focused on EI have tended to assume homogenous mixing within the population of interest. 
The current study used data collected with RFID tags to quantify the effects of heterogenous mixing patterns on 
the dynamics of disease spread.

The networks generated for this study were used to assess the effect of the following network structure charac-
teristics on disease spread dynamics: (1) weighted vs. unweighted networks, (2) empirical vs. theoretical net-
works, and (3) network density and size. It was hypothesized that the different network structures would result in 
distinct epidemiological outcomes. While this hypothesis was incorrect with respect to the unweighted, empirical 
networks, it was correct with respect to the weighted networks. In contrast to the study hypothesis, the model 
simulations produced similar epidemiological outcomes for each unweighted empirical network. One explana-
tion for this outcome is the law of mass action. The law of mass action states that the number of new infections 
when susceptible individuals (S) come in contact with infectious individuals (I) is proportional to SI35. The pro-
portionality constant is often referred to as the transmission rate, β, and consists of the contact rate and the prob-
ability of transmission given an effective contact36,37. In each participating facility, groups of horses were turned 
out together, forming a subpopulation in which homogenous mixing could occur. During the turnout period, the 

Size of peak incidence
Time of epidemic peak 
(day)

Time until no new 
infections (days)

Weighted 
network (%)

Unweighted 
network (%)

Weighted 
network

Unweighted 
network

Weighted 
network

Unweighted 
networks

Empirical Network 1 5.0 35 5 3 10 5

Empirical Network 2 7.14 46.4 8 2 15 8

Empirical Network 3 15.39 30.8 3 2 10 8

Empirical Network 4 25.0 37.5 2 3 8 8

Random Mixing Network 41.7 45.8 3 3 5 5

Complete Network 83.3 95.8 2 2 4 3

Minimal Network 25.0 25.0 3 3 7 7

Table 1.  Key epidemiological results for the disease transmission model of equine influenza. The base model 
had an SEIR structure and did not include any disease prevention or control interventions. The epidemic 
model was simulated on different base networks including 4 empirical networks (“Empirical Networks 1–4”), 
a network with the average characteristics (average degree, and network size) of the empirical networks 
(“Random Mixing Network”), a Complete Network in which all the nodes were connected to each other, and 
a network with an average degree of 4 (“Minimal Network”). The empirical networks and the Random Mixing 
Network had similar epidemiological characteristics. The Complete Network had the largest epidemic peak and 
the shortest epidemic duration. The Minimal Network had the smallest epidemic peak and the longest epidemic 
duration.
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horses’ halters and the attached RFID tags were stored together on the pasture fence, inferring that the horses 
were in contact for the duration of the turnout period. The horses remained in their pastures for the majority of 
the day, until they were returned to their stalls in the evening. The horses were removed from their pastures for 
training and pleasure riding, and during this time, could come in contact with horses from the other pastures. 
Therefore, it is likely that the law of mass action occurred on a smaller scale, within the pastures, and could be the 
reason for the similarity in the epidemic outcomes observed. Conversely, the incorporation of weighted edges in 
the networks resulted in a difference in the disease dynamics within the Empirical Networks. Although this dif-
ference could be attributed to the different transmission probability, τ , used in the weighted and unweighted 
networks, a corresponding difference was not observed between the weighted and unweighted theoretical net-
works. Therefore, the difference in the disease dynamics can likely be attributed to the added dimension of heter-
ogeneity between the networks with respect to the edge weights.

The structured degree distribution directly correlates with disease propagation due to its relationship with 
the transmission rate38–40. Since it has been shown that local structure slows disease spread when compared to 
random mixing14, the underlying structure in the degree distribution of the empirical networks can explain the 

Figure 2.  Heat maps of the cumulative incidence (%) when isolation and vaccination were implemented in 
the population. The heat maps represent unweighted Empirical Networks 1–4 (panels (a–d)), the unweighted 
Random Mixing Network (panel (e)), the unweighted Complete Network (panel (f)), and the unweighted 
Minimal Network (panel (g)). Increasing the proportion of the population isolated and/or vaccinated generally 
decreased the cumulative incidence. A non-linear trend in the cumulative incidence was observed for high 
isolation rates used in addition to a vaccination program.
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discrepancy in the shape of the incidence curves between the theoretical and empirical networks. Additionally, 
the different network densities likely contributed to the different disease dynamics between the networks.

The implementation of a combined vaccination and isolation program in the model resulted in unexpected 
patterns in the cumulative incidence of the unweighted networks. The cumulative incidence generally decreased 
with an increase in the respective intervention strategy. However, higher isolation rates used in addition to a vac-
cination program lead to a non-linear trend in the cumulative incidence with increasing levels of vaccination. The 
non-linear trends in the cumulative incidence may be indicative of a backward bifurcation. A detailed description 
of a backward bifurcation can be found in41. Briefly, bifurcation analysis relates the stability of a system to the 
basic reproduction number, R0

41,42. An R 10 <  is generally representative of possible disease eradication, while an 
>R 10  implies disease persistence42,43. Consequently, a health program should endeavour to maximize the real-

istic intervention strategies in order to decrease R0 to less than 1. However, a backward bifurcation implies that 
decreasing the R0 to less than 1 will not necessarily eliminate a disease41,42. Known model structures can cause a 
backward bifurcation, including the incorporation of an imperfect vaccine, multiple groups such as multiple 
susceptible groups with different characteristics, and differential susceptibility to infection41,42,44. Given the trends 
in the cumulative incidence with respect to the vaccination rate it is possible that the model is portraying a back-
ward bifurcation. Therefore, the model results indicated a specific level of vaccination which will minimize the 

Figure 3.  Heat maps of the cumulative incidence (%) resulting from different isolation and vaccination 
combinations implemented in a model whose contact rate was informed with weighted contact networks. 
The heat maps represent Empirical Networks 1–4 (panels a–d), the Random Mixing Network (panel e), the 
Complete Network (panel f), and the Minimal Network (panel g). Increasing the proportion of the population 
isolated and/or vaccinated generally decreased the cumulative incidence. While it was possible to decrease the 
cumulative incidence of Equine Influenza to 0–10% for Empirical Networks 1 and 2, it was unlikely for the 
remaining networks.
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cumulative incidence, however, a higher or lower vaccination rate will cause an increase in the infection inci-
dence. Mechanistically, the non-linear relationship can be explained by the use of an imperfect vaccine. At high 
levels of vaccination, a large proportion of the population are likely to be asymptomatic shedders, inhibiting the 
ability to isolate infectious horses, and increasing disease transmission within the population. This trend however, 
was not observed in the weighted networks. Therefore, future work should focus on understanding the drivers of 
the non-linear relationship between high levels of isolation coupled with vaccination.

With respect to the unweighted theoretical networks, the cumulative incidence of the Minimal Network was 
the smallest, and the cumulative incidence of the Complete Network was the largest. The relative cumulative 
incidence for each of the theoretical networks can be attributed to the network degree and density which was 
smallest for the Minimal Network, and largest for the Complete Network. These results correspond to the study 
by May et al. (2001), in which the authors examined the effect of increasing the average degree with respect to 
the total number of individuals that became infected during the course of the epidemic. The authors concluded 
that an increase in the network connectivity corresponded to an increase in the number of individuals infected. 
Therefore, in networks with a high connectivity, all individuals became infected14.

The epidemiological results of this study were consistent with the results of Glass et al. (2002) in which the 
authors used a stochastic model to describe the effects of vaccination on the epidemiology of EI. Glass et al. (2002) 
concluded that vaccine uptake decreased the epidemic size. The model was validated with data obtained from a 
New York race track. The validation data indicated that the incidence curve was bimodal with new cases occur-
ring for a duration of 1 month. The fitted model, however, was unimodal with the development of new cases for a 
duration of 20 days. The incidence curves from the current study were also bimodal (for the empirical networks), 
with new cases occurring for 5–8 days in the unweighted networks, and 8–15 days in the weighted networks. One 
possible explanation for the discrepancy in the duration of the generation of new cases is the stochastic nature of 
the model. The study results were averaged over 10,000 simulations, meaning, that some of the longer epidemic 
durations were likely consistent with the results from the Glass study. Furthermore, race facilities are managed 
differently than sport facilities, and these differences may contribute to the difference in observed outcomes. For 
example, in order to avoid injury, horses at a racing facility may be turned out individually as opposed to the 
group turnouts practiced by the participating equine facilities.

While the study results highlight the importance of using detailed, empirical data for populations such as the 
equine population, there are limitations. First, the network sizes were relatively small. In their study, Glass et al. 
(2002) concluded that the population size did not affect the model outcomes, however, this result might not hold 
for heterogenous mixing patterns. Second, the assumption that horses were in contact during turnout might have 
over-estimated the contact rates for the horses that shared a pasture. More detailed information regarding the 
duration of specific contacts between the horses that shared a pasture might result in different outcomes, as the 
number of horses that each horse contacted might decrease. Lastly, the complexity of incorporating time varying 
networks in the model made the application of certain analyses difficult, including the calculation of R0, and a 
bifurcation analysis.

Regardless of these limitations, the importance of the underlying contact network characteristics on the epide-
miological outcomes of disease spread is evident. Anecdotally, different types of equine facilities are managed dif-
ferently. For example, contact between horses in a race facility is often minimized in order to reduce the potential 
for injury. In contrast, the majority of horses boarded at one of the participating facilities were housed in the same 
pasture. These differences are likely to result in a range of contact networks with different network densities and 
degree distributions. The resulting effect of these differences on the disease dynamics coupled with the difference 
in the disease dynamics between the weighted and unweighted networks, and the consistent difference in disease 
dynamics between empirical and theoretical networks underlines the importance of using empirical networks to 
describe the population-level mixing patterns for populations such as the equine population, which are unlikely 
to exhibit homogenous or random mixing.

Methods
This study was approved by and conducted in accordance with the University of Guelph’s Research Ethics Board 
(REB #16AP009) and the Animal Care Committee (AUP #3518). Informed consent was obtained from all study 
participants prior to the study deployment.

Empirical networks.  Modified OpenBeacon RFID tags (Bitmanufactory ltd., Cambridge, United Kingdom) 
were used to collect contact pattern data from 4 equine facilities in southwestern Ontario, Canada, over a 7-day 
period between May and June 2017. Each participating facility contained 1 barn in which the horses’ stalls were 
located, multiple pastures, and both indoor and outdoor riding areas. The facilities all boarded between 20 and 28 
horses (Table 2). Each participating horse wore an RFID tag on their halter for the duration of the study period in 
order to track and record the number of contacts and duration of each contact that they had with the other horses 
at the facility. The tags were calibrated to record a contact when the horses were within 2 meters of one another 
and in the face-to-face position (which was considered a proxy for “close” contact sufficient to transmit a respira-
tory pathogen). At the end of the 7-day study period, the tags were collected and the resulting contact data were 
downloaded to a laptop computer where they were stored in a MySQL (Oracle Corporation, Redwood Shores, 
California) database. The data were aggregated into 24-hour periods and output as comma separated value (CSV) 
files which were imported into R version 3.3.045 for analysis.

Seven contact networks (1 for each day of the study) were generated for each facility. Each of the 7 contact 
networks formed a static representation of the contact structure for the respective study day. The 7 daily, static 
networks were combined to form a dynamic network spanning 7 days, hereafter referred to as Empirical Networks 
1–4. Both weighted and unweighted networks were produced. In the weighted networks, the edge weight rep-
resented the total contact duration between the respective horses on the study day of interest. All of the contact 
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networks were undirected and were composed of multiple components that varied over time. The dynamic empir-
ical networks were composed of 20, 28, 26, and 24 nodes respectively. The normalized degree for each dynamic 
network ranged between 0.00 and 0.79 (mean = 0.34), 0.00–0.96 (mean = 0.33), 0.00–0.68 (mean = 0.24), and 
0.00–0.83 (mean = 0.33). The networks had 46.00–76.00 (mean = 64.29), 33.00–236.00 (mean = 125.43), 28.00–
124.00 (mean = 78.00), and 58.00–130.00 (mean = 91.00) edges respectively. A complete description and compar-
ison of each empirical network can be found in46.

The Statnet47 suite of packages, in particular, the NetworkDynamic48 and EpiModel49 packages were used for 
the data preparation, model building, and simulation phases of the study. All data and model code is available in 
the  Equine non-homogenous mixing GitHub repository.

Contact network structure.  Four types of contact networks were used to quantify the effect of different 
network structures on the disease transmission model outcomes. The following networks were used: (1) empirical 
networks (as described above), hereafter referred to as Empirical Networks 1–4, (2) a Random Mixing Network 
(RMN), (3) a network with a small average degree, hereafter referred to as a “Minimal Network”, and (4) a 
Complete Network (Fig. 4). The edge weights for each of the weighted theoretical networks were assigned from a 
truncated normal distribution such that the weights were all greater than or equal to 0. The distribution was gen-
erated using the average network edge weight of each day for each facility (mean = 28.35 hours), and the standard 
deviation for each day of the study for each facility (standard deviation = 33.35). In addition, the RMN was gen-
erated by averaging the characteristics of the empirical networks, namely, the network size, defined as the number 
of nodes in the network9, and the average number of edges in the network. The network size for the RMN was 24. 
The expected number of edges N( 87 6)edges = .  was calculated using the mean degree, representing the number of 
edges incident to a node of interest9, of the empirical networks. The Minimal Network was formed by assuming 
that horses came in contact with an average of 4 other horses per day: the horses whose stalls were on either side 
of the horse of interest, an average of one horse in the centre aisle and an average of 1 horse in a common riding 
area. The Minimal Network had an average of 48 edges and is representative of facilities in which horses have 
reduced contact in order to avoid the potential for injuries50. Lastly, the Complete Network was generated using 
the average network size of the empirical networks (n = 24) and ensuring that all nodes came in contact with 
every other node in the network. Therefore, the Complete Network had 276 edges ( )n n( 1)

2
− , where n represents 

the number of nodes in the network.
Two types of analyses were completed: (1) the effect of weighted vs. non-weighted networks on the disease 

dynamics was examined, and (2) the disease dynamics were compared for both empirical and theoretical, ran-
dom mixing networks. For both of these objectives, the 7 day-long static networks were combined to create 1 
week-long dynamic network (each daily network was used to inform the contact rate for a single day of the model 
simulation). The model simulations, however, were run for a 6-week period, creating the need for additional con-
tact pattern data. Therefore, given the repetitive nature of the equine schedule, the empirical week-long dynamic 
contact networks were repeated to form a 6-week dynamic network. A similar process was used to generate the 
contact structure for the theoretical networks. Specifically, 7 random networks were created using the methods 
described above. The 7 networks were combined to form a week-long network, which was repeated for a 6-week 
period.

Equine influenza disease transmission model.  The discrete time, stochastic disease transmission 
model incorporated a typical SEIR structure and included both vaccination and isolation intervention strate-
gies. A deterministic analogue of the model can be found in Fig. 5. Model parameters were obtained from the 
peer-reviewed literature (Table 3). The following assumptions were used in the model formation:

	 1.	 Horses had no pre-existing immunity to EI.
	 2.	 Vaccinated horses were considered to be immune to infection by the start of the simulation.
	 3.	 The implications of an imperfect vaccine are that vaccinated horses have a reduced probability of becoming 

infected, a reduced infectious period, and a longer latent period than unvaccinated horses32,51. These 
implications meant that vaccinated horses could both shed the virus and become infected with the virus25. 
Therefore, the transmission rate, β, the latent period, σ, and the recovery rate, γ satisfied the following 

Facility 1 Facility 2 Facility 3 Facility 4

Number of horses boarded at the facility 20 28 27 24

Number of participating horses 20 28 26* 24

Study date May-17 May-June 2017 Jun-17 Jul-17

Facility discipline

Dressage Dressage Dressage Therapeutic riding

Eventing Jumping

Jumping

Proportion of horses vaccinated for 
equine influenza (%) 85 100 46.2 100

Table 2.  Demographic information for the participating equestrian facilities. The facilities ranged in size, and 
discipline. Vaccination rates for equine influenza ranged from 46–100%. *Although all horses were enrolled in 
the study, one horse left the facility for the duration of the study, and therefore was not included in the study.
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conditions: vβ β< , vσ σ< , and γ γ<v .
	 4.	 The probability of transmission (p) was reduced by 50% if at least one of the participating horses in the 

contact event (either a susceptible horse or an infectious horse) was vaccinated29,32,51.
	 5.	 The model did not include waning immunity since waning immunity is not expected to occur until ap-

proximately 6 months after vaccination and the model was only run for 1.5 months27,52.

Figure 4.  Sample theoretical networks used in the network epidemic model. Panel (a) represents the Minimal 
Network which has an average of 48 edges. Panel (b) represents the Random Mixing Network which has an 
average of 87.6 edges. Panel (c) represents a Complete Network in which each node is connected to every other 
node.
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	 6.	 The isolation period was always longer than the infectious period. Therefore, at the end of the isolation 
period, all horses were assumed to be fully recovered (i.e. horses could no longer shed the virus).

	 7.	 Infectious, vaccinated horses were assumed to be asymptomatic, and therefore were not isolated53.
	 8.	 Given the projected impact of the weighted and non-weighted networks, different transmission probabili-

ties were implemented for each type of network. The transmission probability was calculated as a function 
of the average edge weights, such that β τ= k , where β is the transmission rate, k is the average weighted 
degree, and τ is the probability of pathogen transmission. A transmission rate, ,β of 1.85 (19) was used to 
calculate the transmission probability. Therefore, wτ  was calculated to be 0.06 for the weighted networks. In 
contrast, the transmission probability, uτ , for the models informed with the unweighted networks, was 
assumed to be 100% (19), since the transmission probability cannot exceed 100% and 1 85β = . .

The model incorporated 3 different prevention and control strategies that were compared to the baseline 
(no-intervention) model. The interventions considered were: (1) vaccination, (2) isolation, or (3) a combina-
tion of vaccination and isolation. The effect of vaccination on the epidemic outcome was studied by varying the 
proportion of horses vaccinated at the start of the simulation. Similarly, the effect of isolation was evaluated by 
varying the proportion of infectious, symptomatic horses isolated throughout the simulation. The proportion 
of horses isolated was used as a proxy for different levels of symptom severity. For example, it was assumed that 
horses with less severe symptoms would be less likely to be identified as infectious, and consequently, were less 
likely to be isolated. Horses were isolated for 14 days and were assumed to be fully recovered after the isolation 
period.

At the start of the model, a random horse was assigned to the “infectious” status. Additionally, random horses 
were assigned a status of “vaccinated” according to the specified proportion to vaccinate, ρ. The occurrence of 
each transmission or transition event was determined using a binomial distribution. The probability of transmis-
sion for each contact was calculated as − −1 (1 p)act rate, where p represents the probability of transmission, and 
the act rate is the contact frequency. If an infectious, unvaccinated horse came in contact with a susceptible, 
unvaccinated horse, the infectious horse could transmit the disease to the susceptible horse with a probability p 

Figure 5.  Deterministic analogue of the study model. In this model, horses start out susceptible to infection (S). 
A proportion (ρ) of the susceptible horses are vaccinated (Sv). Both vaccinated and unvaccinated horses can 
come in contact. Furthermore, both vaccinated and unvaccinated horses can become infected (E), however the 
rate of infection differs between the vaccinated horses (transmission probability = pv) and unvaccinated horses 
(transmission probability = p). The transmission rate of the pathogen between infectious horses (I) and 
susceptible horses is determined through the contact rate (c) and the transmission probability. At the end of the 
infectious period (σ and vσ  for vaccinated and unvaccinated horses respectively), horses can recover (R), where 
it is assumed that they have full immunity to re-infection. A proportion (η) of the unvaccinated, infectious 
horses (I) are isolated (Q). These horses remain in isolation for a pre-determined length of time (θ), before they 
move to the recovered compartment.
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(Fig. 5). If either the infectious horse or the susceptible horse was vaccinated, then the probability of transmission, 
p, was reduced by 50%29,32,51. Infected horses could progress from the exposed class to the infectious class at the 
end of the latent period which was 2.52 days for vaccinated horses and 1.75 days for unvaccinated horses.

Once infectious, unvaccinated horses could be isolated. All infectious horses moved to the recovered com-
partment at the end of the isolation or infectious period respectively. Recovered horses were assumed to be 
non-infectious with complete immunity to re-infection for the duration of the model time horizon.

The model, which was run over a 6-week period, was simulated 10,000 times using the initial conditions: 
= −S E I R N( , , , ) ( 1, 0, 1, 0). For ease of comparison, the model results at each time point were averaged 

across all the simulations. Models were analyzed with respect to the cumulative infection incidence defined as the 
sum of the largest integer less than or equal to the simulated incidence at each time point divided by the total 
population size, and the daily incidence curves.

All R code is freely available on the GitHub repository entitled: Equine non-homogenous mixing.

Data Availability
All data can be downloaded from the “Equine non-homogenous mixing” GitHub Repository.
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