
Received:
18 September 2018

Revised:
11 January 2019

Accepted:
7 February 2019

Cite as: Kartiga
Selvaganesan,
Emily Whitehead,
Paba M. DeAlwis,
Matthew K. Schindler,
Souheil Inati, Ziad S. Saad,
Joan E. Ohayon,
Irene C. M. Cortese,
Bryan Smith,
Steven Jacobson,
Avindra Nath,
Daniel S. Reich, Sara Inati,
Govind Nair. Robust, atlas-
free, automatic segmentation
of brain MRI in health and
disease.
Heliyon 5 (2019) e01226.
doi: 10.1016/j.heliyon.2019.
e01226

https://doi.org/10.1016/j.heliyon.2019

2405-8440/Published by Elsevier Ltd

(http://creativecommons.org/licenses/b
Robust, atlas-free, automatic
segmentation of brain MRI in
health and disease

Kartiga Selvaganesan a, Emily Whitehead a, Paba M. DeAlwis a,

Matthew K. Schindler a, Souheil Inati b, Ziad S. Saad c, Joan E. Ohayon a,

Irene C. M. Cortese a, Bryan Smith a, Steven Jacobson a, Avindra Nath a,

Daniel S. Reich a, Sara Inati a,∗∗, Govind Nair a,∗

aNational Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, 20893, USA

b Inati Analytics, Potomac, MD 20854, USA

cNational Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20893, USA

∗Corresponding author.
∗∗Corresponding author.

E-mail address: bhagavatheeshg@mail.nih.gov (G. Nair).
Abstract

Background: Brain- and lesion-volumes derived from magnetic resonance images

(MRI) serve as important imaging markers of disease progression in

neurodegenerative diseases and aging. While manual segmentation of these

volumes is both tedious and impractical in large cohorts of subjects, automated

segmentation methods often fail in accurate segmentation of brains with severe

atrophy or high lesion loads. The purpose of this study was to develop an atlas-

free brain Classification using DErivative-based Features (C-DEF), which utilizes

all scans that may be acquired during the course of a routine MRI study at any center.

Methods: Proton-density, T2-weighted, T1-weighted, brain-free water, 3D FLAIR,

3D T2-weighted, and 3D T2*-weighted images, collected routinely on patients with

neuroinflammatory diseases at the NIH, were used to optimize the C-DEF algorithm

on healthy volunteers and HIV þ subjects (cohort 1). First, manually marked

lesions and eroded FreeSurfer brain segmentation masks (compiled into gray and

white matter, globus pallidus, CSF labels) were used in training. Next, the

optimized C-DEF was applied on a separate cohort of HIV þ subjects (cohort
.e01226

. This is an open access article under the CC BY-NC-ND license

y-nc-nd/4.0/).
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two), and the results were compared with that of FreeSurfer and Lesion-TOADS.

Finally, C-DEF segmentation was evaluated on subjects clinically diagnosed with

various other neurological diseases (cohort three).

Results: C-DEF algorithm was optimized using leave-one-out cross validation on

five healthy subjects (age 36 � 11 years), and five subjects infected with HIV

(age 57 � 2.6 years) in cohort one. The optimized C-DEF algorithm

outperformed FreeSurfer and Lesion-TOADS segmentation in 49 other subjects

infected with HIV (cohort two, age 54 � 6 years) in qualitative and quantitative

comparisons. Although trained only on HIV brains, sensitivity to detect lesions

using C-DEF increased by 45% in HTLV-I-associated myelopathy/tropical spastic

paraparesis (n ¼ 5; age 58 � 7 years), 33% in multiple sclerosis (n ¼ 5; 42 � 9

years old), and 4% in subjects with polymorphism of the cytotoxic T-lymphocyte-

associated protein 4 gene (n ¼ 5; age 24 � 12 years) compared to Lesion-TOADS.

Conclusion: C-DEF outperformed other segmentation algorithms in the various

neurological diseases explored herein, especially in lesion segmentation. While

the results reported are from routine images acquired at the NIH, the algorithm

can be easily trained and optimized for any set of contrasts and protocols for

wider application. We are currently exploring various technical aspects of

optimal implementation of CDEF in a clinical setting and evaluating a larger

cohort of patients with other neurological diseases. Improving the accuracy of

brain segmentation methodology will help better understand the relationship of

imaging abnormalities to clinical and neuropsychological markers in disease.

Keyword: Medical imaging

1. Introduction

Quantitative analysis of whole-brain volumes (or those of different brain substruc-

tures), from magnetic resonance (MR) images, can provide important markers of dis-

ease progression in various neurological diseases, such as Alzheimer’s disease and

multiple sclerosis [1, 2, 3, 4, 5]. In multiple sclerosis, for example, total, new, and

gadolinium-enhancing lesion volumes and counts are widely used to assess disease

activity, progression, and efficacy of therapy [4, 5, 6, 7]. While whole-brain atrophy

can be measured with minimal processing of tailored imaging sequences [8, 9], clas-

sifying substructures and lesions in the brain requires intense computing and prior

knowledge of the underlying structures. In these methods, classification is often

based on the probability that a tissue class exists at a particular voxel location after

registration to an atlas.

Common approaches to performing volumetric segmentation of MR images, such as

Statistical Parametric Mapping or SPM [10], SIENA(X) from FMRIB Software Li-

brary or FSL [11], 3dseg from Analysis of Functional NeuroImages or AFNI [12],
on.2019.e01226
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and FreeSurfer [13], are often based on a T1-weighted structural image of the brain.

While these types of atlas-based methods generally produce good results in rela-

tively normal-appearing brains, they are usually not robust to segmenting brain im-

ages with high lesion loads and/or large atrophy from neurological disease [14].

Algorithms specifically developed for segmenting lesions, on the other hand, typi-

cally use T2-weighted or fluid-attenuated inversion recovery (FLAIR), in which

white matter lesions generally appear hyperintense, often in addition to T1-weighted

images. Early semi-automatic methods have delineated these hyperintense lesions

using techniques such as seed-growing or connectivity [15, 16, 17]. However,

such methods do not reliably detect lesions in the presence of significant radiofre-

quency bias fields; they are also inherently tedious to implement in large populations

when manual inputs or corrections are required. More recently, fully automated tech-

niques that use bias correction, as well as statistical or topological atlases of lesion

location, have been developed to dramatically reduce processing time [18, 19]. How-

ever, lesion classification errors in atlas-based methods is compounded not only by

the fact that size and distribution of lesions in the brain vary from one individual to

next, but also because the likelihood of a lesion being present in any region varies

between neurological diseases. This leads to misclassification of lesions and gray

matter, which has necessitated disease-specific atlases for reliable lesion segmenta-

tion [20].

To overcome these issues, alternative multi-contrast methods have been described.

These methods use multiple MRI contrasts, e.g., FLAIR and T1-weighted images,

and machine learning algorithms, such as fuzzy c-means, random forest, and support

vector machine classifiers, to improve image segmentation. Multiple contrasts are

routinely acquired in clinical MRI sessions and are heavily relied upon by radiolo-

gists in their clinical assessment. However, the inclusion of any individual contrast,

and the protocol used to create it, may be a matter of user preference. There may also

be inconsistencies between imaging sessions, which may be tailored for each neuro-

logical disease. Nevertheless, brain segmentation algorithms should in principle

benefit from the use of multiple imaging contrasts. In addition, not using a priori in-

formation about lesion distribution (atlas-free method), should improve its general-

izability for application to various neurological disorders.

The purpose of this study was to train and implement an atlas-free brain segmenta-

tion algorithm that utilizes multiple MRI contrasts, and that could easily be imple-

mented in a variety of neurological diseases. This atlas-free Brain Classification

using Derivative-based Features (C-DEF) algorithm was optimized, and then used

to segment brain images of healthy volunteers and individuals clinically diagnosed

with a variety of neuroimmunological diseases. The segmentation output from C-

DEF was compared qualitatively and quantitatively with popular segmentation algo-

rithms, including Lesion-TOADS (TOpology-preserving Anatomical Segmentation)

[18] and FreeSurfer. Lesion-TOADS is a publicly available automatic brain
on.2019.e01226
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segmentation algorithm used commonly in subjects with lesions, that incorporates

information from topological and statistical atlases to an intensity-based segmenta-

tion technique using iterative fuzzy classification. FreeSurfer is a very widely used

automated brain segmentation tool that registers target images to a probabilistic

atlas, and generates tissue class labels using voxel intensity or tissue morphology.

T1-hypointensities in the white matter are classified as lesions. We chose subjects

infected with HIV for initial training and optimization of C-DEF since they exhibit

varying degrees of lesion burden and atrophy. Furthermore, current tissue-

segmentation algorithms do not readily delineate lesions in these subjects. The C-

DEF algorithm was then evaluated in subjects clinically diagnosed with other neuro-

logical diseases, routinely seen at our research clinic, including multiple sclerosis,

polymorphism of the cytotoxic T-lymphocyte-associated protein 4 gene (CTLA4),

and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP).
2. Materials and method

2.1. Recruitment and imaging

The study methods were reviewed and approved by the Institutional Review Boards

at the National Institutes of Health (CNS, NIAID IRB at NIH) per regulations. Data

were drawn from three cohorts of subjects, who provided informed consent to partic-

ipate in the study. The first cohort, consisting of healthy volunteers and individuals

infected with HIV, was used to train, evaluate, and optimize the C-DEF algorithm.

The second cohort, consisting only of subjects infected with HIV, was used to test

the final, optimized algorithm in comparison with commonly used segmentation al-

gorithms (FreeSurfer and Lesion-TOADS). Finally, the third cohort, consisting of

subjects with MS, HAM/TSP, and CTLA4, was used to determine the robustness

and sensitivity of C-DEF classifications to those of Lesion-TOADS and FreeSurfer.

All MR images were collected on a 3T Philips MRI scanner (Philips Medical Sys-

tems, Netherlands), with an eight-channel receive head coil. T1-weighted (T1-

MPRAGE), T2-weighted, proton-density (PD), brain-free water imaging (BFWI),

fluid attenuated inversion recovery (3D FLAIR), post-contrast non-selective fluid

attenuated inversion recovery (3D ns-FLAIR), and 3D segmented-EPI T2*-weighted

[21] volumes are routinely collected at our center on subjects with neuroinflamma-

tory diseases, and all these contrasts were used in this study. Table 1 contains the MR

parameters for these sequences.
2.2. Image preprocessing and feature creation

All MR images acquired in a session were registered to the T1-weighted images of

the same session using AFNI tools [12]. The bias-field correction was performed us-

ing a local statistic function that applies a percentile filter to a sliding window [22].
on.2019.e01226
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Table 1. Sequence parameters for the MR contrasts used in the C-DEF algorithm.

3D-T1
MPRAGE

3D
FLAIR

2D FSE
PD_T2

3D
BFWI

3D
nsFLAIR

3D EPI
T2*

Slice thickness (mm) 1 1 3 0.65 1 0.55

Inversion time (ms) 1600 N/A 1600

Echo time (ms) 3.2 318 15.4, 100 750 318.4 29.5

Repetition time (ms) 7 4800 3417 4500 4800 54.1

Flip angle (deg) 9 90 90 90 90 10

Number of repetitions 1 1 2 1 1 1

Total acquisition time
(min:sec)

5:16 7:00 3:31 6:40 7:00 4:14
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The filter was chosen to minimize bias field and blurring in the resulting image. This

corrected image was then normalized to the intensity at the 90th percentile to

generate a scaled image. Next, spatial and edge feature images were generated using

the Scipy module in Python [23]. Features were extracted using a Gaussian and

Gaussian Gradient filter of four different kernel sizes of 1, 2, 4 and 8 voxels.
2.3. Labeled mask creation

Masks for white matter (WM), gray matter (GM), and globus pallidus (GP) were

compiled from FreeSurfer [13] volumetric segmentation of the supratentorial brain,

with outputs eroded by one pixel. The GM masks contained both cortical and deep

gray matter masks, excluding the GP because its MR properties are substantially

different from other gray matter areas. Lesion masks were manually drawn (by

PMD, MKS) on the 3D FLAIR images, if they were present, and subsequently veri-

fied by a neurologist with specialized training in neuroimaging (MKS). CSF masks

were created from the highest intensities (top 3%) in the BFWI, a heavily T2

weighted image acquired at high isotropic spatial resolution of 0.65 mm [9]. A final

class, called “other” (OTH), was defined as voxels that did not belong to any of the

above tissue classes e e.g., background voxels. Five (WM, GM, CSF, GP, and

OTH) or six (WM, GM, CSF, GP, Lesion, and OTH) tissue masks were combined

into a “gold standard” labeled mask for training and optimizing the C-DEF algo-

rithm. The cerebellum and brain stem were not included in the labeled masks.
2.4. Training and model selection

The training set consisted of the scaled images of subjects in cohort one, and

Gaussian and Gaussian gradient features generated from the scaled images with

various kernel sizes (X data), as well as the gold standard tissue masks (Y data).

A logistic regression model was implemented using the Python scikit-learn module,

with an L2 regularization. For both the healthy volunteers and HIV cases, the
on.2019.e01226
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regression model was trained on the X and Y image data from four subjects to

generate a classifier, which was then applied to X data of the fifth, for leave-one

out (LOO) cross-validation. The logistic regression model built from the training

data was used to generate the probability mask of various tissue types [24]. In the

final step, a segmented image of the brain was created by assigning to each voxel

the class label with the highest probability at that location (maximum membership).

Multiple models of C-DEF were trained and evaluated for optimal performance us-

ing data from cohort one. C-DEF was trained on healthy volunteers without a lesion

class (5-label classifier), and on subjects infected with HIV with a lesion class (6-

label classifier). For each classifier, four different feature vectors were tested to eval-

uate whether features generated from large kernels are necessary for the accuracy of

the model. The Raw Model had no additional features and consisted only of scaled

images. The 2-Kernel Model included features of kernel sizes 1 and 2, and the 3-

Kernel Model included features of kernel sizes 1, 2 and 4 in addition to scaled im-

ages. The Full Model included all features (kernel sizes 1, 2, 4 and 8) as well as

scaled images. This resulted in feature vectors with a total of 7, 35, 49, and 63 fea-

tures for the Raw, 2-Kernel, 3-Kernel, and Full Model, respectively.
2.5. Testing

The optimal model from this analysis was then selected to segment the brain images

of HIV subjects not included in the training (cohort two), as well as those with other

neurological diseases that are routinely seen in our clinic (cohort three). The segmen-

tation outputs from C-DEF were evaluated against those from FreeSurfer and

Lesion-TOADS.
2.6. Outcome measures and statistics

The performance of the different models was evaluated qualitatively and quantita-

tively. Qualitative evaluation was done through a simple visual inspection by expe-

rienced radiologists. Quantitative evaluation of the two training sets in cohort one

was performed by combining classification results from the five patients in each

set to plot the Receiver Operating Characteristic (ROC) curves and calculate the

Area Under the Curve (AUC). This was done for every tissue class and for all

Models. Repeated-measure ANOVA was used to compare the AUC values and

determine the effect of including more features on segmentation quality. P < 0.05

was considered to be statistically significant.

A regression analysis was done to compare tissue class volumes generated from C-

DEF, FreeSurfer, and Lesion-TOADS segmentations. The Bland-Altman method

was used to calculate the bias and 95% confidence interval between volumes gener-

ated from these techniques. A sensitivity analysis was used to compare C-DEF lesion
on.2019.e01226
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segmentation performance with that of FreeSurfer, and Lesion-TOADS in other

neurological diseases, where:

sensitivity¼ TP
FN þ TP

and TP and FN are the true positive and false negative values, respectively.
3. Results

3.1. Subject cohorts

The Institutional Review Board approved the study protocols and all participants

provided written informed consent. Healthy volunteers (n ¼ 5, 4 males, average

age 36 � 11 years), as well as subjects infected with HIV (n ¼ 5, 4 males, average

age 57 � 3 years) were included in cohort one. Subjects infected with HIV (n ¼ 49,

30 males, average age 54 � 6 years), not including the five in the training set,

comprised cohort two. To achieve a representative sampling of diseases studied in

our neuroimmunology research clinic at NIH, individuals with MS (n¼ 5, 2 females,

average age 42 � 9 years old), CTLA4 haploinsufficiency (n ¼ 5, 1 female, average

age 24� 12), and HAM/TSP (n¼ 5, 5 females, average age 58� 7) were studied in

cohort three.
3.2. Generation of features and training mask

Representative scaled MR images from a subject infected with HIV are shown in

Fig. 1A (56-year-old male). Gaussian and Gaussian gradient features generated

from filters of various kernel sizes, applied on the T1-MPRAGE in 1A, are shown

in Figs. 1B and 1C, respectively. Combined masks of GM, WM, and GP (from

eroded FreeSurfer segmentation), and CSF mask (derived from 97th intensity percen-

tile of the BFWI image), served as gold-standard label masks for the 5-label classifier

(Fig. 1D, left). Similar GM, WM, GP, CSF masks, along with manually segmented

lesion masks, served as gold-standard training masks for the 6-label classifier

(Fig. 1D, right).
3.3. Model selection

Visual assessment comparing the segmentation outputs from Raw, 2-Kernel, 3-

Kernel and Full Models with the uneroded form of the labeled training masks

(compiled labels) revealed that increasing the number of features provides better seg-

mentation, especially at the GM-WM and GM-CSF boundaries and in the deep GM

structures. A representative FLAIR image and segmentation results from the 5-label

classifier (Fig. 2A) and the 6-label classifier (Fig. 2B) on a healthy volunteer show

that a focal, nonspecific hyperintensity in the deep WM (red arrow) was classified as
on.2019.e01226
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Fig. 1. Training Data for C-DEF: (A) Coregistered and intensity-normalized representative proton den-

sity, T2-weighted, T1-MPRAGE, brain free water, 3D FLAIR, 3D-nsFLAIR, and 3D EPI T2* images

(left to right) from a subject infected with HIV (male, 56 years old). (B) Gaussian (Gaussian filter)

and (C) gradient magnitude (Gaussian Gradient filter) feature images generated from the T1-MPRAGE

with kernel sizes 1, 2, 4, and 8 (left to right). (D) The gold standard label mask obtained from healthy

volunteer (left) and HIV subject (right), overlaid on the corresponding T1-MPRAGE.

Fig. 2. Qualitative comparison of C-DEF models: Representative 3D FLAIR axial slices, and results

from the Raw, 2 Kernel, 3 Kernel, Full model, and compiled FreeSurfer segmentation (left to right).

Color-coded segmentation results are overlaid on FLAIR image. (A) Segmentation results from a healthy

volunteer (male, 40 years old) for the (A) 5-label and (B) 6-label classifier. (C) Results from a subject

infected with HIV (male, 60 years old) for 6-label classifier. The corresponding uneroded forms

of GM, WM, CSF, GP masks used in training, combined with manual lesion segmentations (compiled

labels), are shown in the far right column.
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GM by the 5-label classifier, but was correctly identified to have the MRI signature

of a lesion by the 6-label classifier. However, hyperintensities that typically abut the

lateral ventricles, labelled as normal WM in the lesion mask by the neurologist, were

consistently classified as lesions in the 6-label classifier. For the Full Model, 0.7% of

GM and 0.68% of WM identified in the 5-label classifier was identified as lesion in

the 6-label classifier. Segmentation results from 6-label classifier on HIV subjects

shows that the 3-Kernel and Full Models were able to accurately segment lesions

and produced whole brain segmentations with fewer misclassified areas (Fig. 2C).

Quantitative comparison of the four models also reflected the qualitative observation

that increasing the number of kernels improved segmentation. ROC curves for the

Raw and Full Models from the 5-label classifier (Fig. 3A) and 6-label classifier

(Fig. 3B) reveal a significant improvement in AUC with increasing kernel size

(GP: p ¼ 0.037, WM: p ¼ 0.037, ANOVA repeated measures). However, quantita-

tive comparison of the 6-label classifier revealed that improvement was shy of sta-

tistical significance (GP, p ¼ 0.06; WM, p ¼ 0.06, ANOVA repeated measures).

While, the Full Model for the 5-label classifier yielded AUC values >0.98, and

for the 6-label classifier >0.99 in all tissue classes, analysis of other structures be-

sides GP and WM did not show statistically significant improvements in AUC

from the Raw Model.

For the 5-label classifier training with the Full Model, 89% of the voxels identified as

GM agreed with those of the compiled labels, while only 30% of the CSF voxels

were in agreement between the two methods (Fig. 3C). Most of the CSF from the
Fig. 3. Quantitative evaluation of C-DEF models: ROC curves of each tissue type for Raw and Full

models from (A) training without lesions (5-label classifier) on healthy volunteers (n ¼ 5, age 36 �
11 years), and (B) training with lesions (6-label classifier) on subjects infected with HIV (n ¼ 5, age

57 � 2.6 years). Inset: Magnified image of the top left corner on the ROC curves. (C) Tables showing

the true positive rates comparing the predicted C-DEF labels with FreeSurfer labels and manual lesion

segmentations for the 5-label (top) and 6-label classifiers (bottom).
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compiled labels was classified as GM by C-DEF. The agreement of CSF labels to

compiled labels increased to 63% for the 6-label classifier. Only 51% of the voxels

classified as lesions in C-DEF were deemed to be so by compiled labels. Interest-

ingly, about 19% of all tissue (other than GM) classified by C-DEF was classified

as GM by FreeSurfer (Fig. 3C). Taken together, and because of the importance of

classifying lesions in neurological disorders, the 6-label Full Model classifier was

chosen to the optimal model of C-DEF.
3.4. Evaluation in cohort two

In order to further understand the nature of the mismatch, the performance of C-DEF

was compared to FreeSurfer and Lesion-TOADS segmentation in a larger group of

subjects infected with HIV (cohort two). A comparison of brain segmentation by

Lesion-TOADS, FreeSurfer, and optimized C-DEF revealed regions of misclassifi-

cation in Lesion-TOADS and FreeSurfer to be the source of the mismatch (Fig. 4A

and B). C-DEF was especially adept at picking up lesions, and seemed to perform

better than either FreeSurfer or Lesion-TOADS. Furthermore, C-DEF performed

well irrespective of the lesion type (periventricular, juxtacortical, or deep white mat-

ter lesion), and anatomic location (supratentorial, cerebellum and brainstem). It

should be noted that some of the voxels in the temporal lobe and cerebellar regions
Fig. 4. Qualitative comparison of various segmentation algorithms: (A) Maximum membership classi-

fication from C-DEF and lesion probability maps of different types of lesions in three different subjects

(top: female, 60 years old; middle: female, 56 years old; bottom: female, 44 years old). Lesion types

include periventricular, juxtacortical, and deep white matter. (B) C-DEF of the cerebellum and brainstem,

without specific training in these structures.
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had relatively high probability of being a lesion, but were not classified as such by

the maximum membership criteria.

WM (Fig. 5A) and GM (Fig. 5B) volumes derived from C-DEF and FreeSurfer, were

significantly correlated (r ¼ 0.87 and 0.92, respectively). However, GM volume

from C-DEF was higher than that from FreeSurfer (Bias, -13% 95% CI, -22% to

-4%). There was no significant bias noted between WM volumes from C-DEF and

FreeSurfer (95% CI, -16% to 9%). The lesion volume from C-DEF was more reliable

than the one from FreeSurfer (Fig. 5C) or Lesion-TOADS (Fig. 5D), although there

was moderate correlation between the lesion volumes calculated by C-DEF and

Free-Surfer (r ¼ 0.51).

The source of this mismatch is better identified in a direct comparison of lesion

masks generated by Lesion-TOADS, FreeSurfer, and C-DEF (Fig. 6). Fig. 6A shows

that Lesion-TOADS was able to segment lesions with few false positives, but missed

the smaller, more punctate deep white matter lesions. Fig. 6B is a case in which

Lesion-TOADS incorrectly classified certain cortical gray matter regions as lesions.
Fig. 5. Quantitative evaluation of various segmentation algorithms: Scatter plots comparing volumes

from FreeSurfer and C-DEF of (A) white matter (Bias, -4; 95% CI, -16e9), (B) gray matter (Bias,

-13; 95% CI, -22 e -4). Plots comparing lesion volumes obtained from (C) FreeSurfer and C-DEF

(Bias, -99; 95% CI, -175 e -22) and (D) Lesion-TOADS and C-DEF (Bias, -33; 95% CI, -182e115).

The dotted line represents the X ¼ Y line, or perfect agreement between the two methods (cohort

two, n ¼ 49 HIV infected individuals).
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Fig. 6. Qualitative comparison of lesion segmentation: FLAIR images and resulting Lesion-TOADS,

FreeSurfer, and C-DEF lesion segmentations from two subjects (top: female, 61 years old; bottom:

male, 51 years old) in cohort two (left to right). (A) A case showing relatively good agreement between

Lesion-TOADS and C-DEF, (B) a case showing misclassification of lesions by Lesion-TOADS. FreeSur-

fer was unable to segment most of the lesions. Red arrow points to lesions identified only in C-DEF, and

yellow arrows point to false positives identified in other algorithms.
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3.5. Segmentation in other neuroimmunological diseases

Although it was not trained in other neuroimmunological diseases, the optimized C-

DEF algorithm was better at segmenting the brain (Fig. 7A) and lesions (Fig. 7B)

than Lesion-TOADS or FreeSurfer. Visual inspection revealed regions of mismatch

mainly in lesion and GM segmentation for FreeSurfer, and in CSF-GM boundaries

in Lesion-TOADS. Lesion-TOADS and C-DEF performed well in MS brain seg-

mentation. In MS, the sensitivity by volume for lesion segmentation was 49% for

C-DEF, and 37% and 21% for Lesion-TOADS and FreeSurfer, respectively. For

HAM/TSP, sensitivity was 44% for C-DEF, 30% for Lesion-TOADS, and 16%

for FreeSurfer. In CTLA4, the sensitivity was 47% for C-DEF, 45% for Lesion-

TOADS and 9% for FreeSurfer.
4. Discussion

An atlas-free automatic brain segmentation algorithm (C-DEF) that uses logistic

regression on multiple MRI contrasts and derived features was developed and
on.2019.e01226
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Fig. 7. A. Whole brain segmentation applied to other diseases: Qualitative comparison of whole brain

segmentation of Lesion-TOADS, FreeSurfer, and C-DEF, on three neurological diseases (top: multiple

sclerosis, female, 37 years old; middle: CTLA4, female 14 year old; HTLV, female, 56 years old). Masks

have been overlaid on their corresponding T1-MPRAGE images. B. Lesion segmentation applied to other
diseases: Qualitative comparison of lesion segmentation methods (manual segmentation, Lesion-

TOADS, FreeSurfer, and C-DEF) on three neurological diseases (top: multiple sclerosis, female, 37 years

old; middle: CTLA4, female 14 year old; HTLV, female, 56 years old). Lesion masks have been overlaid

on their corresponding 3D-FLAIR images. Red arrow points to lesions identified only in C-DEF.
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implemented herein. C-DEF outperformed widely used brain segmentation tech-

niques in a variety of neuroimmunological diseases for lesion detection, while still

achieving highly accurate brain segmentations. A local image statistics-based

approach enabled removal of bias fields associated with high field imaging [22].

Use of 3D-kernels of multiple, isotropic sizes allowed generation of features at

various local scales [22, 25]. Overall, C-DEF classification performed consistently

in supratentorial, cerebellar, and brainstem regions.

Popular MRI brain segmentation algorithms utilize atlas-based and region growing

techniques. Algorithms such as FreeSurfer, SPM, and Lesion-TOADS rely on regis-

tration to a standard atlas to determine the likelihood that a voxel at particular loca-

tion belongs to a particular tissue type. While this approach has been successful in

healthy populations, errors tend to arise when the subject’s anatomy deviates signif-

icantly from the atlas, as is evident in subjects with neurological diseases. Large

morphological changes seen in these subjects, such as significant atrophy or severe

lesion load, may lead to registration errors and thereby errors in estimation of tissue

probability and misclassification. For detecting lesions, depending on spatially

derived prior probabilities leads to further classification errors because atlases do

not account for the varied size and spatial distribution of lesions in subjects with neu-

roimmunological diseases. For example, subjects diagnosed with MS often have

confluent periventricular lesions, while subjects with chronic, well-controlled HIV

infection and HAM/TSP are more likely to have smaller deep WM lesions [26,

27]. Therefore, atlas-based algorithms for lesion segmentation are often disease-

specific and may be prone to miss lesions in locations where they are not expected.

These segmentation algorithms also use single contrasts, which makes them
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insensitive to lesions that are not easily visible on that contrast, and studies have

shown that the accuracy of such single-contrast-based algorithms are highly influ-

enced by the noise level in an image [28, 29].

An alternative to atlas-based methods are region-growing algorithms such as the one

implemented in Lesion Segmentation Tool (LST) [30]. While this technique is

robust to morphological variations [31], it is highly sensitive to noise and radiofre-

quency bias, which can cause disconnections or holes within segmented regions.

Adaptive thresholding algorithms [32, 33] performed better by eliminating many

of these artifacts, but they suffer from inconsistency and often require significant

manual input for lesion segmentation.

C-DEF overcomes these issues by using multiple image contrasts, correcting bias

fields, and eliminating the need for an atlas through incorporating image features,

thereby resulting in a more robust disease-independent classification. C-DEF mini-

mizes atlas-based registration errors, because registration is performed across the

MR contrasts obtained within a single session. Several recent studies have used

multi-contrast techniques with machine learning for lesion segmentation [34, 35,

36]; C-DEF extends this idea for segmenting the whole brain by adding derived

feature sets to the algorithm. Instead of relying on spatially derived prior probabil-

ities, C-DEF uses local neighborhood information derived from Gaussian and

Gaussian gradient filters with multiple kernel sizes. These feature images reinforced

the confidence within the model. For the purposes of this classification, we used 3-

dimensional kernels and magnitude of the gradient because we hypothesized that

directional information would not assist with basic classification, given the variable

orientations of both the highly convoluted cortical sheet and the unpredictable loca-

tion and shape of lesions. In addition, these features are relatively robust to changes

in the orientation of the subject’s head in the images and to the specific slice orien-

tation with respect to a given structure or lesion.

It should be noted that the classification algorithm was trained on thousands of vox-

els per patient (an average of about 200,000 for CSF, 500,000 for GM, and 400,000

for WM and 3,000 for GP and lesions per patient) in cohort 1. Given the 63 features

used in C-DEF, and the one-in-ten rule of thumb for number of predictors that can be

derived from logistic regression, there is no reason to expect overfitting for any of the

6 classes predicted by C-DEF. Therefore it was possible to get robust and reliable

results from training on as few as 5 subjects. Indeed, experiments performed to deter-

mine optimal size of training set (not reported here) revealed dice similarity coeffi-

cient of WM and GM generally increasing when the number of training subjects

were increased from 1 to 3, and plateauing between 3-5 subjects (data not shown).

A strength of C-DEF algorithm is its adaptability. The algorithm currently uses

seven different MRI contrasts, which are routinely acquired as a part of standard clin-

ical scans for neuroimmunological diseases at the NIH. However, the segmentation
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algorithm is not heavily dependent on the types of contrasts acquired nor on the pro-

tocol used to achieve them. In principle, high-resolution T1-weighted and FLAIR

scans (the latter to identify lesions) can be trained to achieve effective brain classi-

fication. Using multiple imaging contrasts only increases the confidence of the clas-

sification. For example, adding the 3D nsFLAIR images helped the algorithm further

differentiate between the GM and lesion class and reduce the partial volume errors

(data not shown). Similarly, 3D BFWI (a heavily T2-weighted image) improved the

delineation of CSF by the algorithm (data not shown). Additionally, using T2* and

nsFLAIR images required the inclusion of a separate GP class, as iron deposition in

this brain region resulted in very distinct tissue signatures. While these seven con-

trasts were readily available to us, C-DEF can be easily adapted and retrained in pro-

tocols where fewer or different images are acquired. Along these lines, we have

successfully trained and are testing C-DEF on a set of standard clinical images ac-

quired at a collaborator’s site to segment brains in patients with MS and small vessel

disease (data not shown).

Scanners from different manufacturers and field strengths, and different imaging pa-

rameters (some of which may be inaccessible in a non-research setting) can produce

subtle to large variations in image contrast, which can directly affect segmentation. It

would therefore be important that the training be done on images similar to the ones

used in the application. The training is simple to perform and takes just a few hours

including registration step, and need only be performed once. However, a limitation

to training is that gold-standard masks for the various tissue types would need to be

provided. In the present case, the use of images derived from FreeSurfer segmenta-

tion on the T1-MPRAGE as the gold-standard for training WM, GM, and GP made

this task easier. To reduce training on erroneous voxels, the FreeSurfer segmentation

was eroded by one pixel to create the masks, thereby eliminating voxels with partial

volume. CSF masks were derived from images with very heavy T2-weighting. Only

lesion masks were required to be manually drawn, making the task much simpler.

Most of the lesions in HIV-infected individuals were small focal lesions, which

are easy to delineate. However, one can envision using outputs of other lesion-

classifying algorithm as input for training after elimination or editing of inaccurate

voxels in the lesion mask. All masks should be carefully inspected for segmentation

errors before training is performed. As an immediate next step, we are exploring im-

aging parameters and contrasts, as well as optimizing feature and training sets for C-

DEF. Such optimized imaging sequences and parameters can be provided along with

the C-DEF as recommended imaging protocol for brain segmentation.

Supervised classification algorithms, specifically logistic regression models, have

been used in the past to segment brain tissues structures from MRI and CT images

[37, 38]. Briefly, logistic regression is a linear classifier that calculates the weighted

sum of the input features in order to model the probability that an image voxel belongs

to a particular labeled class. While studies have looked at the application of logistic
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regression in classifying brain tumors [39], annotating traumatic brain injury [38], and

segmentingmultiples sclerosis lesions [35], this approach has not been previously uti-

lized for whole brain image segmentation of subjects with HIV. Logistic regression

has an added advantage over other classifiers, such as support vector machine

(SVM) or artificial neural networks (ANN), because it produces coefficients that

can be used to interpret and optimize model parameters [40]. SVM and ANN lack

transparency in that their results cannot be represented as a parametric function of

the input features. These classifiers are also computationally more expensive. More-

over, it has been shown that simpler methods, like the logistic regression model, yield

performance that is equivalent to that of other sophisticated methods [41]. For these

reasons, we selected logistic regression to be the classifier for the C-DEF algorithm.

We used the Gaussian and Gaussian gradient features, as well as the logistic regres-

sion model, to build two different training sets: one without lesions (5-label classi-

fier), and one with lesions (6-label classifier). In general, both sets yielded high

performance in their respective cohorts, as seen by the fewer voxels classified as

“other” within the brain. This can be attributed to the fact that the predictive models

built from the training sets were applied to a test set with similar characteristics; the

5-label classifier was tested on image data from other healthy volunteers. An excep-

tion to this was in segmenting images from a healthy volunteer with non-specific

deep WM lesions. For this case, we applied the HIV training model and found

that it was able to delineate the punctate deep white-matter, with some misclassifi-

cation of areas around the ventricles. While the tissue signature of these regions

around the ventricles matches that of a lesion, they are seldom reported as lesions

in a radiological report, as they are commonly seen in healthy volunteers as well

[42]. It is possible that the region does indeed undergo very subtle neuroinflamma-

tory changes with aging, but without any noticeable clinical symptoms. Neverthe-

less, classification of these regions as lesion or normal tissue will depend on the

investigator. Since either training set works in healthy volunteers with lesions, it

would be up to the user to decide the appropriate model for their study, depending

on the question being asked in the specific study.

The Raw, 2-Kernel, 3-Kernel and Full Models were used to test the influence of fea-

tures generated from larger kernel sizes on segmentation performance. A quantita-

tive evaluation of the models generally showed an increasing trend between

number of features and AUC values in all classes, with significant differences be-

tween the Raw and Full Models for GP and WM classification. Regardless, a qual-

itative examination showed a clear improvement in segmentation performance with

increasing number of features. Therefore, the Full Model for the C-DEF algorithm

was treated as optimal and used for the implementation cohort two and in cases

with other neuroinflammatory diseases. As a follow up on these encouraging results,

we are in the process of evaluating ways to improve the performance of C-DEF using
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various other modified feature set such as Laplacian and rotationally invariant

features.

Quantitative evaluation showed that C-DEF had a higher sensitivity for delineating

lesions in MS and CTLA4 in comparison with widely used segmentation algorithms

such as Lesion-TOADS and FreeSurfer, even though the initial training of the C-

DEF model was done on subjects with HIV, and the morphology of those lesions

were very different. Interestingly, training using lesions in HIV subjects, in which

many lesions were small and focal, did not appear to adversely affect detection of

large lesions such as those typically seen in other neuroinflammatory diseases.
5. Conclusion

In this study, we use an atlas-free machine learning classification approach utilizing

multi-scale local image features generated from multiple MR contrasts to robustly

classify both normal brain tissue as well as lesions found in subjects with neuroin-

flammatory diseases. Since the algorithm performs segmentation based on intensity

signatures in image features and contrasts, it outperforms current atlas-based tech-

niques that are susceptible to image noise or not sensitive to structural variations

such as high lesion load or atrophy. Future work includes exploring various technical

aspects of optimal implementation of CDEF in a clinical setting and application to

other neurological diseases. Overall, C-DEF can be reliably used to extract accurate

quantitative neurostructural measures, which could serve as biomarkers of disease

progression.
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