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Johann Böhm2, Julie Thompson1, Jocelyn Laporte2, Olivier Poch1*

1 Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory – CNRS, Fédération de
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Abstract

The diffusion of next-generation sequencing technologies has revolutionized research and

diagnosis in the field of rare Mendelian disorders, notably via whole-exome sequencing

(WES). However, one of the main issues hampering achievement of a diagnosis via WES

analyses is the extended list of variants of unknown significance (VUS), mostly composed

of missense variants. Hence, improved solutions are needed to address the challenges of

identifying potentially deleterious variants and ranking them in a prioritized short list. We

present MISTIC (MISsense deleTeriousness predICtor), a new prediction tool based on an

original combination of two complementary machine learning algorithms using a soft voting

system that integrates 113 missense features, ranging from multi-ethnic minor allele fre-

quencies and evolutionary conservation, to physiochemical and biochemical properties of

amino acids. Our approach also uses training sets with a wide spectrum of variant profiles,

including both high-confidence positive (deleterious) and negative (benign) variants. Com-

pared to recent state-of-the-art prediction tools in various benchmark tests and independent

evaluation scenarios, MISTIC exhibits the best and most consistent performance, notably

with the highest AUC value (> 0.95). Importantly, MISTIC maintains its high performance in

the specific case of discriminating deleterious variants from benign variants that are rare or

population-specific. In a clinical context, MISTIC drastically reduces the list of VUS (<30%)

and significantly improves the ranking of “causative” deleterious variants. Pre-computed

MISTIC scores for all possible human missense variants are available at http://lbgi.fr/mistic.

Introduction

Next-Generation Sequencing technologies, such as Whole Exome Sequencing (WES) involv-

ing the targeted sequencing of exonic regions of all known protein-coding genes, have gradu-

ally replaced conventional approaches for the study of rare Mendelian disorders since 2010

[1]. Their usage is shifting from research investigations of disease-causing variants to routine

clinical exome analysis for diagnosis of Mendelian disorders with known genetic aetiology
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[2, 3]. However, with a diagnostic rate of ~40% for exome analyses, the identification of the

deleterious variants, even in the coding regions, remains laborious [4–6]. The unsolved

exomes usually result in extensive lists of variants, including numerous Variants of Unknown

clinical Significance (VUS). The VUS are variants for which the pathogenicity (either benign

or deleterious) could not be reliably determined given all available evidence (databases, collec-

tions of exomes etc), according to recommendation criteria from scientific communities, such

as the Association for Molecular Pathology (AMP) [7] or the American College of Medical

Genetics (ACMG) [8]. The VUS are mainly composed of missense variants, which make up to

~60% of ‘Uncertain significance’ variants in the ClinVar database [9].

The AMP and ACMG guidelines provide several criteria to classify deleterious/benign vari-

ants, in order to filter, prioritize or reduce the list of VUS into a shorter list of candidate vari-

ants that is amenable for expert review and additional experimental validation [10, 11]. For

example, the minor allele frequency (MAF) (e.g. criteria PM2, BS1, BA1 of the ACMG) repre-

senting the observed frequency of a given variant in control healthy cohorts, has been demon-

strated to be a very powerful filter. However, MAF values are often missing for deleterious or

population-specific variants. To facilitate the evaluation of missense variants effects, several

deleteriousness prediction tools have been developed that integrate a number of additional cri-

teria [8, 12], such as the impact of the variant on the protein structure and/or function, the evo-

lutionary conservation, or the physiochemical and biochemical properties of amino acids (e.g.

SIFT [13], PolyPhen2 [14], VEST4 [15]). These tools have an accuracy ranging from 65 to 80%

when benchmarked on known disease missense variants [16, 17]. Since individual tools tend

to disagree on some missense variants, a novel type of ensemble prediction tools has recently

emerged (e.g. Condel [18], CADD [19], MetaLR/MetaSVM [20], FATHMM-XF [21], Eigen

[22], REVEL [23], M-CAP [24], ClinPred [25], and Primate AI [26]). The ensemble prediction

tools combine the power of individual tools in order to achieve higher classification accuracies

up to ~90% [17]. Nevertheless, the tools can still produce ambiguous predictions or even no

prediction at all for some missense variants, contributing to the extended list of VUS (criteria

PP3 of the ACMG) with a poor ranking of causative variants.

Here, we present MISTIC (MISsense deleTeriousness predICtor), a new supervised

machine-learning model dedicated to the prediction of deleterious missense variants. MISTIC

integrates a Soft Voting system [27] based on two optimized complementary machine-learning

algorithms (Random Forest [28] and Logistic Regression [29]). The algorithms were trained to

distinguish deleterious from benign missense variants based on a selection of 113 missense fea-

tures, ranging from multi-ethnic MAF and evolutionary conservation constraints, to changes

in amino acid physiochemical and biochemical properties. The performance of MISTIC is

compared to other recent state-of-the-art prediction tools (Eigen, FATHMM-XF, REVEL,

M-CAP, ClinPred and PrimateAI) in a series of benchmark tests designed to represent differ-

ent variant analysis scenarios. We show that MISTIC has the best performance in predicting

and ranking deleterious missense variants in coding regions. Moreover, in a clinical usage con-

text, we demonstrate that MISTIC drastically reduces the list of VUS, and improves the rank-

ing of the “causative” deleterious variants. To make MISTIC easily usable and accessible for

future developments, we provide pre-computed scores for all possible human missense

variants.

Materials and methods

Features

To describe missense variants, 714 features in 4 main categories were initially collected (S1

Table):

PLOS ONE MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0236962 July 31, 2020 2 / 23

“Myocapture” sequencing project, the Fondation

pour la Recherche Médicale, and the Association

Française contre les Myopathies.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0236962


1. 8 multi-ethnic MAF [30]: all exomes (global MAF), African/African-American (AFR),

Latino American (AMR), Ashkenazi Jewish (ASJ), East Asian (EAS), Finnish (FIN), Non-

Finnish European (NFE), South Asian (SAS).

2. 8 conservation measures: PhastCons (primates, mammals, vertebrates) [31], PhyloP (pri-

mates, mammals, vertebrates) [32], SiPhy [33], GERP++ [32].

3. 690 functional measures: constrained coding regions (CCRs) [34], Missense badness, Poly-

Phen-2, and Constraint score (MPC) [35], physicochemical and biochemical properties

from the AAindex databases (amino acid features) [36].

4. 7 pathogenicity predictors based on deleteriousness scores from different prediction tools:

SIFT, PolyPhen2, VEST4, Condel, CADD, MetaSVM and MetaLR.

The features for the missense variants are based on the GRCh37 genome assembly and were

extracted using Variant Ensembl Predictor (VEP) v96 [37] and VCFAnno v0.3.1 [38] from the

CADD v1.4 and dbNSFP v4.0b2 [39] databases.

Training and test sets

MISTIC was trained and tested using variants from the VarData set, which is composed of (i)

a positive set corresponding to rare deleterious missense variants, and (ii) a negative set corre-

sponding to rare benign missense variants (S2 Table).

For the positive set, 38,565 deleterious missense variants with a “Pathogenic” clinical signif-

icance interpretation (CLNSIG) were selected from the ClinVar [9] VCF file (release of 30/09/

2018). This list of variants was further filtered to select only 15,219 high confidence variants

with a review status (CLNREVSTAT) “criteria provided” by the submitter, provided by “multi-

ple submitters”, a “reviewed by expert panel” or using “practice guideline”, and “no conflicts”

among the multiple interpretations submitted. Additionally, from the curated HGMD Pro

[40] VCF file (version 2018.1), 76,523 missense variants with “Disease-Mutation” (DM) STA-

TUS tag were selected as high-confidence deleterious missense variants. The resulting lists of

variants from both ClinVar and HGMD Pro were then filtered to exclude:

1. any overlapping variants with the training set of the 7 prediction tools (PolyPhen-2 HUM-

VAR & PolyPhen-2 HUMDIV, SIFT, VEST4, Condel, CADD, MetaLR, MetaSVM) used as

features in MISTIC to prevent type 1 circularity errors [17],

2. variants without a full annotation coverage of the features used in MISTIC (see Model defi-

nition section).

Finally, the VarData positive set contains 11,190 high confidence deleterious missense vari-

ants after merging the non-filtered variants from ClinVar and HGMD Pro databases.

For the negative set, rare benign missense variants were obtained from the gnomAD data-

base, which combines variation data from over 125,000 exomes and over 15,000 genomes.

Since no individuals in this database have any of the known severe childhood Mendelian disor-

ders, it is assumed that highly penetrant disease-causing missense variants will be rare in this

database (MAF < 1%). The missense variants with a depth coverage>30X, were filtered to

exclude (i) any overlapping variants in ClinVar and HGMD Pro databases, (ii) type I circular-

ity error variants and (iii) variants without a full annotation coverage of MISTIC features,

which resulted in 5,599,566 variants. The resulting list was divided into two sets: (i) Benign_-

VarData set comprising 11,190 randomly selected variants to match the size of the positive set

for the training and testing of MISTIC, and (ii) Benign_EvalSet that contains the rest of the

variants and serves as a negative set for the further evaluation of MISTIC (see below).
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In order to train the supervised machine-learning models in MISTIC, 10,070 variants

(~90% of VarData) were used from both positive and negative sets (denoted VarTrain). The

remaining 992 variants (~10% left of VarData) in both positive and negative sets (denoted

VarTest) were then used to test the performance of MISTIC.

Evaluation scenarios

To further evaluate the performance of MISTIC compared to other prediction tools, we col-

lected six additional sets, including (i) two sets of deleterious variants, (ii) a set of rare benign

variants and (iii) three population-specific variants (S3 Table).

1. Del_EvalSet contains two sets of deleterious variants:

The ClinVarNew set was generated to assess the ability of the different tools to predict

novel deleterious variants. We therefore identified recent deleterious missense variants

present in the ClinVar database of April 2019 (release of 2019/04/03) and absent from the

version of September 2018 (release of 2018/09/30 used to construct the VarTrain set). After

applying the same filters for high confidence deleterious missense variants as described

above for ClinVar in the VarData positive set, 437 “novel” high confidence deleterious mis-

sense variants were obtained. To avoid circularity errors, the variants overlapping with the

training sets of the tools used in the benchmark study (PolyPhen-2, SIFT, VEST4, Condel,

CADD, MetaLR, MetaSVM, VarTrain) were removed (referred to later as circularity error

filter). After applying the circularity error filter, 388 variants were obtained. However,

ClinPred and M-CAP did not provide any scores for 101 variants, so for fair comparison

only the resulting 287 deleterious missense variants were used in the benchmark test.

The DoCM set was generated by selecting deleterious missense variants from the Database

of Curated Mutations (version 3.2), derived from the literature and composed of curated

mutations observed in cancer [41]. The circularity error filter was applied to the initial 226

pathological missense variants and variants overlapping with the ClinVarNew set were

removed, resulting in 126 deleterious missense variants.

2. Benign_EvalSet contains one set of benign variants with MAF data.

The Benign_EvalSet was constructed to evaluate the ability of the tools to predict rare

benign variants with different levels of MAF. As described above, the Benign_EvalSet com-

prises 4,974,224 missense variants, after applying the circularity error filter and removing

the variants used in VarTrain and VarTest.

3. PopSpe_EvalSet contains thee sets of population-specific variants, for which no MAF infor-

mation is available.

The UK10K set was constructed by selecting population-specific variants present in 3,781

healthy individuals from two British cohorts of European ancestry present in the UK10K

project [42], namely the Avon Longitudinal Study of Parents and Children (ALSPAC) [43]

and TwinsUK [44]. Different filters were applied to the initial 295,218 missense variants: (i)

a depth coverage>30X, (ii) the circularity error filter, (iii) the population specific filter,

which removes variants with MAF data or present in the VarData set, evaluation sets (Clin-

VarNew, DoCM), or in the other population sets. Finally, 34,973 UK10K-population-spe-

cific variants were obtained.

The SweGen set was constructed by selecting population-specific variants present in 1,000

healthy Swedish individuals from the SweGen project [45]. After applying the same filters

as for UK10K, 25,635 SweGen-population-specific variants were obtained.

The WesternAsia set was constructed by pooling variant sets from 269 healthy Kuwaiti

natives (comprising 109 individuals of Saudi Arabian tribe ancestry, 126 individuals of
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Persian ancestry, 34 individuals of Bedouin ancestry) [46] and 16 healthy Turkish individu-

als [47]. After applying the same filters as for UK10K, 14,594 WesternAsia-population-spe-

cific variants were obtained.

Different combinations of the six evaluation sets were then used to construct three predic-

tion scenarios:

1. ClinVarNew and Benign_EvalSet, to distinguish novel deleterious variants from rare

benign variants,

2. DoCM and Benign_EvalSet, to distinguish known deleterious variants from rare benign

variants,

3. ClinVarNew/DoCM and PopSpe_EvalSet. to identify deleterious variants in population-

specific datasets without MAF data.

Clinical context scenarios

We constructed different datasets representing both simulated and real disease exomes.

The 1KG set comprises simulated disease exomes, in which we introduce a randomly

selected deleterious missense variant (from one of the deleterious sets described above) into

the 1092 individual background exomes from the 1000 Genomes Project [48]. The simulated

disease exomes were then annotated using VEP and VCFAnno. The variants were filtered

according to community best practices, such as depth coverage>10X and MAF <1% in con-

trol healthy population databases. After applying the circularity filter, there was an average of

420 missense variants per simulated disease exome.

The MyoCapture set represents more than 1,200 clinical exomes from the French MyoCap-

ture consortium on congenital myopathies [49]. The 15 selected resolved cases correspond to

recently identified disease-causing deleterious variations, published after 2016 and not

included in VarTrain. These cases were considered as solved if: (i) the disease-causing deleteri-

ous variant is in a known myopathy-causative gene and the gene associated phenotypes clini-

cally match the patient’s phenotypes; (ii) the disease-causing deleterious variant is in a novel

disease gene with strong genetic validation (e.g. segregation analysis, multiple families with

variants in the same gene, similar phenotype) and functional evidence (e.g. animal models

reproducing the patient phenotypes) according to the ACMG’s recommendations. The

sequencing reads were mapped to the GRCh37/hg19 assembly of the human genome using

BWA-MEM v0.7.10-r789 [50]. Variants were called using GATK v4.0.3.0 following the Haplo-

type Caller workflow from GATK best practices [51]. The procedures for the annotation and

filtering steps, described above for the 1KG set were also applied here. After applying the circu-

larity filter, there was an average of 1,566 missense variants per clinical exome.

Model definition

Using the python scikit-learn library v0.20.2, we trained Random Forest [28] and Logistic

Regression [29] machine learning algorithms on the VarTrain missense variants, which

includes 10,070 deleterious variants as the positive set and 10,070 benign variants as the nega-

tive set. The design of MISTIC was done in three main steps. First, a selection and implemen-

tation of the most informative variant features (detailed above) for each algorithm, the

Recursive Feature Elimination method (RFE) was used [52]. RFE is a method that enables

machine learning algorithms to perform feature selection by iteratively training a model, rank-

ing features (by assigned weights or coefficients), and then removing the lowest ranking
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features. Second, the predictions of the Random Forest and the Logistic Regression algorithms

were then integrated in a Soft Voting system. In contrast to classical majority voting (Hard

Voting), a Soft Voting system calculates the weighted average probabilities. Third, the opti-

mized combination of parameters for the Random Forest and Logistic Regression algorithms

and the hyper-parameters of their relative weights in the Soft Voting system was obtained after

a grid search optimization of 20 iterations with 5 cross-validations each time.

The score generated by the Soft Voting system ranges from 0 to 1 and represents the proba-

bility of a given missense variant to be classified as deleterious. By default, missense variants

with scores >0.5 are classified as deleterious and missense variants with scores<0.5 are classi-

fied as benign.

Benchmarking statistics

The performance of MISTIC was compared to six recent state-of-the-art tools for prediction

of deleterious variants: Eigen, PrimateAI, FATHMM-XF, REVEL, M-CAP and ClinPred.

However, since the deleteriousness scores from these tools were not always available for every

missense variant (ranging from 3.6% of the missense variants for REVEL up to 9.4% for

M-CAP), we excluded variants without scores. The thresholds recommended by the authors

(S4 Table) were used to compare the prediction performance of the different tools on the eval-

uation sets. Furthermore, for clinically relevant applications, the prediction and ranking per-

formances were compared on sets corresponding to simulated disease exomes (1KG) and real

clinical exomes (MyoCapture).

To compare the performance of the prediction tools, we used several statistical metrics

derived from a confusion matrix. To achieve this, we identified a correctly classified variant as

a true positive (TP) if and only if the variant corresponded to the positive class (deleterious)

and as a true negative (TN) if and only if the variant corresponded to the negative class

(benign). Accordingly, a false positive (FP) is a negative variant (benign) that is classified as

positive (deleterious) and a false negative (FN) is a positive variant (deleterious) classified as a

negative one (benign). From these different classification statistics, we calculated 12 perfor-

mance metrics (S5 Table) as described in the Human Mutation guidelines [53], notably:

1. Sensitivity—proportion of identified true deleterious variants compared to all the true dele-

terious variants.

2. Specificity—proportion of identified true benign variants compared to all the true benign

variants.

3. Precision–proportion of identified true positive deleterious variants over all variants pre-

dicted as deleterious.

4. Area under the Receiver Operating Characteristics (ROC) curve (AUC). The AUC can take

values between 0 and 1. A perfect tool has an AUC of 1 and the AUC of a random tool is

0.5.

5. F1 score—measure of prediction accuracy, with a balanced use of precision and sensitivity.

The higher the F1 score, the higher the accuracy of the tool.

6. Matthews Correlation Coefficient (MCC)—considers true and false positives and negatives

to represent the degree of correlation (range from -1 to 1) between the observed and pre-

dicted binary classifications. The MCC is generally regarded as a balanced method to evalu-

ate tools. An MCC of -1 indicates a completely wrong binary tool, while an MCC of 1

indicates a completely correct binary tool.
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7. Log Loss value—measures the divergence of a tool from the true variant labels (true delete-

rious or true benign), i.e. it measures the associated degree of uncertainty for a tool. The

Log Loss value ranges from +1 to 0. In this case, a good tool will have a low Log Loss value,

hence a low degree of uncertainty in its predictions.

8. Diagnostic Odd Ratio (DOR)–measures the effectiveness of a diagnostic binary classifica-

tion test. It is defined as the ratio of the odds of the test being positive if the variant is delete-

rious relative to the odds of the test being positive if the variant is benign. The DOR value

ranges from zero to +1 and hence higher DOR are indicative of better tool performance.

Results

Variant prediction model

In order to accurately classify deleterious and benign missense variants, we built the MISTIC

model based on a Soft Voting system that combines predictions from Random Forest and

Logistic Regression machine learning algorithms. We initially defined 714 features to fully

characterize the missense variants (VarTrain dataset) used to train the model (S1 Table). How-

ever, a common problem of such high-dimensional data sets is the presence of correlated pre-

dictors, which impacts the ability of the algorithms to identify the strongest predictors. Hence,

to reduce the dimensionality of our data, we identified the most important features for each of

the Random Forest and Logistic Regression algorithms independently, using the RFE method.

The data in S1 Fig show that the performance of the Random Forest models increases as the

number of features decreases, ranging from an AUC value of 0.852 for a model with 714 fea-

tures to a peak AUC value of 0.895 for a model with 10 features. In contrast, the performance

of the Logistic Regression models with less than 113 features are lower with a mean AUC value

of 0.820, while models with more than 113 features have a stable performance with a mean

AUC value of 0.826. Since the Soft Voting system requires that both algorithms have the same

number of features, a cutoff was defined at 113 features for an optimised performance combin-

ing both algorithms. The 113 selected features cover 3 main categories: (i) multi-ethnic MAF

values (6 features), (ii) functional and conservation measures (100 features), and (iii) scores

from missense prediction tools (7 features) (Table 1, see detailed list in S6 Table).

Finally, the MISTIC model was trained on the VarTrain set, using the 113 selected features.

Twenty iterations on a randomized grid search and a 5 cross-validation on VarTrain were

used to obtain the hyper-parameters for the most optimized combination of the Random For-

est and the Logistic Regression algorithms (S7 Table). Each algorithm calculated different

weights for the individual features (See S2 Fig and S8 Table). For the Random Forest, the 5

most predominant features are the global MAF (19.73%), MetaSVM (9.44%), MetaLR (6.93%),

VEST4 (5.84%) and Condel (5.39%). For the Logistic Regression, the 5 strongest features are

VEST4 (16.16%), MetaLR (8.63%), MetaSVM (5.00%), PolyPhen (3.88%) and the AAindex

matrix MIYS930101 [54] (3.22%) that evaluates contact frequencies in protein structures for

all residues.

Comparison of MISTIC with individual component features and other

prediction tools on VarTest set

The performance of the MISTIC Soft Voting system was compared with other prediction tools

using the VarTest set. As might be expected, MISTIC globally outperforms each of its individ-

ual component features (MetaSVM, MetaLR, VEST4, Condel, CADD, PolyPhen2, SIFT).

However, MISTIC also performs better than the state-of-the-art missense prediction tools
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(Eigen, PrimateAI, FATHMM-XF, REVEL, M-CAP and ClinPred) with the highest AUC

value of 0.956 (S9 Table, Fig 1). M-CAP has the second-best overall performance, with an

AUC value of 0.891. M-CAP has the highest sensitivity of 0.955, but this comes at the cost of a

low specificity value of 0.547. In contrast, MISTIC has a balanced sensitivity of 0.863 and speci-

ficity of 0.901. Among the individual component features of MISTIC, the MetaLR score has

the best performance with an AUC value of 0.859. We also calculated other metrics, such as

the F1 score (measures accuracy based on the balance between precision and sensitivity), the

Log Loss value (measures the degree of uncertainty associated with a prediction) and the Diag-

nostic Odds Ratio (measures the effectiveness of a deleterious prediction relative to the odds of

a deleterious variant and the odds of a benign variant). Here, MISTIC has the highest F1-score

of 0.881, the highest DOR value of 57.347, as well as the lowest Log Loss value of 4.082.

Evaluation of MISTIC in different variant analysis scenarios

The generalizability and relevance of MISTIC’s prediction performance was further compared

to the other prediction tools using datasets representing different scenarios. It is important to

note that the variant sets used in these scenarios are independent from the variant sets used for

the model training (VarTrain) and initial testing (VarTest) described in the previous section.

First, we tested the ability of the prediction tools to differentiate novel deleterious variants

(ClinVarNew set) or known deleterious variants from diverse sources (DoCM set), from rare

benign variants at 5 MAF levels (<0.01, <0.005, <0.001, <0.0001, singleton in Benign_Eval-

Set). Since each MAF set does not have the same number of deleterious variants, the

Table 1. Selected features included in the Soft Voting system of MISTIC.

Category Name Number of

features

Description

Minor Allele

Frequencies

minor allele

frequencies

6 minor allele frequencies for 6 populations: all exomes (global MAF), African (AFR), American (AMR),

East Asian (EAS), None Finnish European (NFE), South Asian (SAS)

Conservation

measures

PhastCons 3 phastCons conservation score based on three categories of multiple alignments: (i) 100 vertebrate

genomes, (ii) 30 mammalians, and (iii) 17 primates. The larger the score, the more conserved the site

PhyloP 3 phyloP (phylogenetic p-values) conservation score based on three categories of multiple alignments: (i)

100 vertebrate genomes, (ii) 30 mammalians, and (iii) 17 primates. The larger the score. the more

conserved the site

SiPhy 29way

logOdds

1 The estimated stationary distribution of A, C, G and T at the locus using SiPhy algorithm based on 29

mammalian genomes

GERP++_RS 1 Identified constrained elements in multiple alignments

Functional

measures

CCRS 1 The score reflects the intolerance of constrained coding regions of protein-coding genes for protein-

altering variants

MPC 1 A deleteriousness prediction score for missense variants based on regional missense constraints.

AAindex 90 The AAindex substitution matrices for different physicochemical and biochemical properties of amino

acids.

Pathogenicity

predictors

SIFT 1 Prediction of the impact of an amino acid substitution on the protein function

PolyPhen 2 1 Prediction of the impact of an amino acid substitution on the structure and function of a protein using

straightforward physical and comparative considerations

VEST4_score 1 Machine learning method predicting the functional significance of missense mutations based on the

probability that they are pathogenic

Condel 1 Weighted average of the normalized scores of five methods (SIFT, PolyPhen2, Logre, MAPP,

MutationAssessor)

CADD PHRED 1 Machine learning scoring model that integrates more than sixty annotation features into a single metric,

to distinguish variants that survived naturel selection from simulated mutations

MetaLR 1 Logistic Regression model combining multiple variant scoring metrics

MetaSVM 1 Support Vector Machine model combining multiple variant scoring metrics

https://doi.org/10.1371/journal.pone.0236962.t001
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corresponding number of benign variants was randomly selected to obtain balanced pairs of

deleterious-benign evaluation sets. This procedure was repeated 10 times and at each iteration,

a different random set of benign variants was used.

Overall, MISTIC has the most consistent and best performance in discriminating deleteri-

ous variants from rare benign variants, with the highest mean AUC value on all the different

scenarios (Fig 2). For the scenario involving novel deleterious variants (ClinVarNew set; Fig

2A, S10 Table) and rare benign variants, MISTIC has the highest mean AUC value of

0.963 ± 0.002, mean F1 score of 0.907 ± 0.002, mean DOR value of 92.548 ± 5.182, and the low-

est mean Log Loss value of 3.332 ± 0.099. In terms of mean AUC and mean DOR values,

M-CAP is the second best-performing tool with a mean AUC value of 0.930 ± 0.002 and a

mean DOR value of 39.516 ± 1.650. However, in terms of mean F1 score, REVEL is the sec-

ond-best performing tool (0.859 ± 0.004), as well as in terms of mean Log Loss value

(5.048 ± 0.186).

For the scenario involving known deleterious variants from diverse sources (DoCM; Fig

2B, S11 Table) and rare benign variants, the same tendency was observed. Here, MISTIC has

Fig 1. Performance of missense prediction tools on VarTest set. MISTIC was compared to individual component features (MetaSVM, MetaLR,

VEST4, Condel, CADD, PolyPhen2, SIFT) used in its model (in grey) and the best-performing tools recently published (in color). The Area Under the

receiver operating characteristics Curve (AUC) is shown in brackets.

https://doi.org/10.1371/journal.pone.0236962.g001
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Fig 2. Evaluation of prediction tools on different variant analysis scenarios. The performance of MISTIC was compared to other

missense prediction tools for the discrimination of deleterious variants from rare benign variants and population-specific missense

variants. All prediction tools were evaluated using novel deleterious variants (Fig 2A - ClinVarNew and Benign_EvalSet set), known

deleterious variants from diverse sources (Fig 2B - DoCM and Benign_EvalSet set), rare benign variants with MAF data (<0.01,<0.005,

<0.001,<0.0001, singleton) or benign variants without MAF (ClinVarNew/DoCM and PopSpe_EvalSet: UK10K, SweGen,

WesternAsia; Fig 2C).

https://doi.org/10.1371/journal.pone.0236962.g002
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the best performance, with the highest mean AUC value of 0.968 ± 0.001, mean F1 score of

0.920 ± 0.003, mean DOR value of 125.642 ± 6.905, and the lowest mean Log Loss value of

2.981 ± 0.099.

Since the global MAF is an important feature in the MISTIC model (see S2 Fig), although

MAF values are often missing for deleterious and population-specific benign variants, we eval-

uated the performance of MISTIC in discriminating deleterious variants from rare benign var-

iants when no MAF data are available. To do this, benign population-specific variants were

collected from three different populations, namely UK10K, SweGen and WesternAsia. For

each deleterious set (ClinVarNew, DoCM), the corresponding number of benign variants was

randomly selected from each population-specific set of variants. The deleterious and benign

variants were scored by MISTIC and the six other missense prediction tools. This procedure

was repeated 10 times, with a different random selection of the benign variants each time. For

the six different combinations of two deleterious sets (ClinVarNew, DoCM) and three benign

population-specific sets (UK10K, SweGen, WesternAsia), MISTIC has the best performance

for three of them, with the highest mean AUC value of 0.945 ± 0.009 (Fig 2C, S12 Table). The

second best-performing prediction tool is REVEL, with an overall mean AUC value of mean

of 0.933 ± 0.012, F1 score 0.873 ± 0.007 and a mean Log Loss value of 4.688 ± 0.287. ClinPred

has the highest DOR values for three of the combinations of variant sets and MISTIC has the

highest DOR values for the other combinations. ClinPred has the highest sensitity (1) and

DOR value (1) in the combinations of variants based on the known deleterious variants

(DoCM set). This is probably due to an overlap between the ClinPred training set and the

DoCM set, leading to a problem of overfitting.

Performance on simulated disease exomes

In the context of a typical Mendelian disease exome analysis, even after most common benign

variants have been removed with a standard allele frequency filter (MAF >1%), the challenge

is to identify one or two rare causative deleterious variants among hundreds of predicted dele-

terious variants. Indeed, with current limited resources (time and cost), it not feasible to exper-

imentally validate large numbers of candidate variants. To evaluate the ability of the prediction

tools to prioritize the causative variants, we simulated Mendelian disease exomes by introduc-

ing one “causative” deleterious variant (from Del_EvalSet) in the background exomes of

healthy individuals from the 1000 Genomes Project. The simulated disease exomes thus con-

tained one “causative” variant and an average of ~420 missense variants per exome (see section

Materials and methods).

First, we calculated the percentage of predicted deleterious variants obtained by the differ-

ent tools, again using the authors’ recommended threshold each time. The objective is to have

the “causative” variants among the shortest list of predicted deleterious variants, that is track-

able for a manual expert review. PrimateAI generated the shortest the list of variants by pre-

dicting only 5.393 ± 1.463% of the 1KG exomes variants as deleterious, while MISTIC’s

prediction was of 12.529 ± 3.195% (Fig 3A and S13 Table). Next, we evaluated the ability of the

prediction tools to rank the “causative” variants among the top-scoring deleterious variants.

We calculated the mean ranks of the “causative” variants introduced in the disease exomes

after sorting the scores for each prediction tool (Fig 3B, and S13 Table). Overall, MISTIC has

the best performance with a median rank value of 2, (mean rank: 14.092 ± 34.968) for the

“causative” variants. The performance of MISTIC is significantly higher (Mann-Whitney

P< 1.21 x 10−17) than the second-best tool, ClinPred, which has a median rank of 5 (mean

rank: 11.155 ± 19.760).
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Performance on real clinical cases from a myopathy cohort

Finally, to represent a clinical practice scenario, we compared the performance of MISTIC to

Eigen, PrimateAI, FATHMM-XF, ClinPred, M-CAP and REVEL, using 15 recently solved

clinical exomes from the French Myocapture cohort on congenital myopathies. After applying

the best-practice filtering procedures (See Material and Methods), the 1566 missense variants

per exome were scored by the prediction tools (S14 Table).

As for the simulated disease exomes, PrimateAI achieves the largest reduction of the list of

predicted deleterious variants (92.14% ± 2.19%), while MISTIC is the third best method

(82.68% ± 2.36%) (Fig 3C, and S14 Table). However, in terms of ranking of the causative vari-

ants, MISTIC has the best performance with a median rank of 12 (mean: 14.67 ± 12.35) in the

Myocapture exomes. M-CAP and REVEL were performed second-best with a median rank of

16 (M-CAP mean rank: 30.93 ± 32.59; REVEL mean rank: 31.07 ± 35.530). The ranking per-

formance of MISTIC is significantly different from M-CAP and REVEL (P < 0.045 and

P< 0.030 respectively).

Comparison of scores for deleterious and benign variants

To better understand the prediction behavior of MISTIC and the other tools, the score distri-

bution of all variants in the pooled deleterious (Del_EvalSet) and benign sets (Benign_EvalSet,

PopSpe_EvalSet) was visualized using violin plots (Fig 4, S3 Fig). Each tool provides a score

and an associated class (deleterious or benign) based on the recommended threshold given by

Fig 3. Evaluation of the different missense prediction tools using simulated and real disease exomes. A–Distribution of the percentage of predicted

deleterious variants in the simulated disease exomes. B–Ranking of the “causative” deleterious variants introduced in simulated disease exomes. C–

Distribution of the percentage of predicted deleterious variants on the exomes of the MyoCapture project. D–Ranking of the causative deleterious

variants identified in real congenital myopathy exomes from the MyoCapture project.

https://doi.org/10.1371/journal.pone.0236962.g003
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the authors (S4 Table). We therefore analyzed the score distributions for deleterious variants

and benign variants with a MAF (Fig 4), and observed that tools (Eigen, PrimateAI,

FATHMM-XF, ClinPred) that did not perform well (DOR value < 10) in our evaluation

experiments generally have a poor performance in classifying benign variants. Around 50% of

benign variants are misclassified as deleterious by these tools (44.8% for FATHMM-XF, 50.2%

for ClinPred and 50.3% for Eigen). For M-CAP (DOR value< 15), we observed that its inher-

ent hyper-sensitivity design (capacity to correctly categorize deleterious variants) comes at the

cost of a poor specificity and consequently 46% of benign variants are misclassified as deleteri-

ous. It should be stressed that misclassified variants (benign as deleterious and vice versa) will

contribute to the low resolution rate of exome analysis and to the generation of extended lists

Fig 4. Distribution of scores for deleterious and benign variants. The variants of the deleterious (Del_EvalSet) and benign sets with MAF

(Benign_EvalSet) were pooled and the distribution of the scores for deleterious and benign variants were represented using violin plots. Red area–

distribution of scores for deleterious variants. Green area–distribution of scores for benign variants. Black line–recommended threshold.

https://doi.org/10.1371/journal.pone.0236962.g004

PLOS ONE MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0236962 July 31, 2020 13 / 23

https://doi.org/10.1371/journal.pone.0236962.g004
https://doi.org/10.1371/journal.pone.0236962


of candidate variants, hence hindering the identification of the one or two “causative” deleteri-

ous variants.

Finally, we observed that MISTIC and REVEL both have a balanced sensitivity and specific-

ity, i.e. a balanced ability to correctly classify both deleterious and benign variants. MISTIC

misclassified 11% of the benign variants and 17% of the deleterious variants, while REVEL

misclassified 16% of benign variants and 27% of deleterious variants. The same tendency was

observed when comparing the distribution of variants without MAF (S3 Fig). This analysis

provides further demonstration of the balanced ability of MISTIC to discriminate between del-

eterious and benign variants in comparison to other tools.

Effect of MISTIC design on its performance

To understand how the different factors incorporated in the original design of MISTIC

(namely the Soft Voting system, the composition of the training set and the confidence in the

status of the associated variants) contribute to its high performance and best ranking capacity,

we generated different MISTIC models and compared their performance in the Del_EvalSet—

Benign_EvalSet and the Del_EvalSet—PopSpe_Evalset scenarios.

Several commonly used individual classification models were trained using the same proto-

col as previsouly described for MISTIC (S4 Fig). On the Del_EvalSet—Benign_EvalSet, the

Random Forest (RF) algorithm was the best model (mean AUC: 0.976 ± 0.004), followed by

the Ada Boost (AB) model (mean AUC: 0.973 ± 0.003) and the Logistic Regression (LR) model

(mean AUC: 0.954 ± 0.005). However, on the Del_EvalSet—PopSpe_Evalset, the LR model

was the best model (mean AUC: 0.959 ± 0.010), followed by the RF model (mean AUC:

0.956 ± 0.014) and the AB model (mean AUC: 0.948 ± 0.017).

We further explored the concordance between these three models on the data from the

evaluation scenarios (S5 Fig). Overall, on the Del_EvalSet—Benign_EvalSet data (S5A Fig),

there is more than 80% of concordance among all the models (82.86% on benign variants;

89.45% on deleterious variants). The concordance is even higher among the two tree-based

approaches (RF and AB models) with a concordance of 92.90% on benign variants and 92.21%

on deleterious variants. The major difference between the LR model and the RF model is that

it generated 11.62% more false positive deleterious predictions on benign variants with MAF.

However, on the Del_EvalSet—PopSpe_EvalSet data (S5B Fig), while there is a 94.92% concor-

dance among all models on deleterious variants, there is a concordance of only 10.68% for

benign variants without MAF. The concordance between the tree-based approaches (RF and

AB models) is of 99.44% on deleterious variants and 10.68% on benign variants. The AB

model generated 29.50% more false positive deleterious predictions on benign variants without

MAF. However, the concordance between the RF and the LR models is higher on benign vari-

ants without MAF, with a concordance of 40.18%. The LR additionally predicts 39.88% of true

negative benign variants, which were mispredicted by the RF model. Hence, to avoid an unbal-

anced voting system towards false positive predictions on benign variants without MAF, we

retained only the RF and the LR models in our Soft Voting system for MISTIC.

To investigate the contribution of the Soft Voting system (based on the weighted average of

the RF and the LR models), we compared the full MISTIC model using Soft Voting to the RF

and LR models in the different evaluation scenarious (S15 Table). The Soft Voting approach

has the most balanced performance on both evaluation sets (Del_EvalSet-Benign_EvalSet:

AUC of 0.969 and Del_EvalSet-PopSpe_EvalSet: AUC of 0.962). While the RF approach has

the highest sensitivity, its specificity dropped from 0.902 on Benign_EvalSet to 0.466 on Pop-

Spe_EvalSet. As for the LR approach, while it has also a balanced performance, its AUC and

DOR values were systematically lower than the Soft Vorting system on both scenarios. On
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average, over the two evaluation scenarios, the Soft Voting system has an improved perfor-

mance for F1 score by 4.355 ± 10.932% and specificity by 12.423 ± 31.833%.

To investigate the potential contribution of combining deleterious and benign sets with a

wide spectrum of variants in the training set, we compared the full MISTIC model to alterna-

tive models using a single source of deleterious variants (ClinVar only or HGMD only) or a

source of benign variants with a reduced spectrum of variants in terms of ethnic groups or

number of benign variants (UK10K or ClinVar). The full MISTIC model (using a training set

of deleterious variants from both ClinVar and HGMD) exhibits a small improvement of AUC

(1.223 ± 0.430%) compared to the models using only one source of deleterious variants (S16

Table). The source of benign variants had a greater impact on MISTIC performance (S17

Table), improving the AUC by 3.007 ± 3.026%, the Log Loss by 34.478 ± 22.739%, and the

specificity by 34.314 ± 33.585% compared to the models using either UK10K or ClinVar

benign variants only. This suggests that, although benign variants from curated databases such

as ClinVar can be useful for improving the machine-learning definition of deleterious variants,

these databases do not contain the full spectrum of benign variants that are present in popula-

tion databases. This is also true for the model using benign variants from the UK10K set,

which has a partial representation of the diverse ethnic groups.

Finally, to evaluate the impact of the high confidence training set, we compared the full

MISTIC model to a model in which no high-confidence filtering criteria was applied

(described in material and methods) for ClinVar variants (Pathogenic and Likely Pathogenic

CLNSIG status) and HGMD variants (DM and DM? variants). The results in S18 Table show

that the full MISTIC model using a high confidence training set increases the F1 score by

3.70 ± 0.97%, the Log Loss value by 31.95 ± 16.84%, and the specificity value by 8.83 ± 1.50%,

compared to the model without high confidence filtering.

Discussion

With the widespread use of exome analyses for the study of rare Mendelian diseases, the major

challenge hindering a complete transfer into routine clinical usage remains the interpretation

of the list of VUS to identify the one or two “causative” deleterious variants. The list of VUS

(mostly composed of missense variants) in unsolved exomes is generally too extensive to be

screened manually or via experimental assays. Consequently, several tools have been devel-

oped to distinguish deleterious and benign variants and hence prioritize candidate variants for

further validations assays. However, current solutions implement different strategies and can

have large variations in performance.

MISTIC is a prediction tool combining a voting system with two complementary algo-

rithms, which is dedicated specifically to the prediction of deleterious missense variants, in

contrast to some generalist prediction tools aimed at predicting different types of variants

(coding and noncoding) with diverse consequences (missense, nonsense, splice. . .). The per-

formance of MISTIC and the other prediction tools were benchmarked on different evalution

sets corresponding to diverse variant analysis scenarios ranging from evaluation of novel dele-

terious variants (ClinVarNew) and variants from different sources (DoCM), to rare benign

variants with (Benign_EvalSet) or without (PopSpe_EvalSet) MAF information. Our results

show that, in all the different evaluation scenarios, dedicated missense prediction tools (e.g.

ClinPred, REVEL, M-CAP, PrimateAI and MISTIC) perform better than generalist ones (e.g.

Eigen and FATHMM-XF). In this context, MISTIC exhibits the best performance compared

to the other dedicated prediction tools. The results were obtained via objective analyses using

independent evaluation sets (disjoint from the training set) to exclude any type I circularity

error and selecting only variants with a score available for all the tools tested. Nevertheless, it is
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important to note that the training sets of Eigen, ClinPred, M-CAP and REVEL were not read-

ily accessible, and we could not exclude overlapping variants in the evaluation sets. In some

cases, this might lead to an over-estimation of the performance for some tools. For instance,

this was potentially the case for ClinPred on the DoCM set, where it had a sensitivity value

of 1.

The improved performance of MISTIC can be attributed to the special care taken in its

design. We evaluated and showed the impact of the different original design elements on MIS-

TIC performance. First, this is, to our knowledge, the first usage of a combination of two dif-

ferent classes of machine-learning algorithms (Random Forest and Logistic Regression). In

contrast, the other prediction tools use a single algorithm (Eigen, PrimateAI, FATHMM-XF,

REVEL, M-CAP) or two similar ones (ClinPred uses two tree-based algorithms). Furthermore,

MISTIC exploits the two machine learning algorithms in a Soft Voting system with optimized

hyper parameters after a grid search with 20 iterations and 5 cross-validations. This synergic

design results in a balanced sensitivity and specificity ratio (Fig 4, S3 Fig, and S15 Table) and

thus a better classification of both deleterious and benign variants.

Second, MISTIC incorporates 113 features out of the initial 714 features, after a selection by

Recursive Feature Elimination. This reduced set of features is used to characterize missense

variants, ranging from the DNA level with the multi-ethnic MAF and evolutionary constraint

features, to the amino-acid level with physiochemical and biochemical property changes. Since

our training set is enriched in high confidence deleterious and benign variants, we expected

that informative weighted features for distinguishing rare deleterious variants from rare

benign variants could be identified. By studying the relative weights of the 113 features used by

the two algorithms, we observed that the most predominant features for the Random Forest

are the global MAF value and the MetaSVM score, while the MetaLR and VEST4 scores are

the most predominant ones for the Logistic Regression. Overall, the integration of these fea-

tures in two complementary machine algorithms may explain the overall best performance of

MISTIC for the discrimination of deleterious variants from benign variants.

The third improvement in MISTIC’s design is the constitution of its positive and negative

training sets. The existing missense prediction tools used only one source of deleterious vari-

ants for the training of their model, either HGMD Pro (FATHMM-XF, REVEL and M-CAP)

or ClinVar (ClinPred, Eigen). We showed that with a positive set composed of a wider spec-

trum of deleterious variants from multiple sources (ClinVar and HGMD Pro), MISTIC was

able to improve its AUC value by 1%, its specificity by 3% and its Log Loss value by 6% (S16

Table). Moreover, to reduce the impact of misclassified deleterious variants, only the highest-

confidence deleterious variants (with respect to each source) were used to train MISTIC, while

tools like ClinPred also included variants with a ‘likely pathogenic/deleterious’ status in their

training set. We showed that the use of a high-confidence positive set in MISTIC had the most

impact on performance, increasing the specificity and Log Loss values by 34% (S18 Table).

Concerning the negative training set, special attention was also taken to include a wide spec-

trum of rare benign variants from large control population databases. We also ensured that the

negative set was distinct from the positive set, by filtering all the variants already present in the

ClinVar and HGMD Pro databases, or other training sets (circularity error) in order to identify

informative predictive features for rare benign variants. Our results show that this strategy

improved MISTIC’s AUC value by 3% and its specificity by 34% (S17 Table). The same ten-

dency was observed for population specific variants, where other tools (REVEL, M-CAP)

trained on negative sets from control population databases performed better than tools trained

on a limited set of benign variants (e.g. ClinPred uses benign variants from ClinVar) (Fig 2C).

Taken together, the constitution of a high confidence training set, with sources representing a
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wider spectrum of variant profiles contributed to the performance of MISTIC in complex sce-

narios encountered in exome analyses.

The MAF feature, which is part of the ACMG recommendation, has previously been

shown to be a powerful factor for filtering benign variants and it is already integrated in the

other tools with various strategies. Hence, we construced evaluation scenarios using variants

with/without MAF and in both cases we demonstrated that MISTIC had the best perfor-

mance. MISTIC achieved an AUC improvement of 5% compared to the second-best per-

forming tool on variants with MAF (VarTest) and an AUC improvement of 6% on variants

without MAF.

Finally, in a context of routine clinical exome analysis, the major objective is to obtain a

limited list of VUS (major challenge in 70% of unsolved exomes) with prioritized candidate

variants that can be quickly screened experimentally with reasonable resources. The perfor-

mance of some prediction tools on the simulated disease exomes (1KG) and real clinical

exomes (MyoCapture) was contrasted with the previous evaluation results. Indeed, in the con-

text of an exome analysis, PrimateAI obtained the best performance in terms of the smallest

number of VUS (<20%), while M-CAP produced twice as many. However, in terms of ranking

the causative deleterious variants, MISTIC achieved the best ranking performance on the sim-

ulated disease exomes (P < 1.21E-17) and the same tendency was observed on the real clinical

exomes (P< 0.045). Taken together, these results illustrate that the balanced sensitivity and

specificity of MISTIC in the different scenarios can also be applied in a context of personalized

and precision medicine, in order to obtain a short list of prioritized candidate variants that is

amenable to expert screening with reasonable resources.

In conclusion, MISTIC is a novel tool for prediction of deleterious of missense variants,

based on a Soft Voting system of two complementary optimized supervised machine-learn-

ing algorithms. Among the 113 features integrated in MISTIC, multi-ethnic MAF are pre-

dominant for the classification of benign and deleterious variations. MISTIC consistently

outperforms recent state-of-the-art prediction tools in the different scenarios tested. Finally,

we provide a pre-computed score for all possible human missense variants (for canonical

transcripts on the genome version GRCh37) in order to facilitate usage and integration in

analysis pipelines. The source code of the method is available on the website http://lbgi.fr/

mistic.

Future improvements will include additional informative features, such as multi-ethnic

MAF from other population databases, genotype frequencies, and gene-based calibration of

the different scores. Moreover, our approach could be applied for the design of dedicated pre-

diction tools for other categories of variants, such as splice variants or non-coding variants, to

prepare the transition from exome to complete genome analyses.

Supporting information

S1 Fig. Selection of MISTIC features. The pruning of the initial 714 missense features was

performed using the Recursive Feature Elimination method for the Random Forest and Logis-

tic Regression models and the VarTrain set. The red dotted line indicates the cutoff for the

selected features in the final Soft Voting system.

(TIF)

S2 Fig. Relative normalized weights of the individual missense features integrated in MIS-

TIC. The histograms show the relative weights of the individual missense features for the Ran-

dom Forest and Logistic Regression models integrated in MISTIC. Key: MAF—minor allele

frequency, AFR—African American population, AMR—Latino American population,
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ASJ–Ashkenazi Jewish population, EAS—East Asian population, FIN—Finnish population,

NFE—Non-Finnish European population, SAS–South Asian population, CCRS—Con-

strained-Coding RegionS.

(TIF)

S3 Fig. Distribution of scores for deleterious and benign variants without MAF. The vari-

ants of the deleterious (Del_EvalSet) and benign sets (PopSpe_EvalSet) without MAF were

pooled and the distribution of the scores for deleterious and benign variants were represented

using violin plots. Red area–distribution of scores for deleterious variants. Green area–distri-

bution of scores for benign variants. Black line–recommended threshold.

(TIF)

S4 Fig. Performance of classifier models on data from the evaluation scenarios. Different

individual classifier models were evaluated for their ability to discriminate deleterious variants

from rare benign variants and population-specific missense variants. All classifier models were

evaluated using: A—Del_EvalSet-Benign_EvalSet corresponding to novel deleterious variants,

known deleterious variants from diverse sources and rare benign variants with MAF data

(<0.01, <0.005, <0.001, <0.0001, singleton). B—Del_EvalSet-PopSpe_Evalset corresponding

to novel deleterious variants, known deleterious variants from diverse sources and benign vari-

ants without MAF data.

(TIF)

S5 Fig. Concordance among classification models on data from the evaluation scenarios.

Binary predictions made by the 3 classification models for each benign or deleterious variant

in the Del_EvalSet, Benign_EvalSet and PopSpe_Evalset scenarios are shown in the upper and

lower panels. Each variant is represented by a row and a red or green tile depicts a deleterious

or benign prediction, respectively, by the corresponding classification model. A–Prediction of

the classification models for Del_EvalSet–Benign_EvalSet variants (1990 deleterious variants;

1990 benign variants). B–Prediction of the classification models for Del_EvalSet–PopSpe_E-

valSet variants (983 deleterious variants; 1062 benign variants).

(TIF)

S1 Table. List of missense features.

(XLSX)

S2 Table. Generation of VarData set for the training and testing of MISTIC. Different fil-

ters were applied in order to generate balanced positive set (high-confidence deleterious

variants) and negative set (benign variants). a–Selection of variants with a "Pathogenic" infor-

mation in the clinical significance (CLNSIG) INFO tag in ClinVar VCF file. b–Selection of at

least two-stars high-confidence variants with either ’criteria_provided’, ’_multiple_submitters’,

’reviewed_by_expert_panel’, ’practice_guideline’ or ’no_conflicts’ information in the clinical

review status (CLNREVSTAT) INFO tag in ClinVar VCF file. c–Selection of high-confidence

missense variants with a Disease-Mutation (DM) STATUS INFO tag in HGMD Pro VCF file.

d–Selection of missense variants with a depth coverage > 30X and absent from ClinVar and

HGMD Pro databases. e–Filtering of variants that overlap any of the training set variants of

SIFT, PolyPhen-2, Condel, VEST4, CADD, MetaLR/MetaSVM.

(XLSX)

S3 Table. Generation of evaluation sets for the benchmark of prediction tools. N/A: Not

Applicable. �: Mean value per exome.

(XLSX)
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S4 Table. List of recommended thresholds used for the prediction tools. �—There was no

recommended threshold for Eigen. Hence, by default the threshold of Eigen was set to 0. N/A:

Not Applicable.

(XLSX)

S5 Table. List of metrics used to compare the performance of the prediction tools.

(XLSX)

S6 Table. Selection of features for MISTIC models. The features for the Random Forest and

the Logistic Regression models, integrated in the MISTIC Soft Voting system, were selected

after applying a Recursive Feature Elimination method.

(XLSX)

S7 Table. List of grid-searched optimized hyper-parameters for the Soft Voting systems of

MISTIC. These values were obtained after 20 iterations and 5 cross-validations.

(XLSX)

S8 Table. Features integrated in the Soft Voting system of MISTIC. The cells highlighted in

green correspond to the most important features for each algorithm.

(XLSX)

S9 Table. Benchmark metrics of missense prediction tools on VarTest set. Best scores are in

bold.

(XLSX)

S10 Table. Benchmark of prediction tools on ClinVarNew deleterious missense variants

and BenignEvalSet rare benign missense variants. Best scores are in bold.

(XLSX)

S11 Table. Benchmark of prediction tools on DoCM deleterious missense variants and

BenignEvalSet rare benign missense variants. Best scores are in bold.

(XLSX)

S12 Table. Benchmark of prediction tools on deleterious sets of missense variants and pop-

ulation-specific benign missense variants. Best scores are in bold.

(XLSX)

S13 Table. Evaluation of missense prediction tools on simulated disease exomes. The p-

value results from the statistical test comparing the results of MISTIC to other prediction

tools. The best performances are in bold. N/A: Not Applicable.

(XLSX)

S14 Table. Evaluation of prediction tools on real clinical exomes from the MyoCapture

project. The best performances are in bold.

(XLSX)

S15 Table. Evaluation of the contribution of the Soft Voting system in the performance of

MISTIC. The best performances are in bold.

(XLSX)

S16 Table. Evaluation of the contribution of the source of deleterious variants in the per-

formance of MISTIC. The best performances are in bold.

(XLSX)
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S17 Table. Evaluation of the contribution of the source of benign variants in the perfor-

mance of MISTIC. The best performances are in bold.

(XLSX)

S18 Table. Evaluation of the impact of the high confidence training set of deleterious vari-

ants on the performance of MISTIC. The best performances are in bold.

(XLSX)
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