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Gremlin-1 augments the oestrogen-related receptor α signalling
through EGFR activation: implications for the progression
of breast cancer
Sin-Aye Park1, Nam Ji Sung1, Bae-Jung Choi2, Wonki Kim2, Seung Hyeon Kim2 and Young-Joon Surh 2,3,4

BACKGROUND: Gremlin-1 (GREM1), one of the bone morphogenetic protein antagonists, is involved in organogenesis, tissue
differentiation and kidney development. However, the role of GREM1 in cancer progression and its underlying mechanisms remain
poorly understood.
METHODS: The role of GREM1 in breast cancer progression was assessed by measuring cell viability, colony formation, 3D tumour
spheroid formation/invasion and xenograft tumour formation. Chromatin immunoprecipitation, a luciferase reporter assay and flow
cytometry were performed to investigate the molecular events in which GREM1 is involved.
RESULTS: GREM1 expression was elevated in breast cancer cells and tissues obtained from breast cancer patients. Its
overexpression was associated with poor prognosis in breast cancer patients, especially those with oestrogen receptor (ER)-
negative tumours. GREM1 knockdown inhibited the proliferation of breast cancer cells and xenograft mammary tumour growth,
while its overexpression enhanced their viability, growth and invasiveness. Oestrogen-related receptor α (ERRα), an orphan nuclear
hormone receptor, directly interacted with the GREM1 promoter and increased the expression of GREM1. GREM1 also enhanced the
promoter activity of ESRRA encoding ERRα, comprising a positive feedback loop. Notably, GREM1 bound to and activated EGFR, a
well-known upstream regulator of ERRα.
CONCLUSIONS: Our study suggests that the GREM1–ERRα axis can serve as a potential therapeutic target in the management of
cancer, especially ER-negative tumour.

British Journal of Cancer (2020) 123:988–999; https://doi.org/10.1038/s41416-020-0945-0

BACKGROUND
Breast cancer is one of the most frequent causes of cancer-related
death among women worldwide. Although the current treat-
ments for breast cancer have been substantially improved, the
majority of patients still experience severe side effects, ther-
apeutic resistance and tumour metastasis.1,2 Determination of the
oestrogen receptor (ER) status of breast carcinomas is essential
for defining therapeutic procedures, and ER is considered as a
successful target for the treatment of ER-positive breast cancer.
In contrast, ER-negative breast tumours do not have definitive
molecular targets and show poor prognosis compared to ER-
positive tumours.3,4 Thus, more effective targeted therapeutics
need to be developed in the management of ER-negative breast
cancer.
Gremlin-1 (GREM1) is a member of the cystine knot superfamily

and a bone morphogenetic protein (BMP) antagonist.5,6 GREM1
plays a critical role in embryogenesis, organ development and
tissue differentiation through regulation of BMPs.7,8 In addition,
GREM1 has been involved in diverse pathological conditions,
such as renal9,10 or pulmonary fibrosis,11,12 renal inflammation13,14

and diabetic kidney disease15,16 in BMP-dependent or -indepen-
dent manners. Above all, GREM1 is well known to induce fibrosis
of organs, which requires the epithelial–mesenchymal transition
(EMT) process.9,17

Since EMT is an important step in cancer metastasis,18 its
induction by GREM1 may affect tumour progression. GREM1 is
overexpressed in human tumours, including carcinomas of the
colon, lung, ovary, sarcoma, and pancreas.19–21 According to
multiple microarray-based studies, the level of the GREM1 gene
expression was found to be highly elevated in breast tumours
and tumour stroma.4,22–25 However, the functions of GREM1 in
breast cancer progression and underlying mechanisms remain
largely unresolved.
Oestrogen-related receptor α (ERRα) is an orphan nuclear

hormone receptor with no known endogenous ligand. Despite a
high degree of similarity between ERRα and the ERα, the activity of
these two receptors is regulated by distinct molecular mechan-
isms.26 ERRα interacts with nuclear receptor co-activators, such as
proliferator-activated receptor γ coactivator 1 (PGC-1), without
binding to a natural oestrogen.27,28 The results of chromatin
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immunoprecipitation (ChIP) combined with microarray analysis
showed that most of the genes regulated by ERRα were distinct
from those regulated by ERα.29

ERRα has been identified as a potent prognostic factor30 and a
therapeutic target31 in human breast cancer. ERRα has been
reported to modulate breast cancer cell metabolism, growth, and
proliferation through regulation of multiple oncoproteins.26,32

ERRα is especially critical for the growth of ER-negative33 or triple
(ER, progesterone receptor, and HER2/neu)-negative breast
cancer cells.34,35 The transcriptional activity of ERRα in breast
cancer is known to be regulated by receptor tyrosine kinases,
such as ERBB2, commonly referred to as HER2,36 and also by
epidermal growth factor receptor (EGFR). 26

Herein, we report the oncogenic role of GREM1 in breast cancer
growth and progression. Notably, GREM1 induces transcriptional
activity of ERRα through EGFR activation, which in turn
upregulates GREM1 expression.

METHODS
Cells and reagents
MCF-10A, MCF-10A-ras, MDA-MB-453, MDA-MB-468, SKBR3,
MCF-7, T47D, and CCD-1068sk cells were originally obtained
from American Type Culture Collection, and the BT474 cell line
was obtained from Korean Cell Line Bank. The cells were
cultured according to the standard procedure and maintained at
37 °C in a humidified atmosphere composed of 5% CO2/95% air.
GREM1 antibody was purchased from Abcam and recombinant
human GREM1 was obtained from R&D systems. Recombinant
human EGF, anti-Flag antibody and cell linker kits (PKH26 and
PKH67) were purchased from Sigma-Aldrich. Anti-ERRα, anti-p-
EGFR/EGFR, anti-p-Akt/Akt, anti-p-ERK/ERK antibodies and erlo-
tinib were obtained from Cell Signalling Technology. Expression
plasmids of GREM1, ERRα, Flag-only, Flag-EGFR, and Flag-BMP2
were purchased from Sino Biological Inc. Fc-IgG1 and Fc-GREM1
were provided by ACROBiosystems. The lentiviral GREM1 clone
was obtained from Genecopoeia. 3xERRE-luciferase, pcDNA4-
myc-PGC-1α, EGFR-WT, EGFR-ECD and EGFR-ICD were provided
by Addgene. XCT790, LY294002 and U0126 were purchased
from Tocris.

Gene silencing
Endogenous ERRα was knocked down using specific small
interfering RNAs (siRNAs) (Life Technologies, Assay ID# 289481
and 5089). Briefly, cells were transiently transfected with siRNAs
by reverse transfection using Lipofectamine RNAiMAX (Life
Technologies). Two TRC lentiviral GREM1 short hairpin RNAs
(shRNAs) (TRCN0000063834 and TRCN0000063837) and shCon-
trol (shCtrl; TRC ID# SHC002) were obtained from Dharmacon,
and the lentiviruses were packaged in 293 T cells. The cells
were transiently transfected with shRNA vector together with
pCMV-VSV-G and pCMV-dR8.91 using Lipofectamine 2000 (Life
Technologies). After transfection for 72 h, the viral supernatant
was collected, filtered and used for the transduction of breast
cancer cells in the presence of 8 μg/ml polybrene (Merck
Millipore). Stable cells were selected by 1 μg/ml puromycin
(InvivoGen).

Cell proliferation assay
Cells were plated in 96-well plates (2 × 103/well) and incubated for
3 days. The cells were then treated with MTT (0.5 mg/ml) for 4 h at
37 °C, and 100% dimethyl sulfoxide was added to dissolve the
crystals. Viable cells were counted by reading the absorbance at
570 nm using a microplate reader SpectraMax (Molecular Devices).
For the colony formation assay, 2 × 103 cells were plated in the 6-
well plates and allowed to grow for 7 to 10 days. After the medium
was removed, cells were fixed with 10% formalin for 15 min, and
stained with crystal violet to visualise the colonies.

Quantitative real-time PCR
Total RNA was isolated from cells using TRIzol® (Invitrogen).
Reverse transcription of total RNA was performed using the
M-MLV reverse transcriptase (Promega). Quantitative PCR (qPCR)
was performed using qPCR reagents (Nanohelix) and 7500 Real-
Time PCR (Applied Biosystems). Primer sequences are listed in the
Supplementary Table S1.

Western blot analysis
Standard sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and Western blotting procedures were
used to analyse the expression of various proteins. Cell lysates
were prepared using SDS lysis buffer (50 mM Tris-HCl, pH 6.8, 2%
SDS, 10% glycerol, and 0.02% bromophenol blue) containing
protease inhibitors and phosphatase. All proteins were visua-
lised using a horseradish peroxidase-conjugated secondary
antibody (GE Healthcare Life Sciences) and AbSignal detection
reagents (AbClone).

3D tumour spheroid formation assay
First, breast fibroblast CCD-1068sk cells and breast cancer SKBR3
cells were labelled with a green and a red fluorescent cell linker
(Sigma-Aldrich), respectively. Labelled cells (2 × 103 cells/well)
were combined, seeded, and incubated in 3D hanging-drop 96-
well plates for 5 days. The spheroids were visualised under the
fluorescence microscope, and their sizes were quantified.

3D tumour spheroid invasion assay
The cells containing spheroid formation extracellular matrix were
seeded in the 3D culture qualified 96-well spheroid formation
plate (CULTREX). After incubation for 3 days, the invasion matrix
and medium containing 20% foetal bovine serum (FBS) alone,
20% FBS with EGF (50 ng/ml) or 20% FBS with GREM1 (50 ng/ml)
were added. The mixtures were incubated for additional 7 days,
and the invasion of spheroids was observed under the micro-
scope. The obtained images were analysed using the ImageJ
software as described by the manufacturer.

ChIP assay
The SimpleChIP Enzymatic kit (Cell Signalling) was used as
described by the manufacturer. PCR was performed with primers
specific for the indicated promoter regions. The reactions were run
in triplicate, and 1% of the total input sample was used as a
control. Primer sequences are listed in the Supplementary
Table S2.

Luciferase reporter gene assay
Cells were plated in 24-well plates for 24 h and co-transfected with
expression plasmids of ERRα and PGC-1α as well as 3xERRE-
luciferase and Renilla-luciferase construct using Lipofectamine
2000 for additional 48 h. Luciferase reporter gene assays were
performed using the Dual-Luciferase Reporter Assay System
(Promega) according to the manufacturer’s instructions.

Immunofluorescence staining
For staining fixed paraffin-embedded tissues, a standard protocol
for deparaffinization, antigen retrieval, and permeabilisation was
followed. The tissues were incubated overnight with anti-GREM1
antibody at 4 °C, washed with phosphate-buffered saline (PBS),
and incubated further with Alexa Fluor 488 antibody (Invitrogen)
for 1 h at room temperature. After washing, the tissues were
stained using ProLong® Gold Antifade Reagent containing DAPI
(4′,6-diamidino-2-phenylindole; Invitrogen).

Flow cytometry
HEK293 cells were transiently transfected with Flag alone,
Flag-EGFR or Flag-BMP2 for 48 h, followed by incubation with
Fc-IgG1 (Fc-control) or Fc-GREM1 (3 μg/ml, each) for 1 h at 4 °C.
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After washing with PBS, the cells were incubated with 2 μg/ml
of Alexa Fluor 647 goat anti-human IgG antibody (Life
Technologies) for 30 min at 4 °C. After washing with PBS, the
cells were passed through cell strainer to eliminate clumps. Flow
cytometry was performed using a FACS Canto II instrument (BD
Biosciences).

Immunoprecipitation assay
HEK293 cells were transiently transfected with Flag alone,
Flag-EGFR, or Flag-BMP2 for 48 h, followed by incubation with
Fc-IgG1 (Fc-control) or Fc-GREM1 (100 ng/ml, each) for addi-
tional 1 h at 37 °C. Cell lysates were prepared with IP Lysis Buffer
(Thermo Scientific) and subjected to immunoprecipitation using
anti-Flag antibody with conjugated protein A/G PLUS-agarose
(Santa Cruz Biotechnology). Immune complexes were subjected
to Western blot analysis and detected with anti-Fc antibody
(Jackson ImmunoResearch Laboratories).

Animal study
Female BALB/c (nu/nu) athymic nude mice, 5 weeks of age
(weight 17–19 ± 1–2 g), were purchased from Orient Bio Inc. Mice
were maintained in specific pathogen-free conditions: 20–24 °C,
12/12 h of dark/light cycle, 60 ± 5% of humidity, and plastic cage
(3–4 mice/cage). Bedding materials were changed every week,

and environmental enrichment was done with sterile materials. All
animal experiments were approved by the Institutional Animal
Care and Use Committee of the Seoul National University Ethics
Research Board (Permit number: SNU-170511-1-1). To minimise
the number of mice and the effects of subjective bias when
injecting cells into mice and evaluating the results, two different
cell lines (7 × 106 cells/flank) were inoculated subcutaneously into
the right and left dorsal flanks of female nude mice after isoflurane
inhalation anaesthesia. Animals were assigned to groups after
randomisation. Experimental groups are as follows: six mice of
SKBR3-shCtrl (left flank) and SKBR3-shGREM1 (right flank); four
mice of SKBR3-mock (left flank) and SKBR3-GREM1 (right flank).
Tumour volume (0.52 × length × width2) and body weights were
measured three times a week. At the end of the experiments, mice
were euthanized by CO2 inhalation and each tumour was
removed.

Statistical analysis
Data were expressed as the mean ± SD of the results obtained
from at least three independent experiments. Independent-
sample two-sided Student’s t test was used to compare two
groups with normal distribution data and a P value of <0.05 was
considered to be statistically significant. *P < 0.05, **P < 0.01, and
***P < 0.001.
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RESULTS
GREM1 is overexpressed in human breast cancer, which is
associated with worse survival of breast cancer patients
As an initial approach to assess a role of GREM1 in breast cancer
development, we first examined the level of GREM1 in some
transformed or cancerous human breast cell lines as compared to
non-cancerous human breast epithelial cells (MCF-10A). The
protein expression of GREM1 was found to be markedly elevated
in breast cancer cell lines, particularly ER-negative ones, including
MDA-MB-468, MDA-MB-453 and SKRB3 cells (Fig. 1a). We next
utilised a cell line database (Expression Atlas, https://www.ebi.ac.
uk/gxa/home) to compare the expression of GREM1 among
multiple breast cancer cell lines. Among the 69 breast cancer cell
lines, the ER-negative cell lines were 48 and ER-positive cell lines
were 21. In this database, the level of GREM1 expression in each
cell line was analysed by Transcripts Per Million unit, and the
proportion of cell lines in which GREM1 expression was
significantly upregulated was 45.83% (22/48) for ER-negative cell
lines, but 0% (0/21) for ER-positive cell lines (Supplementary Excel
File 1). Extracellular GREM1 was detected in the collected
conditioned media from control breast cancer cells (MDA-MB-
453-shCtrl and SKBR3-shCtrl), while it was undetectable in GREM1-
depleted cells (MDA-MB-453-shGREM1 and SKBR3-shGREM1). In
addition, the level of extracellular GREM1 secretion was increased
in non-cancerous human mammary epithelial MCF-10A cells

overexpressing GREM1 (MCF-10A-GREM1) compared to control
MCF-10A cells (Supplementary Fig. S1).
To determine the clinical relevance of GREM1 expression to

breast cancer progression, we used the Oncomine database.
GREM1 expression was significantly elevated in invasive or ductal
breast carcinoma in situ compared to normal tissues in two data
sets, TCGA Breast and Ma Breast 422 (Fig. 1b). However, the
Oncomine results showed no significant difference in GREM1
expression between ER-negative and ER-positive patients (Sup-
plementary Fig. S2). Immunofluorescence staining of human
breast cancer tissue microarrays showed that GREM1 was
overexpressed in ER-positive and ER-negative breast cancer
tissues compared to normal breast tissues (Fig. 1c). Fluorescence
intensity for each stain was measured and analysed quantitatively
(Supplementary Table S3). Of note, the overexpression of GREM1
was associated with reduced overall survival (OS), especially in ER-
negative breast cancer patients (GREM1 low vs. high expression
patients: hazard ratio (HR) of survival= 1.77, 95% confidence
interval (CI): 0.99–3.14, P= 0.05) (Fig. 2a). The GREM1 messenger
RNA (mRNA) level was also closely associated with worse relapse-
free survival (RFS, GREM1 low vs. high expression patients: HR of
survival= 1.6, 95% CI: 1.25–2.05, P= 0.00019) (Fig. 2b) and distant
metastasis-free survival (DMFS, GREM1 low vs. high expression
patients: HR of survival= 1.99, 95% CI: 1.17–3.37, P= 0.0092)
(Fig. 2c) in ER-negative breast cancer patients. However, the level
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of GREM2, a paralog of GREM1, was not associated with OS, RFS
and DMFS in breast cancer patients (Supplementary Fig. S3). These
data suggest that abnormal upregulation of GREM1 is closely
related to the mortality of patients with ER-negative breast cancer.

GREM1 contributes to the oncogenicity of breast cancer cells
Next, we investigated the role of GREM1 in the growth of breast
cancer cells. For this purpose, we utilised the lentiviral shRNA
system to establish stable cell lines in which GREM1 expression
was inhibited. GREM1 knockdown significantly suppressed the
viability (Fig. 3a) and the colony formation (Fig. 3b) of multiple
ER-negative human breast cancer cell lines as well as H-ras-
transformed human mammary epithelial cells. In addition, we
performed a GREM1 rescue experiment with the MDA-MB-453
breast cancer cell line to ensure that the effect of shGREM1 was
not due to the off-target effect. As shown in Supplementary Fig.
S4, the 72-h viability of GREM1-knockdown MDA-MB-453-
shGREM1 cells was 53.2%, compared to that of the control cells
(shCtrl). When GREM1 was overexpressed in shGREM1 cells, the
survival rate was significantly restored (Supplementary Fig. S4).
However, GREM1 knockdown had little effect on the viability of
non-cancerous breast epithelial MCF-10A cells (Supplementary

Fig. S5a, b). The 3D tumour spheroid analysis showed that the
sizes of the spheroids formed by co-culturing CCD-1068sk breast
fibroblasts and SKBR3-shGREM1 breast cancer cells were much
smaller than those of the spheroids formed by co-culturing CCD-
1068sk and SKBR3-shCtrl cells (Fig. 3c). Ectopic expression of
GREM1 in ER-positive MCF-7 and T47D cells resulted in increased
viability as compared to mock vector-transfected control cells
(Fig. 3d). In contrast, silencing of GREM1 expression in the ER-
positive T47D cell line also decreased the cell viability
(Supplementary Fig. S5c, d), but not as much as that achieved
in ER-negative cell lines.
The invasive capability of the spheroids derived from GREM1-

silenced SKBR3 breast cancer cells co-cultured with CCD-1068sk
breast fibroblasts was significantly reduced compared to that of
the spheroids formed by co-culture of CCD-1068sk and control
breast cancer (SKBR3-shCtrl) cells (Fig. 3e). Conversely, direct
treatment with human recombinant GREM1 protein enhanced
the invasiveness of SKBR3 cells to the extent equivalent to
that achieved with EGF, which was included as a positive control
(Fig. 3f). The protein expression levels of GREM1 in all cell
lines used in the entire experiments are shown in Supplemen-
tary Fig. S6.
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After the role of GREM1 in proliferation and invasiveness of
transformed or cancerous human breast epithelial cell lines was
confirmed, the effect of GREM1 on tumour formation in vivo
was investigated in a xenograft mouse model. BALB/c athymic
nude mice received the subcutaneous injection of control, GREM1-
silenced or GREM1-overexpressing SKBR3 breast cancer cells.
Tumours were excised 3 weeks after breast cancer cell inoculation,
and their images were photographed (Fig. 3g, h). GREM1-
knockdown cells showed much lower tumour growth rates than
control cells with dramatic reduction in the tumour volume [mean
± SD (mm3): 790.412 ± 219.830 (SKBR3-shCtrl) vs. 97.782 ± 27.008
(SKBR3-shGREM1), 6 xenografts/each cell line] (Fig. 3i), whereas
overexpression of GREM1 resulted in significantly increased

tumour volume [mean ± SD (mm3): 304.496 ± 65.917 (SKBR3-
mock) vs. 559.187 ± 137.707 (SKBR3-GREM1), 4 xenografts/each
cell line)] (Fig. 3j). During the experiment, the body weights of the
mice did not differ significantly between groups, and no subjects
significantly lost their weight. Taken together, these findings
clearly demonstrate that GREM1 is essential for the growth and
progression of breast cancer cells.

ERRα binds to the GREM1 promoter and regulates GREM1
expression
In a subsequent study, we examined the promoter sequences of
GREM1 to identify a transcription factor responsible for regulating
its expression. For this purpose, we sorted the transcription factors
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that are likely to bind to the promoter of the human GREM1 gene
by searching for the target gene databases (Supplementary Excel
File 2). Of the candidate transcription factors identified, we
focused on ERRα (gene name, ‘ESRRA’) because of its crucial role in
growth of ER-negative breast cancer.33 We were able to identify
several putative ERRα binding motifs on the promoter of GREM1
gene within the 1 kb region from the transcription start site (+1)
(Fig. 4a). Similar to GREM1, the level of ESRRA was higher in ER-
negative breast cancer cells than in ER-positive ones as well as
non-oncogenic MCF-10A cells (Fig. 4b). To determine whether
ERRα could directly bind to the human GREM1 promoter, the ChIP
assay was performed by immunoprecipitation with ERRα antibody
and IgG as a negative control. The sequences of ERRα putative
binding sites used in the ChIP analysis are provided in Supplemen-
tary Table S4. As illustrated in Fig. 4c, only the primer set that covers
the binding motif ‘a’ (+62 to +84) exhibited strong ERRα interaction
with the GREM1 promoter in both MDA-MB-453 and SKBR3 cells, but
there was no ERRα binding observed in the other sites (b–d). More
importantly, deletion of the ‘a’ motif [pGL3-GREM1 (b+ c+ d)-luc]

abolished the GREM1 promoter activity, whereas the construct
[pGL3-GREM1 (a)-luc] harbouring only the ‘a’ element had the
activity similar to that of the pGL3-GREM1 WT-luc (Fig. 4d). These
results suggest that ERRα preferentially binds to this specific site,
thereby regulating the expression of GREM1.
XCT790 is a potent and specific antagonist of ERRα capable of

inhibiting the constitutive activity of ERRα. Treatment with
XCT790 significantly reduced the mRNA level of GREM1 as well
as that of KLK3, one of the ERRα target genes, in MDA-MB-453 and
SKBR3 breast cancer cells (Fig. 4e). The effective concentration
(10 μM) of XCT790 significantly reduced both expression of GREM1
and viability of these breast cancer cells (Supplementary Fig. S7a).
In line with above findings, the mRNA (SupplementaryFig. S7b)
and protein (Fig. 4f) expression levels of GREM1 were also reduced
by siRNA silencing of ESRRA encoding ERRα.
Conversely, overexpression of ERRα greatly enhanced the mRNA

level of GREM1 in MCF-7 and T47D cells (Fig. 4g). ERRα
overexpression also increased the protein expression of GREM1
in SKBR3 cells (Supplementary Fig. S7c). Altogether, these data
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suggest that ERRα is a potent transcriptional regulator of GREM1
and that GREM1 is a novel target gene of ERRα.

GREM1 activates EGFR signalling
We then determined whether GREM1 expression, regulated by
ERRα, could stimulate receptors involved in breast cancer cell
growth. We focused on EGFR, the upstream regulator of ERRα.
Treatment of SKBR3 cells with GREM1 protein induced phosphor-
ylation of EGFR, especially at Tyr1068, and its major target
proteins, Akt and ERK, in SKBR3 cells (Fig. 5a). The GREM1-induced
activation of EGFR through phosphorylation at Tyr1068 was
concentration-dependent (Fig. 5b). In addition, the activation of
EGFR and its downstream signalling molecules via phosphoryla-
tion was significantly enhanced in GREM1-overexpressing cells
compared to that in control cells (Fig. 5c). The GREM1-induced
phosphorylation of ERK and Akt as well as that of EGFR was
attenuated by treatment with erlotinib, an EGFR tyrosine kinase
inhibitor (Fig. 5d).
To determine whether GREM1 could bind to EGFR, HEK293 cells

containing Flag-tagged EGFR were incubated with recombinant
Fc-IgG1 control or Fc-GREM1 protein. As shown in Fig. 5e, Fc-
GREM1, but not Fc-control protein, bound strongly to the surface
of HEK293 cells overexpressing EGFR, as demonstrated by flow

cytometry. Notably, the GREM1 binding to EGFR (11.6%) was as
strong as the binding to the positive control, BMP2 (13.4%), and
this binding was far more pronounced than that in the negative
control group (Flag-only:Fc-GREM1, 2.42%) (Fig. 5e). The interac-
tion between GREM1 and EGFR was verified by the immunopre-
cipitation assay (Fig. 5f). Taken together, these findings suggest
that GREM1 may act as a ligand for EGFR, thereby stimulating the
proliferation and growth of breast cancer cells.

GREM1 enhances the transcriptional activity of ERRα via EGFR
signalling
After finding that GREM1 bound to and activated EGFR, we
speculated that GREM1 could increase ERRα activity through
activation of the EGFR signalling. In support of this postulation, the
breast cancer cell lines overexpressing GREM1 had significantly
higher transcriptional activity of ERRα than the respective control
cell lines (Fig. 6a). Like ERRα activity, the mRNA levels of ERRα
target genes, KLK3, ENO1 or TAPBPL, were also significantly
elevated in GREM1-overexpressing breast cancer cells (Fig. 6b
and Supplementary Fig. S8a). Upon treatment with recombinant
GREM1 protein in MCF-7 cells, the expression of ERRα target
genes, ENO1 and TAPBPL, was markedly augmented (Fig. 6c). In
addition, transient transfection of MCF-7 cells with the GREM1
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expression plasmid enhanced the mRNA levels of the ERRα target
genes, and these effects were attenuated by the ERRα antagonist,
XCT790 (Fig. 6d). The expression of KLK3 and TAPBPL was also
significantly inhibited in GREM1-knockdown cells compared to
control cells, but the expression levels of ENO1 were variable
among samples (Supplementary Fig. S8b).
To further determine whether GREM1 could increase the ERRα

transcriptional activity through activation of the EGFR signalling
pathway, we measured the effects of the respective inhibitors of
ERRα, EGFR, Akt and ERK, on the ERRα transcriptional activity
increased by GREM1. First, ERRα activity was significantly
elevated in SKBR3 cells overexpressing GREM1, which was
suppressed by all tested inhibitors (Fig. 6e). Likewise, direct
treatment with recombinant GREM1 protein increased the ERRα
transcriptional activity in MCF-7 cells as much as that exerted by
the positive control EGF, and this was reduced by each inhibitor
(Fig. 6f). As shown in Fig. 6g, the inhibitors significantly

decreased mRNA levels of the ERRα target genes in SKBR3 cells
overexpressing GREM1. Further, the ligand domain of EGFR
(EGFR-ECD) and the intracellular domain of EGFR (EGFR-ICD)
were insufficient for GREM1 to increase the activity of ERRα
and the direct interaction between GREM1 and EGFR-WT
played a crucial role in ERRα activation (Fig. 6h). Overall, these
results demonstrate that GREM1, as a novel target of ERRα, can
potentiate ERRα activity through EGFR activation (Supplemen-
tary Fig. S9).

DISCUSSION
In this study, we found a novel function of GREM1 as an oncogenic
protein in breast cancer growth and progression. There is
evidence supporting that the aberrant overexpression of epithelial
GREM1 is involved in colon cancer development and progres-
sion,21,37 but the role of GREM1 in pathogenesis of breast cancer
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remains elusive. Our present study demonstrates that GREM1
plays an important role in the growth of breast cancer cells, and
the persistent upregulation of GREM1 is associated with poor
prognosis in breast cancer patients. We noticed higher expression
of GREM1 in ER-negative cells than in ER-positive cells. Based on
this observation, we speculate that expression of GREM1 is
thought to have a greater effect on cell survival or patient

prognosis of ER-negative breast cancer, although expression of
GREM1 may affect ER-positive breast cancer cell lines and patients.
So far, very limited studies have clarified the mechanisms by
which GREM1 is induced or how GREM1 affects cancer cell
proliferation and growth. Tumour growth factor-β has been
reported to increase the expression of GREM1,38 and more
recently, reactive oxygen species-induced activation of nuclear
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factor-κB signalling has been reported to upregulate the expres-
sion of GREM1.39 In this study, we analysed the promoter
sequences of GREM1 and identified ERRα as an important
transcription factor responsible for GREM1 expression. ERRα has
been known to be essential for the growth of ER-negative breast
cancer cells33 and hence has attracted attention as a therapeutic
target in triple-negative breast cancer.34,40,41

GREM1 was initially known as a BMP antagonist and has been
reported as a new agonist of the pro-angiogenic receptor, vascular
endothelial growth factor receptor-2 (VEGFR2).42 GREM1 binds
directly to VEGFR2 and activates the VEGFR2 signalling pathway in
cultured tubular epithelial cells and renal fibroblasts.13 However,
GREM1 has also been found to stimulate cancer cell proliferation,
migration and invasion in a BMP- or VEGFR2-independent
manner.20 GREM1 has a cystine knot structure comprising three
disulfide bridges,43 suggesting that it is likely to act as a new
ligand for distinct growth factor receptors. In the present study,
we demonstrated that GREM1 physically interacted with EGFR in
breast cancer cells and thereby activates EGFR signalling. Since
EGFR is one of the important upstream regulators of ERRα
transcriptional activity,26,44 GREM1 may also potentiate ERRα
activity through its interaction with EGFR. Thus, as one of the
target genes of ERRα, GREM1 can again activate the EGFR–ERRα
axis and eventually functions as an enhancer or an amplifier for
the expression of genes involved in cancer cell growth and
proliferation.
As our results show, GREM1 can activate various intracellular

signalling molecules such as ERK and Akt involved in cancer cell
proliferation and survival. GREM1 was reported to mediate
hyperplasia and the invasiveness of rheumatoid arthritis synovio-
cytes through activation of ERK and Akt.45 GREM1 activates Akt
signalling to promote proliferation, migration and VEGF produc-
tion in retinal pigmentation epithelial cells.46 In addition, GREM1
activates Smad9 or Slug47,48 to facilitate EMT and cancer cell
growth. Thus, overexpression of GREM1 in cancer cells is likely to
accelerate their growth and metastasis by activating distinct
oncogenic pathways.
GREM1 is widely expressed in tumour-associated stromal cells

and can promote cancer cell proliferation in the tumour
microenvironment.49 Thus, GREM1 is one of the most over-
expressed genes in breast tumour-associated stroma,22 and its
level is increased in cancer-associated fibroblasts (CAFs) in basal
cell carcinomas.50 More recently, it has been reported that CAF-
derived GREM1 promotes breast cancer cell invasion.51 Since the
importance of tumour-associated stromal cells in cancer therapy
has been increasingly recognised,52,53 further studies are needed
to precisely assess the role of GREM1 in interaction between
cancer cells and tumour-associated stromal cells, such as CAFs and
tumour-associated macrophages.
It was reported that antibody neutralisation of GREM1

ameliorated pulmonary hypertension in mice.54 MicroRNA-27b
inhibits GREM1 expression by directly binding to the 3′-
untranslated region of GREM1, leading to inhibition of fibrosis
in pulmonary cells,55 and microRNA-137 negatively regulates
GREM1 expression in cervical cancer cells.56 However, there is
paucity of data demonstrating the anti-carcinogenic effects of
GREM1 inhibitors. Therefore, development of chemical or
biological agents to selectively targeting the aberrantly over-
activated GREM1–ERRα axis merits further investigation in the
context of their potential application for the treatment of breast
cancer.
In conclusion, we, for the first time, report that GREM1 is a direct

target gene of ERRα. Once expressed by ERRα, GREM1 activates
EGFR, the ERRα upstream regulator, and ultimately augments the
activity of ERRα in breast cancer cells in a positive feedback
mechanism. In this context, the EGFR–ERRα–GREM1 axis can be
considered to be a promising therapeutic target, especially in ER-
negative breast cancer.

AUTHOR CONTRIBUTIONS
S.-A.P. and Y.-J.S. conceived and designed the experiments; S.-A.P., N.J.S., B.-J.C., W.K. and
S.H.K. performed the experiments; S.-A.P., W.K. and S.H.K. analysed the data; S.-A.P. and
Y.-J.S. wrote the paper. All authors read and approved the final manuscript.

ADDITIONAL INFORMATION
Ethics approval and consent to participate All mice were kept under pathogen-
free conditions, and all mouse experiments were performed under protocols
approved by the Seoul National University Ethics Research Board (SNU-170511-1-1).

Data availability All data and materials generated during and/or analysed during the
current study are available from the corresponding author on reasonable request.

Competing interests The authors declare no competing interests.

Funding information This work was supported by the Global Core Research
Centre (GCRC) Grant (No. 2011-0030001 to Y.-J.S.) from the National Research
Foundation (NRF) of Republic of Korea and the Basic Science Research Programme
through the NRF of Republic of Korea funded by the Ministry of Education
(2017R1A6A3A11032154 to S.-A.P.).

Supplementary information is available for this paper at https://doi.org/10.1038/
s41416-020-0945-0.

Note This work is published under the standard license to publish agreement. After
12 months the work will become freely available and the license terms will switch to a
Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

REFERENCES
1. Tevaarwerk, A. J., Gray, R. J., Schneider, B. P., Smith, M. L., Wagner, L. I., Fetting, J.

H. et al. Survival in patients with metastatic recurrent breast cancer after adjuvant
chemotherapy: little evidence of improvement over the past 30 years. Cancer
119, 1140–1148 (2013).

2. Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S., Martincorena,
I. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32,
169–184 e167 (2017).

3. Perou, C. M. Molecular stratification of triple-negative breast cancers. Oncologist
16(Suppl. 1), 61–70 (2011).

4. Karn, T., Pusztai, L., Holtrich, U., Iwamoto, T., Shiang, C. Y., Schmidt, M. et al.
Homogeneous datasets of triple negative breast cancers enable the identification
of novel prognostic and predictive signatures. PLoS ONE 6, e28403 (2011).

5. Kisonaite, M., Wang, X. & Hyvonen, M. Structure of Gremlin-1 and analysis of its
interaction with BMP-2. Biochem. J. 473, 1593–1604 (2016).

6. Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony
and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

7. Gazzerro, E., Smerdel-Ramoya, A., Zanotti, S., Stadmeyer, L., Durant, D., Econo-
mides, A. N. et al. Conditional deletion of gremlin causes a transient increase in
bone formation and bone mass. J. Biol. Chem. 282, 31549–31557 (2007).

8. Lu, M. M., Yang, H., Zhang, L., Shu, W., Blair, D. G. & Morrisey, E. E. The bone
morphogenic protein antagonist gremlin regulates proximal–distal patterning of
the lung. Dev. Dyn. 222, 667–680 (2001).

9. Rodrigues-Diez, R., Rodrigues-Diez, R. R., Lavoz, C., Carvajal, G., Droguett, A.,
Garcia-Redondo, A. B. et al. Gremlin activates the Smad pathway linked to epi-
thelial mesenchymal transdifferentiation in cultured tubular epithelial cells.
Biomed. Res. Int. 2014, 802841 (2014).

10. Church, R. H., Ali, I., Tate, M., Lavin, D., Krishnakumar, A., Kok, H. M. et al. Gremlin1
plays a key role in kidney development and renal fibrosis. Am. J. Physiol. Ren.
Physiol. 312, F1141–F1157 (2017).

11. Myllarniemi, M., Lindholm, P., Ryynanen, M. J., Kliment, C. R., Salmenkivi, K.,
Keski-Oja, J. et al. Gremlin-mediated decrease in bone morphogenetic protein
signaling promotes pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 177,
321–329 (2008).

12. Farkas, L., Farkas, D., Gauldie, J., Warburton, D., Shi, W. & Kolb, M. Transient
overexpression of Gremlin results in epithelial activation and reversible fibrosis in
rat lungs. Am. J. Respir. Cell. Mol. Biol. 44, 870–878 (2011).

13. Lavoz, C., Alique, M., Rodrigues-Diez, R., Pato, J., Keri, G., Mezzano, S. et al. Gremlin
regulates renal inflammation via the vascular endothelial growth factor receptor
2 pathway. J. Pathol. 236, 407–420 (2015).

Gremlin-1 augments the oestrogen-related receptor α signalling. . .
S.-A. Park et al.

998

https://doi.org/10.1038/s41416-020-0945-0
https://doi.org/10.1038/s41416-020-0945-0


14. Lavoz, C., Poveda, J., Marquez-Exposito, L., Rayego-Mateos, S., Rodrigues-Diez, R.
R., Ortiz, A. et al. Gremlin activates the Notch pathway linked to renal inflam-
mation. Clin. Sci. (Lond.) 132, 1097–1115 (2018).

15. Walsh, D. W., Roxburgh, S. A., McGettigan, P., Berthier, C. C., Higgins, D. G.,
Kretzler, M. et al. Co-regulation of Gremlin and Notch signalling in diabetic
nephropathy. Biochim. Biophys. Acta 1782, 10–21 (2008).

16. Murphy, M., Crean, J., Brazil, D. P., Sadlier, D., Martin, F. & Godson, C. Regulation
and consequences of differential gene expression in diabetic kidney disease.
Biochem. Soc. Trans. 36(Part 5), 941–945 (2008).

17. Kalluri, R. & Neilson, E. G. Epithelial–mesenchymal transition and its implications
for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

18. Heerboth, S., Housman, G., Leary, M., Longacre, M., Byler, S., Lapinska, K. et al. EMT
and tumor metastasis. Clin. Transl. Med. 4, 6 (2015).

19. Mulvihill, M. S., Kwon, Y. W., Lee, S., Fang, L. T., Choi, H., Ray, R. et al. Gremlin is
overexpressed in lung adenocarcinoma and increases cell growth and pro-
liferation in normal lung cells. PLoS ONE 7, e42264 (2012).

20. Kim, M., Yoon, S., Lee, S., Ha, S. A., Kim, H. K., Kim, J. W. et al. Gremlin-1 induces
BMP-independent tumor cell proliferation, migration, and invasion. PLoS ONE 7,
e35100 (2012).

21. Davis, H., Irshad, S., Bansal, M., Rafferty, H., Boitsova, T., Bardella, C. et al. Aberrant
epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the
stem cell niche. Nat. Med. 21, 62–70 (2015).

22. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M. & Sgroi, D. C. Gene expression
profiling of the tumor microenvironment during breast cancer progression.
Breast Cancer Res. 11, R7 (2009).

23. Schuetz, C. S., Bonin, M., Clare, S. E., Nieselt, K., Sotlar, K., Walter, M. et al. Progression-
specific genes identified by expression profiling of matched ductal carcinomas
in situ and invasive breast tumors, combining laser capture microdissection and
oligonucleotide microarray analysis. Cancer Res. 66, 5278–5286 (2006).

24. Gokmen-Polar, Y., Goswami, C. P., Toroni, R. A., Sanders, K. L., Mehta, R., Sirimalle,
U. et al. Gene expression analysis reveals distinct pathways of resistance to
bevacizumab in xenograft models of human ER-positive breast cancer. J. Cancer
5, 633–645 (2014).

25. Rachidi, S. M., Qin, T., Sun, S., Zheng, W. J. & Li, Z. Molecular profiling of multiple
human cancers defines an inflammatory cancer-associated molecular pattern
and uncovers KPNA2 as a uniform poor prognostic cancer marker. PLoS ONE 8,
e57911 (2013).

26. Deblois, G. & Giguere, V. Oestrogen-related receptors in breast cancer: control of
cellular metabolism and beyond. Nat. Rev. Cancer 13, 27–36 (2013).

27. Schreiber, S. N., Knutti, D., Brogli, K., Uhlmann, T. & Kralli, A. The transcriptional
coactivator PGC-1 regulates the expression and activity of the orphan nuclear
receptor estrogen-related receptor alpha (ERRα). J. Biol. Chem. 278, 9013–9018
(2003).

28. Schreiber, S. N., Emter, R., Hock, M. B., Knutti, D., Cardenas, J., Podvinec, M. et al.
The estrogen-related receptor alpha (ERRalpha) functions in PPARγ coactivator
1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc. Natl Acad. Sci. USA
101, 6472–6477 (2004).

29. Deblois, G., Hall, J. A., Perry, M. C., Laganiere, J., Ghahremani, M., Park, M. et al.
Genome-wide identification of direct target genes implicates estrogen-related
receptor alpha as a determinant of breast cancer heterogeneity. Cancer Res. 69,
6149–6157 (2009).

30. Suzuki, T., Miki, Y., Moriya, T., Shimada, N., Ishida, T., Hirakawa, H. et al. Estrogen-
related receptor alpha in human breast carcinoma as a potent prognostic factor.
Cancer Res. 64, 4670–4676 (2004).

31. Stein, R. A. & McDonnell, D. P. Estrogen-related receptor alpha as a therapeutic
target in cancer. Endocr. Relat. Cancer 13(Suppl. 1), S25–S32 (2006).

32. Luo, C., Balsa, E., Thomas, A., Hatting, M., Jedrychowski, M., Gygi, S. P. et al. ERRalpha
maintains mitochondrial oxidative metabolism and constitutes an actionable target
in PGC1alpha-elevated melanomas. Mol. Cancer Res. 15, 1366–1375 (2017).

33. Stein, R. A., Chang, C. Y., Kazmin, D. A., Way, J., Schroeder, T., Wergin, M. et al.
Estrogen-related receptor alpha is critical for the growth of estrogen receptor-
negative breast cancer. Cancer Res. 68, 8805–8812 (2008).

34. Wu, Y. M., Chen, Z. J., Liu, H., Wei, W. D., Lu, L. L., Yang, X. L. et al. Inhibition of
ERRalpha suppresses epithelial mesenchymal transition of triple negative breast
cancer cells by directly targeting fibronectin. Oncotarget 6, 25588–25601 (2015).

35. Park, S., Chang, C. Y., Safi, R., Liu, X., Baldi, R., Jasper, J. S. et al. ERRalpha-regulated
lactate metabolism contributes to resistance to targeted therapies in breast-
cancer. Cell Rep. 15, 323–335 (2016).

36. Chang, C. Y., Kazmin, D., Jasper, J. S., Kunder, R., Zuercher, W. J. & McDonnell, D. P.
The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a
therapeutic target in breast cancer. Cancer Cell 20, 500–510 (2011).

37. Karagiannis, G. S., Musrap, N., Saraon, P., Treacy, A., Schaeffer, D. F., Kirsch, R. et al.
Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer pro-
gression. Biol. Chem. 396, 163–183 (2015).

38. Staloch, D., Gao, X., Liu, K., Xu, M., Feng, X., Aronson, J. F. et al. Gremlin is a key pro-
fibrogenic factor in chronic pancreatitis. J. Mol. Med. (Berl.) 93, 1085–1093 (2015).

39. Chang, S. H., Mori, D., Kobayashi, H., Mori, Y., Nakamoto, H., Okada, K. et al.
Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-
κB pathway. Nat. Commun. 10, 1442 (2019).

40. May, F. E. Novel drugs that target the estrogen-related receptor alpha: their
therapeutic potential in breast cancer. Cancer Manag. Res. 6, 225–252 (2014).

41. Manna, S., Bostner, J., Sun, Y., Miller, L. D., Alayev, A., Schwartz, N. S. et al. ERRα is a
marker of tamoxifen response and survival in triple-negative breast cancer. Clin.
Cancer Res. 22, 1421–1431 (2016).

42. Mitola, S., Ravelli, C., Moroni, E., Salvi, V., Leali, D., Ballmer-Hofer, K. et al. Gremlin is
a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116,
3677–3680 (2010).

43. Vitt, U. A., Hsu, S. Y. & Hsueh, A. J. Evolution and classification of cystine knot-
containing hormones and related extracellular signaling molecules. Mol. Endo-
crinol. 15, 681–694 (2001).

44. Barry, J. B. & Giguere, V. Epidermal growth factor-induced signaling in breast
cancer cells results in selective target gene activation by orphan nuclear receptor
estrogen-related receptor alpha. Cancer Res. 65, 6120–6129 (2005).

45. Han, E. J., Yoo, S. A., Kim, G. M., Hwang, D., Cho, C. S., You, S. et al. GREM1 is a key
regulator of synoviocyte hyperplasia and invasiveness. J. Rheumatol. 43, 474–485
(2016).

46. Liu, Y., Chen, Z., Cheng, H., Chen, J. & Qian, J. Gremlin promotes retinal pig-
mentation epithelial (RPE) cell proliferation, migration and VEGF production via
activating VEGFR2-Akt-mTORC2 signaling. Oncotarget 8, 979–987 (2017).

47. Yin, M., Tissari, M., Tamminen, J., Ylivinkka, I., Ronty, M., von Nandelstadh, P. et al.
Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma.
Oncotarget 8, 98280–98297 (2017).

48. Tamminen, J. A., Parviainen, V., Ronty, M., Wohl, A. P., Murray, L., Joenvaara, S.
et al. Gremlin-1 associates with fibrillin microfibrils in vivo and regulates meso-
thelioma cell survival through transcription factor slug. Oncogenesis 2, e66 (2013).

49. Sneddon, J. B., Zhen, H. H., Montgomery, K., van de Rijn, M., Tward, A. D., West, R.
et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by
cancer-associated stromal cells and can promote tumor cell proliferation. Proc.
Natl Acad. Sci. USA 103, 14842–14847 (2006).

50. Kim, H. S., Shin, M. S., Cheon, M. S., Kim, J. W., Lee, C., Kim, W. H. et al. GREM1 is
expressed in the cancer-associated myofibroblasts of basal cell carcinomas. PLoS
ONE 12, e0174565 (2017).

51. Ren, J., Smid, M., Iaria, J., Salvatori, D. C. F., van Dam, H., Zhu, H. J. et al. Cancer-
associated fibroblast-derived Gremlin 1 promotes breast cancer progression.
Breast Cancer Res. 21, 109 (2019).

52. Park, S. A. & Surh, Y. J. Modulation of tumor microenvironment by chemopre-
ventive natural products. Ann. NY Acad. Sci. 1401, 65–74 (2017).

53. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to
improve cancer therapy. Nat. Rev. Clin. Ocol 15, 366–381 (2018).

54. Ciuclan, L., Sheppard, K., Dong, L., Sutton, D., Duggan, N., Hussey, M. et al.
Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-
induced pulmonary arterial hypertension in mice. Am. J. Pathol. 183, 1461–1473
(2013).

55. Graham, J. R., Williams, C. M. & Yang, Z. MicroRNA-27b targets gremlin 1 to
modulate fibrotic responses in pulmonary cells. J. Cell. Biochem. 115, 1539–1548
(2014).

56. Miao, H., Wang, N., Shi, L. X., Wang, Z. & Song, W. B. Overexpression of mircoRNA-
137 inhibits cervical cancer cell invasion, migration and epithelial–mesenchymal
transition by suppressing the TGF-beta/smad pathway via binding to GREM1.
Cancer Cell Int. 19, 147 (2019).

Gremlin-1 augments the oestrogen-related receptor α signalling. . .
S.-A. Park et al.

999


	Gremlin-1 augments the oestrogen-related receptor &#x003B1; signalling through EGFR activation: implications for the progression of�breast cancer
	Background
	Methods
	Cells and reagents
	Gene silencing
	Cell proliferation assay
	Quantitative real-time PCR
	Western blot analysis
	3D tumour spheroid formation assay
	3D tumour spheroid invasion assay
	ChIP assay
	Luciferase reporter gene assay
	Immunofluorescence staining
	Flow cytometry
	Immunoprecipitation assay
	Animal study
	Statistical analysis

	Results
	GREM1 is overexpressed in human breast cancer, which is associated with worse survival of breast cancer patients
	GREM1 contributes to the oncogenicity of breast cancer cells
	ERR&#x003B1; binds to the GREM1 promoter and regulates GREM1 expression
	GREM1 activates EGFR signalling
	GREM1 enhances the transcriptional activity of ERR&#x003B1; via EGFR signalling

	Discussion
	Author contributions
	ADDITIONAL INFORMATION
	References




