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We performed a detailed analysis of immunophenotypic features of circulating leukocytes and
spleen cells from cynomolgus macaques that had been naturally infected with Trypanosoma
cruzi, identifying their unique and shared characteristics in relation to cardiac histopathological
lesion status. T. cruzi-infected macaques were categorized into three groups: asymptomatic
[CCC(-)], with mild chronic chagasic cardiopathy [CCC(+)], or with moderate chronic chagasic
cardiopathy [CCC(++)]. Our findings demonstrated significant differences in innate and
adaptive immunity cells of the peripheral blood and spleen compartments, by comparison
with non-infected controls. CCC(+) and CCC(++) hosts exhibited decreased frequencies of
monocytes, NK and NKT-cell subsets in both compartments, and increased frequencies of
activated CD8+ T-cells and GranA+/GranB+ cells. While a balanced cytokine profile (TNF/IL-
10) was observed in peripheral blood of CCC(-) macaques, a predominant pro-inflammatory
profile (increased levels of TNF and IFN/IL-10) was observed in both CCC(+) and CCC(++)
subgroups. Our data demonstrated that cardiac histopathological features of T. cruzi-infected
cynomolgus macaques are associated with perturbations of the immune system similarly to
those observed in chagasic humans. These results provide further support for the validity of
the cynomolgus macaque model for pre-clinical research on Chagas disease, and provide
insights pertaining to the underlying immunological mechanisms involved in the progression of
cardiac Chagas disease.
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INTRODUCTION

Chagas disease is caused by the flagellate protozoan T. cruzi, and
affects approximately 6-7 million people worldwide (World
Health Organization, 2020). The disease typically has a short
acute phase, which may or may not proceed to a long-lasting
chronic disease. Most individuals with chronic Chagas disease
remain asymptomatic, but 20 to 40% of patients develop clinical
illness with digestive or cardiac pathologies (Prata, 1990; Dias,
1995; Rassi et al., 2010). The prognosis of patients who have
cardiac disease caused by T. cruzi infection is worse than that of
patients whose cardiac disease has other etiologies, and
frequently leads to death from sudden cardiac arrest (Bocchi
et al., 2017; Bonney et al., 2019).

Several ethiopathogenic bases have been proposed for the
cardiac damage caused by Chagas disease, including direct
parasite-induced damage, neurogenic events, microvascular
circulation disorders and inflammatory/autoimmune tissue
injury (Higuchi et al., 2003; Bocchi et al., 2017). Some studies
have shown that parasite genotype and host genetic background
may be associated with distinct clinical manifestations of Chagas
disease (Macedo and Pena, 1998; Macedo et al., 2004).

Chronic Chagas cardiomyopathy (CCC) may involve a
complex variety of immunological events leading to distinct
histopathological features (Reis et al., 1993; Higuchi et al.,
2003; Fonseca et al., 2007). Many specific cell populations and
cytokines involved in the immunopathological mechanisms
underlying cardiac Chagas disease have been identified (Reis
et al., 1993; Higuchi et al., 2003; Fonseca et al., 2007; Costa et al.,
2009; Cunha-Neto and Chevillard, 2014; Ferreira et al., 2014;
Roffe et al., 2019). Despite the many well-described
immunological factors involved in CCC, their hypothetical
interactions that might lead to different cardiac pathologies are
still not well understood. Additional characterization of the
immunological events that take place in distinct compartments
where immunity cells congregate may contribute to a better
understanding of the interactions involved in the multifactorial
nature of myocarditis caused by Chagas disease. In this regard,
analysis of distinct immunological compartments in
experimental models that exhibit histopathological and
immunological characteristics likewise those observed in
human Chagas disease may provide novel insights.

Here, we present a comprehensive assessment of several
phenotypic and functional immune characteristics in
peripheral blood leukocytes and spleen cells from cynomolgus
macaques that had become naturally infected with T. cruzi,
aiming to determine their unique and shared characteristics in
relation to cardiac histopathological disease status. Our findings
demonstrated significant alterations in innate and adaptive
immunity cells of peripheral blood and spleen compartments
of T. cruzi-infected macaques by comparison with non-infected
animals. The results provide further confirmation of the
similarities between cynomolgus macaques naturally infected
with T. cruzi and humans with Chagas disease. Our detailed
assessment of immunological events associated with distinct
patterns of chagasic cardiac disease provides a basis for further
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
pre-clinical research with non-human primate models, as well as
for clinical research with human subjects.
MATERIAL AND METHODS

Study Population and Ethics Statement
Twenty-six cynomolgus macaques were enrolled in this cross-
sectional investigation. The diagnosis of natural T. cruzi infection
was performed by serological tests, including anti-T. cruzi
antibody detection by enzyme-linked immunoassay (ELISA)
and immuno-chromatographic assay. All animals were infected
with TcI genotype, identified by molecular characterization of T.
cruzi isolated from peripheral blood samples as previously
described (Vitelli-Avelar et al., 2017). The group of naturally
infected macaques (CH for “Chagas”, n=15) comprised 3 males
and 12 females with median body weight of 3.5kg and median
age of 12 years. All CH macaques were in the chronic phase of
disease determined by the absence of patent parasitemia and
further supported by histopathological analysis performed
during necropsies. Based on cardiac histopathologic features,
the CH macaques were divided into three subgroups:
asymptomatic [CCC(-), n=5], mild chronic chagasic
cardiopathy [CCC(+), n=4] and moderate chronic chagasic
cardiopathy [CCC(++), n=6]. Although the duration of time
that each animal was infected with the parasite is not known,
most of these animals were young to middle-aged adults. A 12-
year-old macaque is approximately equivalent in age to a 36-
year-old human. Therefore, the absence of severe chagasic
cardiopathy among the 15 infected macaques may be a
consequence of insufficient duration of infection to have
resulted in severe cardiac pathology. These macaques were
group-housed and highly active in their social environment, it
is likely that animals with severe cardiac pathologies died
spontaneously from acute cardiac episodes or were culled as a
consequence of poor health status. The non-infected controls
(NI, n=11), which included 2 males and 9 females with a median
body weight of 4.9kg and a median age of 13 years, displayed
negative results in both serological tests.

This study was approved by the Texas Biomedical Research
Institute Animal Care and Use Committee (#1050MF), and was
conducted in accordance with the Public Health Service Policy
on Humane Care and Use of Laboratory Animals, and the U.S.
Animal Welfare Act. Animal care was provided according to the
Guide for the Care and Use of Laboratory Animals. The animals
received commercial chow and water ad libitum, supplemented
with fruits and vegetables.

Biological Samples
Ten mL of heparinized blood was drawn from the femoral vein
after general anesthesia by intra-muscular injection of ketamine
hydrochloride (10mg/kg) and valium (5mg/kg), and inhalation
of isofluorane (1.5%). The blood samples were used for ex vivo
immunophenotypic and functional analysis by flow cytometry.

Spleen specimens were collected from each animal during
necropsy, and splenocytes were isolated for ex vivo
July 2021 | Volume 11 | Article 701930
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immunophenotypic analysis by flow cytometry. The specimens
were immersed in cold RPMI‐1640 in a Petri dish placed on ice.
The spleen fragments were processed according to Teixeira-
Carvalho et al. (2002). Heart specimens also were collected
during necropsy for histopathologic analysis.

Ex Vivo Immunophenotypic Analysis of
Peripheral Blood and Spleen Cells by
Flow Cytometry
Immunophenotypic analysis of leukocytes and spleen cells was
carried out as follows: aliquots of heparinized whole peripheral
blood (100mL) or splenocyte suspensions (5x105 cells in 50mL)
were incubated with mixtures of undiluted fluorescent labeled
monoclonal antibodies (5mL) for 30 min at room temperature, in
the dark. Mouse monoclonal antibodies, specific for human cell
surface markers and with cross-reactivity to the same non-
human primate markers, were used in this study: FITC a-CD4,
a-CD14, a-CD16, a-CD32, a-CD64, a-GranA, a-GranB and
a-Perforin; PE a-CD4, a -CD14, a-CD54, a-CD56, a-CCR5, a-
CD25 and a-CD69; PerCP-Cy5.5 a-CD4, a-CD8 and a-HLA-
DR; APC a-CD8, a-CD16 and a-CD20; Alexa fluor 700 a-CD3.
After incubation, erythrocytes were lysed by adding 2mL of
Lysing Solution, followed by incubation for 10 min at room
temperature, in the dark. The stained leukocyte and splenocyte
suspensions were washed twice with phosphate-buffered saline
(PBS) supplemented with 0.01% sodium azide. Cells were then
fixed with 200mL of Fixing Solution (10g/L of paraformaldehyde,
10.2g/L of sodium cacodylate, 6.65 g/L of sodium-chloride, pH
7.2) and stored at 4°C.

Intracellular staining was performed to quantify GranA+,
GranB+ and Perf+ within CD16+ and CD8+ cells. Aliquots of
blood (100mL) or splenocyte suspensions (5x105 cells in 50mL)
were first incubated with 5mL of anti-CD16 or anti-CD8, for
30 min at room temperature, in the dark. Following erythrocyte
lysis and pre-fixation with Lysing Solution, the remaining cells
were permeabilized with 2mL of Perm-Buffer (PBS
supplemented with 0.5% bovine serum albumin, 0.5% saponin,
0.01% sodium azide), for 10 min at room temperature, in the
dark. Fixed/permeabilized cells were then incubated with 5mL of
anti-GranA, anti-GranB or anti-Perf for 30 min at room
temperature, in the dark. Stained cells were washed once with
Perm-Buffer and then with Buffer (PBS supplemented with 0.5%
bovine serum albumin, 0.01% sodium azide) and fixed in 200mL
of Fixing Solution and stored at 4°C.

A total of 30,000 events were acquired per sample using a
CyAn-ADP Flow Cytometer. Summit software 4.3.01 was used
for data acquisition and analysis. The FlowJo software 9.4.1 was
used for data analysis. Distinct gating strategies were employed
to select specific cell populations. Monocytes were first gated as
CD14High+ cells with subsequent analysis of CD32 and CD64
expression. After lymphocyte gating, combined gating strategies
were used to analyze NK (CD3-CD16+), NKT (CD3+CD16+), T
(CD3+, CD4+, CD8+) and B-cells (CD20+) for subsequent
analysis of complementary immunophenotypic features. The
results were expressed as percentage (%) or mean fluorescence
intensity (MFI) within specific whole blood or spleen cell
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
subsets. Representative flow cytometric gating strategies
employed for phenotypic analysis are provided in the
Supplementary Figure 1.

Ex Vivo Functional Analysis of Peripheral
Blood Cells by Flow Cytometry
The ex vivo functional analysis of peripheral blood leukocytes
was performed as described previously by Vitelli-Avelar et al.
(2008). Briefly, 500mL aliquots of heparinized whole blood
samples were diluted 1:1 with 500mL of RPMI-1640 plus
Brefeldin-A at a final concentration of 10mg/mL and incubated
in triplicate for 4 hours at 37°C, in a 5% CO2 humidified
atmosphere. Following incubation, cells were treated with
100mL of 200mM EDTA, and then incubated at room
temperature for 10 min. The triplicates were pooled prior to
immunostaining for intracytoplasmic cytokine analysis by flow
cytometry. The immunostaining procedure was carried out as
described previously by Vitelli-Avelar et al. (2008). Briefly, cells
were washed once and re-suspended in Buffer, and 100mL
aliquots were transferred to 5mL polystyrene tubes containing
5µL of FITC or TC monoclonal antibodies (a-CD14, a-HLA-
DR, a-CD16, a-CD3, a-CD4, a-CD8 or a-CD20). Following
incubation in the dark for 30 min at room temperature,
erythrocytes were lysed with 2mL of Lysing Solution, and the
remaining cells were fixed in Fixing Solution for 10 min at room
temperature, in the dark. The membrane-stained fixed cells were
permeabilized with Perm-Buffer for 30 min at room temperature,
in the dark. Fixed/Permeabilized cells were then incubated with
5mL of PE-labeled monoclonal antibodies (a-TNF, a-IFN-g and
a-IL-10) for 30 min at room temperature, in the dark. Stained
cells were washed once with Perm-Buffer and then with Buffer
prior to fixation with 200mL of Fixing Solution. Cells were stored
at 4°C.

A total of 30,000 events were acquired per sample using a
CyAn-ADP Flow Cytometer. Summit software 4.3.01 was used
for data acquisition and analysis. Monocytes were gated as
CD14High+ cells followed by CD16+/HLADR++ events, with
subsequent analysis of cytokine+ cells (TNF+ and IL-10+).
Combined gating strategies were used to analyze NK, T and B-
cells. After gating, CD16+, CD3+, CD4+, CD8+ or CD20+ were
gated for subsequent analysis of cytokine+ cells. The results were
expressed as per-mille (‰) of cytokine+ cells within specific cell
subsets. Representative flow cytometric gating strategies
employed for functional analysis are provided in the
Supplementary Figure 1.

Heart Histopathological Analysis
The heart specimens used for histopathological analysis were
fixed in 10% neutral buffered formalin, dehydrated in alcohol,
cleared in xylene and embedded in paraffin blocks. Sections of
5µm thickness were cut and stained with hematoxylin and eosin.

Histopathological analysis was carried out by (MAXP), using
conventional optical microscopy. The histopathological findings
were categorized in relation to the distribution and intensity of
inflammatory infiltrates. The Distribution of Inflammatory
Infiltrate (DII) was classified as absent/focal (0) or multifocal/
July 2021 | Volume 11 | Article 701930
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diffuse (1), and the Intensity of Inflammatory Infiltrate (III) was
classified as basal (0) or elevated (1). Based on the
histopathological results, the T. cruzi-infected macaques were
categorized into three subgroups, referred as: asymptomatic
[CCC(-), n=5; DII(0) and III(0)], mild chronic chagasic
cardiopathy [CCC(+), n=4; DII(1) and III(0)] and moderate
chronic chagasic cardiopathy [CCC(++), n=6; DII(1) and III(1)].

Data Analysis
Descriptive statistical analyses were performed for multiple
comparisons among groups using the Kruskal-Wallis test
followed by Dunn ’s post-test for sequential pairwise
comparisons. GraphPad Prism Software 6.0 was used for
descriptive statistical analysis. In all cases, significant
differences were considered at p<0.05.

Additionally, analysis of phenotypic signatures of peripheral
blood leukocytes and splenocytes, as well as the cytokine
signatures of peripheral blood leukocytes, were carried out by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
first converting the ex vivo immunophenotypic results from
continuous variables into categorical data. The global median
values of each cell phenotype were calculated from the values of
all 26 macaques. Phenotypic signatures of the innate immunity
biomarkers and the adaptive immunity biomarkers in the NI
group were developed by creating bar graphs showing, for each
biomarker, the proportion of animals with values higher than the
global median, arranged with the biomarkers in ascending order
of those values (see Figures 1 and 2, graphs labeled NI). Bar
graphs for the biomarkers of the three infected groups were
developed with the biomarkers arranged in the same orientation
as for the NI group, and statistical analyses were conducted to
identify significant differences between the NI group and each of
the other groups. Radar charts were used to compile the cytokine
signatures of peripheral blood leukocytes of T. cruzi-infected
cynomolgus macaques and NI controls. The biomarkers with
frequencies significantly above the global 50th percentile were
highlighted for each group for comparative analysis. Venn
FIGURE 1 | Ex-vivo phenotypic signatures of peripheral blood leukocytes from T. cruzi-infected cynomolgus macaques classified according to histopathological
features of chronic chagasic cardiopathy. The phenotypic signatures were constructed based on the proportion of subjects in each cell subpopulation with biomarker
levels above the global median cut-off, calculated from data from the entire study population. Ascendant curves were assembled from non-infected controls (NI) to
draw the reference curves for innate and adaptive immunity cells, used for comparative analysis of results from T. cruzi-infected cynomolgus macaques. Data are
displayed by bar charts (NI = ) and continuous ascendant lines (NI = ○). The T. cruzi-infected macaques were classified according to histopathological features of
cardiac biopsies and referred to as CCC(–) for absence of chronic chagasic cardiopathy ( ); CCC(+) for mild chronic chagasic cardiopathy ( ) and CCC(++) for
moderate chronic chagasic cardiopathy ( ). Comparative analyses between T. cruzi-infected subgroups and non-infected controls were carried out considering the
ascendant biomarker signature of non-infected controls as the reference curve. The differences between groups were considered for biomarkers with proportions
confined to distinct 50th percentiles as compared to the reference curve. The biomarkers with lower frequencies in T. cruzi-infected macaques were underscored by #
and bold underline format. Those biomarkers with higher frequencies in T. cruzi-infected macaques were highlighted by *, bold underline format and color background.
July 2021 | Volume 11 | Article 701930
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diagram analysis were performed to identify sets of common and
unique biomarkers for comparisons of CCC(–) vs CCC(+) vs
CCC(++) vs NI, using online software, available at http://
bioinformatics.psb.ugent.be/webtools/Venn/.

Graphical arts were performed using Microsoft Excel and
GraphPad Prism Softwares.
RESULTS

Analyses of Peripheral Blood Leukocytes
From T. cruzi-Infected Cynomolgus
Macaques Classified According to
Histopathological Features of Chronic
Chagasic Cardiopathy
Detailed flow cytometric results expressed as percentage or mean
fluorescence intensity (MFI), along with descriptive statistical
analysis for the phenotypic features of peripheral blood
leukocytes from T. cruzi-infected macaques, by comparison
with non-infected controls, are presented in Table 1. Data
analysis demonstrated significant differences in phenotypic
features of innate (NK and NKT-cell subsets) and adaptive
immunity (CD4+ and CD8+ T-cells) of T. cruzi-infected
cynomolgus macaques as compared to non-infected controls.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Of note, higher levels of GranA+ NK-cells and CD8+ T-cells were
observed in hosts with mild/CCC(+) or moderate/CCC(++)
chronic chagasic cardiopathy ad compared to asymptomatic/
CCC(-) hosts (Table 1).

The phenotypic profiles of innate and adaptive immunity cells
in peripheral blood from T. cruzi-infected cynomolgus macaques
and non-infected controls were further analyzed as biomarker
signatures according to Luiza-Silva et al. (2011) and data are
presented in Figure 1. For this purpose, the original flow
cytometric measurements expressed in percentage or mean
fluorescence intensity (MFI) were converted into categorical
data and the results expressed as proportion of cynomolgus
macaques with biomarker levels above the global median cut-off
as described in Methods. The results are presented in Figure 1.
Comparative analyses were carried out to identify in infected
groups those biomarkers with significantly increased (*) or
decreased (#) proportion, in relation to the proportions
observed in non-infected controls (NI).

The results revealed lower proportion of several innate
immunity cell phenotypes in peripheral blood of T. cruzi-
infected macaques, by comparison with non-infected controls.
However, higher frequency of monocytes (CD14+CD32+), NK-
cells (CD16+CD54+) and NKT-cell subsets (CD3+CD16+CD56+;
CD3+CD16-CD56+) were observed in asymptomatic/CCC(-)
hosts; and higher frequencies of CD16+GranA+ cells were
FIGURE 2 | Ex-vivo phenotypic signatures of splenocytes from T. cruzi-infected cynomolgus macaques classified according to histopathological features of chronic
chagasic cardiopathy. See legend to Figure 1 for details.
July 2021 | Volume 11 | Article 701930
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observed in hosts with mild/CCC(+) or moderate/CCC(++)
chronic chagasic cardiopathy. In addition, a higher frequency
of CD14+CD32+ cells was observed in hosts with moderate/CCC
(++) chronic chagasic cardiomyopathy (Figure 1).

The analyses of the adaptive immunity in the peripheral
blood also revealed significant reductions in frequencies of
some cell phenotypes in T. cruzi-infected macaques as
compared to controls, particularly in those hosts with
moderate/CCC(++) chronic chagasic cardiopathy. Conversely,
increased frequencies of some T-cell subsets (CD3+CD8+;
CD3+CD54+; CD3+CCR5+; CD3+HLA-DR+; CD4+CD54+;
CD4+CCR5+; CD4+CD25++; CD8+Perf+; CD8+GranB+) and B-
cells (CD20+; CD20+CD32+) were observed in asymptomatic/
CCC(-) hosts. Noteworthy was the increase in frequencies of
activated T-cells (CD3+CD54+; CD3+HLA-DR+; CD3+CCR5+;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
CD4+CD54+; CD8+CD54+; CD8+ HLA-DR+; CD8+GranA+),
along with CD20+ B-cells, in hosts with mild/CCC(+) chronic
chagasic cardiopathy. Increased frequencies of T-cell subsets
(CD3+CD8+; CD4+CD54+; CD4+CD25++; CD8+CD54+), along
with CD20+CD32+ B-cells, were observed in hosts with
moderate/CCC(++) chagasic cardiopathy (Figure 1).

Analyses of Splenocytes From T. cruzi-
Infected Cynomolgus Macaques Classified
According to Histopathological Features
of Chronic Chagasic Cardiopathy
Detailed flow cytometric results expressed as percentage or mean
fluorescence intensity (MFI), together with descriptive statistical
analysis for the phenotypic features of splenocytes from T. cruzi-
infected macaques as compared to non-infected controls are
TABLE 1 | Phenotypic features of peripheral blood and spleen leukocytes from T. cruzi-infected cynomolgus macaques.

Cell Phenotypes Peripheral Blood Spleen

NI CCC(-) CCC(+) CCC(++) NI CCC(-) CCC(+) CCC(++)

Innate Immunity
CD14+CD32+ (MFI) 304.8 ± 41.8 411.3 ± 59.7 445.8 ± 99.8 320.2 ± 72.7 459.4 ± 55.2 559.5 ± 67.8 475.3 ± 73.7 490.8 ± 19.2
CD14+CD64+ (MFI) 65.6 ± 9.0 92.1 ± 39.9 78.0 ± 21.0 41.8 ± 5.9 89.8 ± 11.2 102.6 ± 22.6 95.7 ± 26.1 91.8 ± 26.1
CD3-CD16+ 9.0 ± 2.0 4.9 ± 1.5 11.1 ± 3.2 12.4 ± 4.5 16.6 ± 4.6 12.3 ± 2.7 16.3 ± 5.9 15.8 ± 4.8
%CD16+CD56- 14.1 ± 3.4 5.3 ± 1.4a,c,d 10.8 ± 2.6 16.3 ± 6.0 27.7 ± 7.7 21.8 ± 5.0 28.9 ± 11.7 34.5 ± 6.8
%CD16+CD56+ 5.9 ± 1.4 6.1 ± 3.8 7.6 ± 2.9 10.8 ± 4.4 3.4 ± 0.4 5.9 ± 1.3 4.4 ± 0.4 4.3 ± 0.4
%CD16-CD56+ 6.2 ± 0.6 6.4 ± 1.2 6.9 ± 2.4 5.2 ± 1.1 5.5 ± 0.3 7.7 ± 0.9 7.2 ± 1.2 4.1 ± 0.5
%CD16+CD54+ 8.8 ± 1.7 15.6 ± 4.0 7.6 ± 3.8 8.3 ± 2.7 16.1 ± 2.4 26.5 ± 4.5 12.9 ± 5.7 13.5 ± 1.8
%CD16+CD69+ 35.5 ± 5.9 22.2 ± 3.1a,c 34.8 ± 6.0 26.5 ± 7.5 32.3 ± 2.8 32.3 ± 4.1 43.2 ± 8.7 29.6 ± 9.3
%CD16+GranA+ 16.6 ± 3.6 14.3 ± 2.8a 38.1 ± 11.2a,b 40.3 ± 9.6a,b 22.0 ± 2.5 21.1 ± 3.1 33.0 ± 7.8 37.5 ± 5.3
%CD16+GranB+ 45.7 ± 3.9 36.1 ± 5.8 45.4 ± 12.4 47.0 ± 9.2 59.1 ± 3.6 34.5 ± 3.0 52.6 ± 6.1 53.1 ± 6.6
%CD16+Perf+ 46.1 ± 6.6 37.8 ± 4.0 52.0 ± 9.1 46.9 ± 6.5 60.9 ± 3.7 31.9 ± 2.4 54.9 ± 5.4 52.8 ± 6.2
CD3+CD16+ 3.5 ± 0.4 4.2 ± 0.1 2.6 ± 0.8b 3.2 ± 0.7b 7.3 ± 0.9 8.2 ± 0.6 7.1 ± 1.2 4.7 ± 0.4
% CD3+CD16+CD56- 2.6 ± 0.7 0.9 ± 0.2a 0.9 ± 0.1 1.7 ± 0.6 5.0 ± 0.6 4.6 ± 1.2 5.2 ± 0.6 5.5 ± 1.7
% CD3+CD16+CD56+ 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.4 ± 0.2 1.3 ± 0.2 1.2 ± 0.2 1.5 ± 0.6 1.2 ± 0.3
% CD3+CD16-CD56+ 3.6 ± 0.3 5.8 ± 0.3a,c,d 3.6 ± 0.7 2.7 ± 0.4 6.3 ± 0.7 6.9 ± 0.9 4.9 ± 0.4 3.8 ± 1.1
Adaptive Immunity
CD3+ 62.0 ± 3.4 60.5 ± 3.1 58.1 ± 7.0 64.0 ± 5.2 54.6 ± 4.6 64.1 ± 2.6 51.6 ± 6.7 51.1 ± 6.0
CD3+CD4+ 32.7 ± 2.5 23.0 ± 2.8a 28.7 ± 1.3d 32.7 ± 1.2b 16.2 ± 1.8 13.7 ± 2.5 12.9 ± 1.6 16.7 ± 3.3
CD3+CD8+ 31.1 ± 3.3 37.4 ± 5.7 28.7 ± 8.7 35.9 ± 5.0 40.2 ± 4.3 38.1 ± 7.7 36.0 ± 5.7 33.6 ± 6.1
%CD3+CD54+ 1.0 ± 0.1 2.7 ± 0.9a 2.3 ± 1.0 1.4 ± 0.3 5.3 ± 0.8 4.6 ± 0.5 6.2 ± 1.6 3.3 ± 0.7
%CD4+CD54+ 1.4 ± 0.2 3.7 ± 1.2a 17.8 ± 15.7 6.9 ± 1.4 7.5 ± 1.0 9.5 ± 1.9 11.9 ± 4.4 6.4 ± 1.4
%CD8+CD54+ 1.2 ± 0.2 2.9 ± 1.5a 8.5 ± 4.2a 2.9 ± 1.0a 3.9 ± 0.5 4.1 ± 0.9 4.2 ± 0.9 3.2 ± 0.7
%CD3+CD69+ 9.6 ± 1.9 8.5 ± 2.8 9.7 ± 1.9 5.7 ± 1.6 26.1 ± 2.8 26.5 ± 3.2 36.0 ± 3.0 31.7 ± 4.2
%CD4+CD69+ 4.2 ± 1.0 4.5 ± 1.5 4.3 ± 1.5 3.2 ± 0.7 25.5 ± 2.1 30.0 ± 3.6 34.6 ± 1.6 28.7 ± 2.7
%CD8+CD69+ 23.1 ± 4.0 16.1 ± 2.5 26.3 ± 4.7b,d 16.1 ± 2.5 24.3 ± 2.5 27.0 ± 5.2 36.3 ± 2.1 30.2 ± 4.9
%CD3+HLA-DR+ 3.1 ± 0.7 4.2 ± 0.7a 5.6 ± 1.3a,d 3.0 ± 0.3 6.6 ± 0.8 9.0 ± 0.6 8.3 ± 1.1 11.0 ± 1.4
%CD4+HLA-DR+ 3.1 ± 0.4 4.6 ± 1.3 3.9 ± 0.6 2.2 ± 0.2c,b 18.1 ± 1.7 20.6 ± 5.3 19.5 ± 4.4 17.4 ± 3.0
%CD8+HLA-DR+ 5.6 ± 1.8 7.7 ± 1.8 7.8 ± 1.4 6.5 ± 1.6 6.8 ± 0.9 7.3 ± 1.8 6.3 ± 1.9 10.4 ± 1.6
%CD3+CCR5+ 26.4 ± 4.6 29.2 ± 7.5 28.7 ± 2.7 20.6 ± 5.9 33.0 ± 4.0 39.6 ± 9.1 29.1 ± 6.0 30.0 ± 5.9
%CD4+CCR5+ 19.7 ± 2.9 24.8 ± 4.6 16.3 ± 1.2 17.5 ± 3.8 34.6 ± 2.7 48.7 ± 6.8 30.2 ± 2.8 29.7 ± 4.9
%CD8+CCR5+ 31.6 ± 5.5 34.5 ± 7.3 38.0 ± 4.5 25.3 ± 7.5 30.6 ± 3.7 41.8 ± 8.0 25.8 ± 5.5 23.2 ± 4.8
%CD8+GranA+ 6.9 ± 4,5 9.1 ± 1.2a 15.8 ± 2.8a,b 15.9 ± 3.5a,b 11.0 ± 1.9 11.2 ± 2.6 14.9 ± 1.7 17.5 ± 1.9
%CD8+GranB+ 52.6 ± 7.2 58.2 ± 11.9 49.0 ± 9.1 55.9 ± 7.4 43.6 ± 5.5 43.6 ± 8.5 38.8 ± 8.7 46.8 ± 3.8
%CD8+Perf+ 56.2 ± 7.9 69.1 ± 11.0 62.7 ± 8.1 63.3 ± 8.0 58.4 ± 6.6 61.3 ± 9.6 58.1 ± 9.1 57.6 ± 6.1
%CD4+CD25++ 3.5 ± 0.3 4.1 ± 0.5 4.1 ± 0.5 4.3 ± 0.3 2.4 ± 0.4 3.0 ± 0.6 2.7 ± 0.7 3.8 ± 0.7
CD20+ 22.4 ± 4.7 27.1 ± 3.5 28.7 ± 6.3 19.9 ± 4.5 22.4 ± 4.5 19.6 ± 2.7 20.0 ± 6.7 26.8 ± 6.4
%CD20+CD69+ 2.6 ± 0.4 3.5 ± 1.1 3.3 ± 0.5 2.6 ± 1.2 13.9 ± 1.8 13.2 ± 2.2 19.5 ± 2.9 13.5 ± 2.7
CD20+CD32+ (MFI) 56.2 ± 7.5 84.9 ± 15.5 71.2 ± 17.9 66.0 ± 11.3 72.2 ± 13.6 126.6 ± 13.8 65.2 ± 12.2 87.5 ± 13.4
July 2021 |
 Volume 11 | Ar
NI, Non-infected macaques; CCC(-), Absence of Chronic Chagasic Cardiopathy; CCC(+), Mild Chronic Chagasic Cardiopathy; CCC(++), Moderate Chronic Chagasic Cardiopahty. Data
are expressed as mean values (% or mean fluorescence intensity-MFI) standard error. Multiple comparisons amongst groups were carried out by Kruskal-Wallis test followed by Dunn’s
post-test for sequential pairwise comparisons and significant differences at p < 0.05 depicted by letters “a”, “b”, “c” and “d” as compared to NI, CCC(-), CCC(+) and CCC(++), respectively.
All significant differences are highlighted in bold format.
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presented in Table 1. Data analysis did not demonstrate any
significant differences amongst groups based on conventional
statistical analysis.

The phenotypic profiles of innate and adaptive immunity cells
in peripheral blood from T. cruzi-infected cynomolgus macaques
and non-infected controls were further analyzed as biomarker
signatures according to Luiza-Silva et al. (2011) as described in
Methods and data are presented in Figure 2. The phenotypic
profiles of innate and adaptive immunity cells in the spleen
compartment from T. cruzi-infected cynomolgus macaques and
non-infected controls are presented in Figure 2. As for the
analyses of peripheral blood leukocytes, the results are
presented as biomarker signatures and comparative data
analyses that indicate significantly increased (*) or decreased
(#) proportion, in relation to the proportions in non-infected
controls (NI).

As observed in peripheral blood biomarker signatures, the
spleen compartment also displayed perturbations in frequencies
of innate immunity cells in T. cruzi-infected macaques. Increased
frequencies of NK-cells (CD3-CD16+; CD16+CD56+; CD16+CD56-;
CD16+CD69+), and NKT-cell (CD3+CD16+CD56+) subsets were
observed in asymptomatic/CCC(-) hosts. Increased frequencies of
CD16+CD69+, CD16+CD56-, CD16+GranA+, and CD14+CD32+

cells were observed in hosts with mild/CCC(+) or moderate/
CCC(++) chronic chagasic cardiopathy, respectively (Figure 2).

The adaptive immunity cell profile of the spleen compartment,
like that of the biomarkers signature of blood compartment, also
was perturbed inT. cruzi-infectedmacaques. Increased frequencies
of T-cell subsets (CD3+; CD3+HLA-DR+; CD4+CD54+;
CD4+CCR5+; CD4+CD25++) and B-cells (CD20+CD32+) were
observed in asymptomatic/CCC(-) hosts. Increased frequencies
of activated T-cells (CD3+CD69+; CD4+CD69+; CD8+CD69+;
CD8+GranA+) were observed in hosts with mild/CCC(+)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
chronic chagasic cardiopathy. Noteworthy, increased frequencies
of activated T-cell subsets (CD3+CD69+; CD3+HLA-DR+;
CD4+CD25++; CD8+HLA-DR+; CD8+GranA+; CD8+GranB+),
along with CD20+CD32+ B-cells, were observed in hosts with
moderate/CCC(++) chagasic cardiopathy (Figure 2).

Ex Vivo Cytokine Signatures of Peripheral
Blood Leukocytes From T. cruzi-Infected
Cynomolgus Macaques Classified
According to Histopathological Features
of Chronic Chagasic Cardiopathy
Detailed flow cytometric results expressed as per mile, together
with descriptive statistical analysis for the functional cytokine
profile of peripheral blood from T. cruzi-infected macaques as
compared to non-infected controls are presented in Table 2.
Data analysis demonstrated significant differences in cytokine
profile of innate (Monocytes and NK-cells) and adaptive
immunity (CD4+ T-cells, CD8+ T-cells and B-cells) of T. cruzi-
infected cynomolgus macaques as compared to non-infected
controls. Of note, higher levels of cytokine+ cells were observed
in hosts with moderate/CCC(++) chronic chagasic cardiopathy
ad compared to asymptomatic/CCC(-) hosts and non-infected
controls (Table 2).

The ex vivo functional profiles of innate and adaptive
immunity cells from peripheral blood from T. cruzi-infected
cynomolgus macaques and non-infected controls were further
analyzed as biomarker signatures according to Luiza-Silva et al.
(2011) and data are presented in Figure 3. The results are
presented in radar charts as cytokine signatures depicting the
proportion of subjects with intracytoplasmic cytokine levels
above the global median cut-off calculated for each cell subset.

Data analyses demonstrated that a balanced cytokine
microenvironment mediated by TNF-a (TNFCD14;
TABLE 2 | Ex vivo cytokine profile of peripheral blood leukocytes from T. cruzi-infected cynomolgus macaques.

Cell Phenotypes Peripheral Blood

NI CCC(-) CCC(+) CCC(++)

Innate Immunity
TNF+CD14+ 24.6 ± 5.5 31.6 ± 4.7 31.9 ± 10.2 17.4 ± 6,6b

TNF+CD14+CD16+DR++ 71.0 ± 46 60.8 ± 24.6 69.1 ± 7.8 61.8 ± 17.1
TNF+CD16+ 12.0 ± 5.1 13.1 ± 4.0 20.0 ± 8.2d 7.6 ± 2.0
IFN+CD16+ 17.6 ± 5.3 14.7 ± 2.5 14.1 ± 4.5 14.7 ± 3.1
IL-10+CD14+ 31.3 ± 8.6 27.0 ± 8.2 24.4 ± 3.4 22.2 ± 4.8
IL-10+CD14+CD16+DR++ 29.8 ± 8.2 27.1 ± 1.1 14.2 ± 2.5b,d 37.5 ± 7.8
Adaptive Immunity
TNF+CD4+ 6.8 ± 1.4 7.5 ± 1.9 4.5 ± 1.6 7.0 ± 1.5
TNF+CD8+ 4.9 ± 1.0 4.5 ± 0.7 3.0 ± 1.0 6.6 ± 1.0c

TNF+CD20+ 7.6 ± 1.4 7.3 ± 1.8 7.3 ± 2.2 14.5 ± 9.6a

IFN+CD4+ 4.8 ± 0.7 9.0 ± 1.3 a 8.3 ± 1.3a 10.4 ± 2.2a

IFN+CD8+ 5.0 ± 1.0 2.8 ± 0.7 3.5 ± 1.1 5.7 ± 2.2a,b

IL-10+CD4+ 6.5 ± 2,4 11.1 ± 2.6 a 17.0 ± 4.4a 11.5 ± 2.6a

IL-10+CD8+ 15.1 ± 2.9 9.7 ± 2.6 23.0 ± 4.6b 32.1 ± 8.1a,b

IL-10+CD20+ 25.0 ± 8.7 23.4 ± 3.0 24.7 ± 6.6 40.0 ± 14.9a
July 2021 | Volume 11 | Ar
NI, Non-infected macaques; CCC(-), Absence of Chronic Chagasic Cardiopathy; CCC(+), Mild Chronic Chagasic Cardiopathy; CCC(++), Moderate Chronic Chagasic Cardiopahty. Data
are expressed as mean values (‰) ± standard error. Multiple comparisons amongst groups were carried out by Kruskal-Wallis test followed by Dunn’s post-test for sequential pairwise
comparisons and significant differences at p<0.05 depicted by letters “a”, “b”, “c” and “d” as compared to NI, CCC(-), CCC(+) and CCC(++), respectively. All significant differences are
highlighted in bold format.
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TNFCD16; TNFCD8; TNFCD19) and IFN-g (IFNCD16)
counterbalanced by IL-10 (IL10CD14; IL10CD8; IL10CD19)
was the hallmark of asymptomatic/CCC(-) hosts. On the other
hand, a predominant pro-inflammatory profile triggered by
TNF-a (TNFCD14; TNFCD14/16/DR; TNFCD4; TNFCD8;
TNFCD19) and IFN-g (IFNCD16; IFNCD4; IFNCD8) with
minor increased production of IL-10 (IL10CD14/16/DR;
IL10CD19) was observed in hosts with mild/CCC(+) chagasic
cardiopathy. Furthermore, a prominent pro-inflammatory
profile generated by TNF-a (TNFCD14; TNFCD14/16/DR;
TNFCD19) and IFN-g (IFNCD4; IFNCD8) with a slight
contribution of IL-10 (IL10CD14) was identified in hosts with
moderate/CCC(++) chagasic cardiopathy (Figure 3).
Set of Phenotypic/Functional Biomarkers
Useful to Depict the Cardiac Lesion Status
in T. cruzi-Infected Cynomolgus Macaques
Venn diagram analyses were carried out to identify sets of
biomarkers differentially observed in T. cruzi-infected
cynomolgus macaques and non-infected controls, as well as
sets differentially observed among subgroups of T. cruzi-
infected animals classified according to histopathological
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
features of cardiac biopsies. The data are presented in Figure 4
and Supplementary Table 1.

Analysis of peripheral blood leukocytes revealed 11
biomarkers common to T. cruzi-infected cynomolgus
macaques (CH) and non-infected controls (NI), 7 biomarkers
that were distinct for the NI group, and 18 biomarkers that were
distinct for the CH group (Supplementary Table 1). Four
biomarkers were the hallmark of asymptomatic/CCC(-) hosts
(CD3+CD16+CD56+; CD3+CD16-CD56+; CD16+CD54+;
CD4+CCR5+); two biomarkers were commonly observed in
hosts with chronic chagasic cardiopathy, including
CD16+GranA+ and CD8+CD54+; and CD8+HLA-DR+ and
CD8+GranA+ were selectively observed in hosts with mild/
CCC(+) chronic chagasic cardiopathy.

In the spleen compartment, Venn Diagram analysis
demonstrated that 8 common biomarkers were identified in
T. cruzi-infected cynomolgus macaques (CH) and non-
infected controls (NI). Sets of 19 and 8 biomarkers were
discriminatory for CH and NI, respectively (Supplementary
Table 1). Six biomarkers were selectively found in asymptomatic/
CCC(-) hosts (CD16+CD56+; CD3+CD16+; CD3+CD16+CD56+;
CD3+; CD4+CD54+; CD4+CCR5+). Two phenotypic feature
were commonly observed in hosts with chronic chagasic
FIGURE 3 | Ex vivo cytokine signatures of peripheral blood leukocytes from T. cruzi-infected cynomolgus macaques classified according to histopathological
features of chronic chagasic cardiopathy. The functional cytokine signatures were constructed based on the proportion of subjects with intracytoplasmic cytokine
levels above the global median cut-off defined for each cell subset, calculated for the entire study population. Radar charts were built to obtain the overall profile of
pro-inflammatory (left side) and regulatory (right side) cytokines for innate and adaptive immunity cells. Distinct color backgrounds were used to tag the non-infected

controls (NI = ) and the subgroups of T. cruzi-infected cynomolgus macaques, classified according to histopathological features of cardiac biopsies and referred

to as CCC(–) for absence of chronic chagasic cardiopathy ( ); CCC (+) for mild chronic chagasic cardiopathy ( ) and CCC (++) for moderate chronic chagasic
cardiopathy ( ). The biomarkers with frequencies above the 50th percentile were highlighted for each group by bold underline format.
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cardiopathy, including CD3+CD69+ and CD8+GranA+ while
CD4+CD69+ and CD8+CD69+ were observed in hosts with
mild/CCC(+) chronic chagasic cardiopathy. Furthermore, four
biomarkers (CD14+CD32+; CD16+GranA+; CD8+GranB+;
CD8+HLA-DR+) were selectively found in hosts with
moderate/CCC(++) chronic chagasic cardiopathy (Figure 4A
and Supplementary Table 1).

Sets of functional biomarkers were also identified to depict the
cardiac lesion status in T. cruzi-infected cynomolgus macaques.
Data demonstrated that 12 functional features were able to
discriminate T. cruzi-infected cynomolgus macaques (CH)
from non-infected controls (NI) (Supplementary Table 1).
Two biomarkers were selectively observed in asymptomatic/
CCC(-) hosts (TNF+CD16+; IL10+CD19+), underscoring a
balanced cytokine profile. On the other hand, a clear pro-
inflammatory profile was observed in hosts with chronic
chagasic cardiopathy, mediated by TNF+CD14+CD16+HLA-
DR++. Additionally, TFN+CD4+ counts for the pro-
inflammatory milieu observed in hosts with mild/CCC(+)
chronic chagasic cardiopathy, whereas INF+CD4+; INF+CD8+

further contribute for the exacerbated inflammatory
microenvironment in hosts with moderate/CCC(++) chronic
chagasic cardiopathy (Figure 4B and Supplementary Table 1).
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DISCUSSION

Non-human primates are recognized models for studying a wide
range of human infectious diseases. In fact, the study of natural or
experimental infectious diseases in non-human primates has
enabled the development of improved vaccines, diagnostic tools,
and therapeutic strategies for human diseases (Gardner and
Luciw, 2008). Cynomolgus macaques have been suggested as
useful models for studies on Chagas disease, based on PCR
assessment of T. cruzi in cardiac tissue, histopathological
features, and electrocardiograms (Zabalgoitia et al., 2003;
Williams et al., 2009; Padilla et al., 2021), as well as phenotypic
and functional features of immune response that these animals
share in common with humans after natural infection with
T. cruzi (Sathler-Avelar et al., 2016; Vitelli-Avelar et al., 2017;
Padilla et al., 2021). Aiming at further understanding the immune
response of cynomolgus macaques that were naturally infected
with T. cruzi, the present investigation enabled a detailed
immunophenotypic and functional analysis of peripheral blood
and spleen cells, and identification of their unique and shared
features in relation to cardiac histopathological lesion status. For
this purpose, the animals were classified as CCC(-), CCC(+) and
CCC(++), designating their diagnosis of asymptomatic, mild or
A

B

FIGURE 4 | Set of phenotypic/functional biomarkers useful to depict the cardiac lesion status in T. cruzi-infected cynomolgus macaques. (A) Venn diagram analyses
were carried out to identify common and selective phenotypic biomarkers in peripheral blood and spleen samples from T. cruzi-infected cynomolgus macaques

(CH = ) and non-infected controls (NI = ), and subsequently among subgroups of T. cruzi-infected macaques, classified according to histopathological

features of cardiac biopsies and referred as CCC (–) for absence of chronic chagasic cardiopathy ( ); CCC (+) for mild chronic chagasic cardiopathy ( ) and
CCC (++) for moderate chronic chagasic cardiopathy (). (B) Venn diagram analyses were performed to select, within the intracytoplasmic cytokine profile of
peripheral blood leukocytes upon TcI-Ag recall in vitro, the common and unique functional biomarkers for T. cruzi-infected cynomolgus macaques (CH) and non-
infected controls (NI) and subsequently among the CCC (–), CCC (+) and CCC (++) groups. The selected sets of biomarkers are shown in the figure. Detailed data
and conventional statistical analysis is presented in Supplementary Table 1.
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moderate chronic chagasic cardiopathy, respectively. Overall, our
data demonstrated that CCC(-) macaques displayed increased
levels of circulating and splenic monocytes, NK cells and NKT
cells, by comparison with non-infected animals, suggesting that
these cells may play a role in protecting against heart disease.
These findings are in agreement with those previously reported by
Vitelli-Avelar and co-workers (Vitelli-Avelar et al., 2005; Vitelli-
Avelar et al., 2006), showing that asymptomatic, indeterminate
Chagas disease patients exhibited an immune response profile
characterized by increased levels of circulating proinflammatory
monocytes (CD14+CD16+HLA‐DR++), and a high frequency of
NKT-cells (CD3+CD16-CD56+) along with an elevated frequency
of NK-cells (CD3-CD16+CD56+ and CD3-CD16+CD56dim).
A comparative analysis of these immunophenotypes in
asymptomatic children (Vitelli-Avelar et al., 2006) and patients
with late chronic indeterminate form of Chagas disease (Vitelli-
Avelar et al., 2005) suggested that a shift of circulating leukocytes
toward high values of macrophage‐like cells as well as a high
frequency of NK-cells and NKT-cells are associated with limited
tissue damage and the establishment/maintenance of a lifelong
stable and asymptomatic form of chronic Chagas disease. The
protective role of monocytes in asymptomatic Chagas disease has
been already postulated. It has been shown that in vitro T. cruzi-
infection of monocytes from indeterminate patients led to a
decreased expression of HLA-DR, but increased expression of
CD80 (Souza et al., 2004). While lower HLA-DR expression
contributes to maintain T-cell activation at low levels, the
increased level of CD80, a ligand for CTLA-4 which is up-
regulated on T-cells from indeterminate patients, is likely to
contribute for the modulation of T-cell response in asymptomatic
patients (Dutra et al., 2009).

Our results also demonstrated that a robust adaptive cell‐
mediated inflammatory response, characterized by increased levels
of CD8+ activated T-cells, along with a high frequency B-cells, are
the hallmarks of hosts with mild/CCC(+) and moderate/CCC(++)
chronic chagasic cardiopathy. High levels of circulating activated
CD8+ T-cells have been reported in patients with late cardiac
Chagas disease. These data re-enforce that strong activation of
CD8+ T-cells could lead to tissue damage and the development of
cardiomyopathy in Chagas disease. In fact, Reis and colleagues (Reis
et al., 1993) have shown that these cells, many of which express
Granzyme A, are predominant in cardiac tissues from patients with
severe chronic chagasic cardiomyopathy. Only a few macrophage-
like monocytes and small numbers of NK-cells or B lymphocytes
were reported in cardiac lesions (Reis et al., 1993). These findings in
human Chagas disease support the hypothesis that CD8+ T-cells
play an immunopathological role in Chagas disease. Previous
studies have demonstrated that activated CD8+ T-cells can also be
observed in some patients with indeterminate Chagas disease
(Dutra et al., 1994). However, it has been shown that CD8+ T-
cells from indeterminate patients displayed an up-regulated
expression of CTLA-4 (Souza et al., 2007), suggesting that these
cells may be self-regulated, possibly due to intrinsic regulation via
CTLA-4 (Dutra et al., 2009).

Increased levels of CD4+CCR5+ T-cells were observed in the
asymptomatic/CCC(-) macaque hosts. CCR5 is considered to be
a classic pro-inflammatory chemokine receptor, preferentially
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
expressed by NK-cells, macrophages, antigen-presenting cells,
activated and effector memory T-cells, but also expressed by
regulatory T-cells (Bonecchi et al., 1998; Huehn and Hamann,
2005; Scurci et al., 2018). It has been shown that, at sites of
infection or tissue damage, CCR5 ligands recruit the ingress and
activation of effector cells to release chemokines and to further
amplify the pro-inflammatory cascade (Bachelerie et al., 2014).
However, CCR5 stimulation may also modulate the activation,
behavior and survival of immunity cells in tissues (Kohlmeier
et al., 2011). Therefore, the involvement of CCR5 in the
recruitment of regulatory T-cells (Huehn and Hamann, 2005)
indicates a dual role for this receptor, not only inducing but also
resolving inflammatory response. Previous studies have tried to
decipher whether CCR5 plays a role in the development of
cardiac injuries or if it is a protective biomarker in Chagas
disease (Talvani et al., 2004; Nogueira et al., 2012; de Oliveira
et al., 2016; Miranda et al., 2017; Roffe et al., 2019). CCR5+ T-
cells have been found in association with T. cruzi nests and
antigens in heart tissue during murine acute infection, suggesting
a direct anti-parasitic role (Marino et al., 2004) as well as its
involvement in immunopathological mechanisms (Marino et al.,
2005). Nogueira and colleagues (Nogueira et al., 2012)
demonstrated CCR5 expression on mononuclear cells in the
myocardium of cardiac patients, but a comparative analysis was
not carried out on biopsies from indeterminate asymptomatic
patients. Miranda and colleagues (Miranda et al., 2017) did not
find differences in the percentages of CCR5+ T-cells, both CD4+

and CD8+, in peripheral blood from patients with different
clinical forms of Chagas disease. Consistent with our findings,
a previous study has shown a correlation between the CCR5
expression and the degree of heart function, such that the more
severe the chronic chagasic cardiomyopathy, the lower the
expression of CCR5 by circulating CD4+ and CD8+T-cells
(Talvani et al., 2004). The expression of CCR5 by T-cells has
been recently addressed by Roffe and colleagues (Roffe et al.,
2019) showing that the percentage of effector and effector
memory CCR5+ T-cells, both CD4+ and CD8+, were increased
in patients with cardiac Chagas disease. Being somewhat
controversial, the role of chemokine receptor CCR5 in the
pathogenesis of cardiac Chagas disease needs to be investigated
further. More studies are required to identify the exact role of this
chemokine receptor in T. cruzi-induced heart injury and also in
distinct clinical forms of Chagas disease.

The immunophenotypic profi les associated with
histopathological characteristics in T. cruzi-infected cynomolgus
macaques resemble those observed in human Chagas
disease, demonstrating that besides developing comparable
histopathological features (Gardner and Luciw, 2008; Williams
et al., 2009), these animals also have a similar immune response in
relation to the distinct clinical forms (Vitelli-Avelar et al., 2005;
Vitelli-Avelar et al., 2006; Dutra et al., 2009). It is well established
that T. cruzi infection simultaneously elicits multiple functional
events of innate and adaptive immunity, leading to systemic
production of pro-inflammatory and regulatory cytokines. This
complex microenvironment requires the participation of distinct
cell phenotypes throughout the activation of innate immune
responses, mediated by NK-cells and macrophages in
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conjunction with adaptive immunity, involving distinct T-cell
subsets (Dutra et al., 2009; Dutra et al., 2014). In this sense, our
results demonstrated that there was a typical pro-inflammatory/
anti-inflammatory immune-modulated profile in CCC(-) hosts,
mediated by a mixed TNF/IFN/IL-10 cytokine milieu.
Conversely, hosts with mild/CCC(+) or moderate/CCC(++)
chronic chagasic cardiopathy exhibited a predominant pro-
inflammatory profile, with prominent production of TNF and
IFN. These findings are in agreement with those previously
reported for human patients with distinct clinical forms of
Chagas disease (Teixeira-Carvalho et al., 2002; Gomes et al.,
2003; Dutra et al., 2009; Sathler-Avelar et al., 2012; Dutra et al.,
2014), demonstrating that this pattern characteristic in Chagas
disease of primate species.

The functional aspects of distinct cell subsets have been
extensively investigated in regard to the induction or modulation
of immunopathology in clinical forms of Chagas disease (Reis et al.,
1993; Corrêa-Oliveira et al., 1999; Vitelli-Avelar et al., 2005; Dutra
et al., 2009; Dutra et al., 2014; Acevedo et al., 2018). Dutra and
colleagues (Dutra et al., 2014) have published an extensive review of
the immunoregulatory mechanisms involved in human T. cruzi
infection, discussing the predominance of an anti-inflammatory
milieu in indeterminate patients while an inflammatory profile is
typically observed in the cardiac form of Chagas disease. It has been
shown that different kinetics of cytokine production is relevant for
determining the fate of Chagas disease. It is well known that, while
pro-inflammatory cytokines, such as TNF and IFN-g, are relevant to
trigger immunological mechanisms to control the parasite growth;
the establishment of immunomodulatory events, mediated by IL-10,
is essential to prevent disease morbidity. In fact, this balance
requires fine tuning between the over production of pro-
inflammatory cytokines and the production of IL-10 to prevent
an immunosuppressive effect on the cellular response, enough to
allow the control of the parasite, but not so much as to cause tissue
damage (Dutra et al., 2014).

Classical studies have proposed that the phenotypic and
functional aspects of peripheral blood leukocytes population
observed in T. cruzi-infected hosts are similar to those found at
the tissue level (Reis et al., 1993; Higuchi et al., 2003; Fonseca et al.,
2007; Vitelli-Avelar et al., 2008; Dutra et al., 2009; Cunha-Neto and
Chevillard, 2014). In the present study we did not have the
opportunity to characterize the cardiac inflammatory infiltrate by
Immunohistochemistry analysis. However, it has been previously
demonstrated that cynomolgus macaques naturally infected with T.
cruzi exhibited mild to moderate multifocal areas of inflammatory
infiltrates that were composed mainly of mononuclear cells with
fewer neutrophils. The immunohistochemistry revealed that the
mononuclear cells were predominantly CD8+ and CD68+ with
fewer CD4+ lymphocytes (Pisharath et al., 2013), indicating an
inflammatory profile similar to that observed in humans (Reis et al.,
1993; Higuchi et al., 2003).

In summary, we have presented a broad analysis of several
phenotypic and functional aspects of peripheral blood leukocytes
and spleen cells from cynomolgus macaques that were naturally
infected with T. cruzi, in relation to cardiac histopathological
characteristics. Altogether our data revealed that cynomolgus
macaques display histological features that are associated with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
particular profiles of immune response similarly to those observed
in humans. These similarities further sustain the employment of
cynomolgus macaques in pre-clinical research on Chagas disease
and provide insights about the mechanisms implicated in the
development and maintenance of chagasic heart disease.
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Supplementary Figure 1 | Flow cytometry gating strategy. Ex vivo
immunophenotypic analysis of peripheral blood leukocytes (A) and
splenocytes (B) were carried out by flow cytometry as described in Material and
Methods. Lymphocytes were first gated based on their size and granularity
properties using pseudocolor plots of Forward Scatter (FSC) vs Side Scatter
(SSC). CD3+ T-cells were further selected within gated lymphocytes. Following,
CD4+ and CD8+ T-cells were gated within CD3+ T-cells. Phenotypic features of
CD4+ and CD8+ T-cells were then analyzed on bidimensional pseudocolor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
plots (e.g. CCR5+, Gran-A+, CD69+ and Gran-B+). Ex vivo functional analysis
strategy of peripheral blood leukocytes (C) were also assessed by intracytoplasmic
immunophenotyping. Total lymphocytes were first gated on a Forward Scatter
(FSC) vs Side Scatter (SSC) plot, followed by CD3+ T-cells and CD4+ and CD8+

T-cell subsets gating. Selection of CD20+ B-cells was also carried out within
gated lymphocytes. Functional features cell subsets were quantified as
cytokine+ events on bidimensional pseudocolor plots (e.g. TNF-a+, IFN-g+,
and IL-10+).
REFERENCES
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