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Abstract
Hearing loss is a common sensory deficit in both humans and dogs. In canines, the genetic basis is largely unknown, as genetic 
variants have only been identified for a syndromic form of hearing impairment. We observed a congenital or early-onset 
sensorineural hearing loss in a Rottweiler litter. Assuming an autosomal recessive inheritance, we used a combined approach 
of homozygosity mapping and genome sequencing to dissect the genetic background of the disorder. We identified a fully 
segregating missense variant in LOXHD1, a gene that is known to be essential for cochlear hair cell function and associated 
with nonsyndromic hearing loss in humans and mice. The canine LOXHD1 variant was specific to the Rottweiler breed in 
our study cohorts of pure-bred dogs. However, it also was present in some mixed-breed dogs, of which the majority showed 
Rottweiler ancestry. Low allele frequencies in these populations, 2.6% and 0.04%, indicate a rare variant. To summarize, our 
study describes the first genetic variant for canine nonsyndromic hearing loss, which is clinically and genetically similar to 
human LOXHD1-related hearing disorder, and therefore, provides a new large animal model for hearing loss. Equally impor-
tant, the affected breed will benefit from a genetic test to eradicate this LOXHD1-related hearing disorder from the population.

Introduction

Hearing loss (HL) is the most common sensory impairment 
and consequently constitutes a major medical issue, affect-
ing 1–3/1000 newborns and becoming more prevalent by 
age (Morton and Nance 2006). It is a both clinically and 
genetically heterogeneous disorder: the severity of the hear-
ing impairment varies and the age of onset ranges from con-
genital and early-onset to late-onset. Other symptoms may 
accompany hearing impairment, but nonsyndromic hearing 
loss (NSHL) is the predominant type. Genetic factors con-
tribute to more than half of the congenital and early child-
hood nonsyndromic forms, and variants have been reported 

in over 100 genes to date (https:// hered itary heari ngloss. 
org/). Despite the accumulating knowledge, a large num-
ber of patients remain without a molecular diagnosis. Thus, 
there is a need to better understand the molecular underpin-
nings of hearing loss and the associated genes and variants 
in cochlear biology and disease pathophysiology.

The molecular genetics of hearing loss can be addressed 
by studying spontaneous hearing defects in purebred dogs. 
Over the past century, selective breeding of dogs has led to 
hundreds of breeds with specific genomic architectures and 
the formation of genetic isolates, which can significantly 
facilitate gene discovery in small study cohorts (Lindblad-
Toh et al. 2005). Both syndromic and nonsyndromic con-
genital as well as adult-onset hearing loss have been reported 
in dogs across breeds (Strain. 2015), yet their genetic back-
ground remains mostly uncharacterized. The most common 
form of hearing loss in dogs is pigment-associated congeni-
tal sensorineural deafness, which occurs in breeds with a 
lack of pigmentation or piebaldism (De Risio et al. 2016; 
Comito et al. 2012; Platt et al. 2006; Strain 2004). The trait is 
associated with regulatory variants in melanocyte inducing 
transcription factor (MITF) (Karlsson et al. 2007). Another 
syndromic type of HL is a recessive congenital deafness 
and vestibular syndrome observed in Doberman Pinschers, 

 * Hannes Lohi 
 hannes.lohi@helsinki.fi

1 Department of Medical and Clinical Genetics, University 
of Helsinki, Helsinki, Finland

2 Folkhälsan Research Center, Helsinki, Finland
3 Department of Veterinary Biosciences, University 

of Helsinki, Helsinki, Finland
4 Genoscoper Laboratories, Helsinki, Finland
5 Wisdom Health, Vancouver, WA, USA

http://orcid.org/0000-0003-1087-5532
https://hereditaryhearingloss.org/
https://hereditaryhearingloss.org/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-021-02286-z&domain=pdf


1612 Human Genetics (2021) 140:1611–1618

1 3

which is linked to variants in myosin VIIA (MYOA7) and 
tyrosine phosphatase, receptor type Q (PTPRQ) (Webb 
et al. 2019; Guevar et al. 2018). In addition to the congenital 
HL forms, an adult-onset hearing defect has been reported 
in Border Collies and mapped to canine chromosome 6 
(Yokoyama et al. 2012). In our study, we observed sensori-
neural hearing loss in Rottweilers and utilized genome-wide 
array genotyping and genome sequencing to identify a fully 
segregating novel missense variant in LOXHD1, a known 
hearing loss gene in human.

Materials and methods

Study cohorts

EDTA blood samples were collected from 585 privately 
owned Rottweiler dogs, including four affected littermates. 
The samples were stored at − 20 °C until genomic DNA 
was extracted using a semi-automated Chemagen extrac-
tion robot (PerkinElmer Chemagen Technologie GmbH). 
DNA concentration was determined either with NanoDrop 
ND-1000 UV/Vis Spectrophotometer or Qubit 3.0 Fluorom-
eter (Thermo Fisher Scientific Inc.). Sample collection was 
ethically approved by the Animal Ethics Committee of State 
Provincial Office of Southern Finland (ESAVI/343/04.10. 
07/2016 and ESAVI/25696/2020).

Homozygosity mapping

Four affected littermates, one unaffected littermate and two 
unrelated unaffected Rottweilers were genotyped using the 
CanineHD Whole-Genome Genotyping BeadChip con-
taining 173,662 markers (Lincoln, NE, USA). Pre-analyt-
ical QC was conducted using PLINK (version 1.96b6.20, 
Chang et al. 2015) and included pruning for sample call rate 
of > 95%, marker call rate of > 95%, and Hardy–Weinberg 
equilibrium p value < 1 ×  10–8. One of the cases was dis-
carded due to a poor call rate. As recommended by Meyer-
mans et al. (2020), pruning for minor allele frequency or LD 
was not performed. After QC, three cases and three controls, 
as well as 154,235 markers remained for analysis.

Detection of runs of homozygosity (ROH) was also per-
formed with PLINK 1.9 (Chang et al. 2015). Two rounds of 
analyses were conducted: first, the optimization of popula-
tion-dependent parameters using simulated data; and second, 
detection of ROH shared by the affected dogs. In both analy-
ses, the minimum marker size for ROH (--homozyg-snp) was 
set to 70 based on the formula described by Purfield et al. 
(2012) with α = 0.05, Ns = 154,235, Ni = 6 and mean SNP 
heterozygosity = 0.21 as evaluated using an in-house Python 
script. Furthermore, the parameters --homozyg-window-snp, 

--homozyg-window-missing, --homozyg-window-het, 
--homozyg-window-threshold and --homozyg-kb were set 
to a fixed value depending on the analysis (Table 1).

Finally, to establish suitable values for ROH density and 
maximum gap, genotypes for a fully homozygous individ-
ual were simulated based on the population map file and 
analyzed for maximal genome coverage as described by 
Meyermans et al. (2020). To calculate maximum genome 
coverage for the simulated genome, --homozyg-gap was set 
to 2000 kb and --homosyg-density to 200 kb/snp; genome 
coverage was determined as the total length of the resulting 
ROH. The simulated genome was then analyzed by varying 
--homozyg-density from 10 to 125 kb/snp in increments of 
5 kb and --homozyg-gap from 20 to 1000 kb in increments 
of 20 kb (Table 1).

Based on the simulation, density was set to 30 kb/snp and 
maximum gap to 200 kb, as genome coverage reached 100% 
for --homozyg-density at 30 and increased only negligibly 
for --homozyg-gap after 200. Using these parameters, detec-
tion of ROH was performed with --homozyg-group. ROH 
included in further analyses were required to be allelically 
shared by all three cases and either allelically different or 
absent in the controls.

Whole‑exome and ‑genome sequencing

Whole-exome sequencing (WES) was carried out for one 
affected dog of the initially identified Rottweiler litter. The 
exome library was prepared with 140702_canFam3_exome-
plus_BB_EZ_HX1 kit with a capture size of 152 Mb from 
the Roche NimbleGen SeqCap EZ target enrichment design 
(Broeckx et al. 2015). The library was sequenced with the 

Table 1  Values used for parameter optimization and detection of 
shared ROH in PLINK

Parameter Values by analysis type

Parameter optimization Detection of 
shared ROH

--homozyg-window-snp 20 50
--homozyg-window-

missing
1 1

--homozyg-window-het 0 1
--homozyg-window-

threshold
0.05 0.05

--homozyg-snp 70 70
--homozyg-kb 1000 kb 1000 kb
--homozyg-gap 2000 kb (when unvaried)

20–1000 kb (when varied)
200 kb

--homozyg-density 200 kb/snp (when unvar-
ied)

10–125 kb/snp (when 
varied)

30 kb/snp
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Illumina NextSeq500 platform with a read length of 300 bp 
(paired-end reads, 2 × 150 bp) and a coverage of 38× at the 
Biomedicum Functional Genomics Unit (University of Hel-
sinki, Finland). The exome sequence data analysis, includ-
ing quality control, mapping, alignment post-processing, 
single nucleotide variant calling and small indel calling, 
was performed as described previously (Hytönen et  al. 
2019). Whole-genome sequencing (WGS) was conducted 
on another affected Rottweiler from the same litter on Illu-
mina HiSeq2000 high-throughput sequencing platform with 
a read length of 100 bp (paired-end reads, 2 × 100 bp) and a 
coverage of 15× at the University of Bern. Reads from the 
WGS sample were processed using SpeedSeq open-source 
software with bwa (v0.7.15) for alignment, SAMBLASTER 
for marking duplicate reads, sorting and BAM compression 
using Sambamba (Chiang et al. 2015).

For WGS sample, the variant calling of single nucleo-
tide variants (SNVs) and small insertions and deletions 
(indels) was done using the HaplotypeCaller in gVCF mode 
(v3.7-0), which is combined with gVCFs from our cohort 
with combineGVCFs and joint genotyping was done by 
GenotypeGVCFs in Genome Analysis Tool Kit GATK ver-
sion 4.1 (McKenna et al. 2010). Mobile Element Locator 
Tool (MELT) was used to detect mobile element insertions 
(Gardner et al. 2017) and the reference sequences of the 
transposons for mobile element insertion (MEI) discovery 
were retrieved from the Repbase database (Jurka et al. 2005). 
The DELLY software was used to detect structural variants 
(SVs), including deletions, duplications, inversions and 
insertions by independent commands (Rausch et al. 2012). 
Functional annotation of variants from both WES and WGS 
samples was done using Ensembl release100 and NCBI 
Canis lupus familiaris Annotation Release 105.

The aligned bam files were submitted to SRA with 
the BioProject accession PRJNA702911. The sample 
accession for the exome sample is SAMN17983069 and 
SAMN17983068 for the WGS sample.

NCBI transcript XM_022421426.1 and UniProt sequence 
J9PAE4 were used to count the nucleotide and amino acid 
positions for LOXHD1.

Variant analysis

The identified variants were imported into a webGQT vari-
ant server deployed locally on in-house canine variant data-
sets for inheritance model-based candidate variant filter-
ing (Arumilli et al. 2020). The variant data of the affected 
dogs were filtered against 637 control genomes (Online 
Resource 1) when filtering SNVs and indels, assuming an 
autosomal recessive inheritance of the disease and allowing 
a maximum of two heterozygous calls for each variant in 
the controls. The WGS data of one affected dog were fil-
tered against 290 control genomes (Online Resource 1) when 

filtering for MEIs and SVs. For SNVs and indels, both cases 
were required to share the variants in the homozygous state; 
for SVs and MEIs, only the WGS case was used and both 
homozygous and heterozygous calls were included to allow 
for inaccuracies in calling. Prediction of the variant patho-
genicity was assessed using PROVEAN (Choi and Chan 
2015; Choi et al. 2012) and Poly-Phen2 software (Adzhubei 
et al. 2010). Finally, homology analysis of a candidate causal 
variant in the LOXHD1 gene was performed by retrieving 
orthologous genes for XP_022277134.1 with NCBI’s blastp 
web interface and aligning them with COBALT (Johnson 
et al. 2008; Papadopoulos and Agarwala 2007).

Genomic DNA analysis

Genotyping of individual dogs was performed with PCR fol-
lowed by Sanger sequencing. The DNA template was ampli-
fied using a forward primer (5′–GCT GTG TGT TGG AGA 
AGC AA–3′) and a reverse primer (5′–TAG TTG CCT GAC 
ACC CTG AG–3′) flanking the LOXHD1 variant with Taq 
polymerase (Biotools B&M Labs, S.A.). The products were 
directly sequenced using the PCR primers on an ABI 3730 
capillary sequencer (Life Technologies) after treatment with 
exonuclease I (New England Biolabs) and rapid alkaline 
phosphatase (Roche Diagnostics). The Sanger sequence data 
were analyzed using either Sequencher 5.4 (GeneCodes) or 
Unipro UGENE v1.32.0 (Rose et al. 2019; Okonechnikov 
et al. 2012; Golosova et al. 2014).

A sample of 28,116 dogs, including 374 different breeds 
(Online Resource 7), was submitted for commercial genetic 
testing at Genoscoper Laboratories (Wisdom Health Fin-
land) during 2017–2020. Another study sample of 771,864 
mixed-breed dogs was screened using Wisdom Panel™ 
(Wisdom Health, WA, USA) genetic testing, including breed 
detection assessment, during 2019–2021.

Results

Sensorineural bilateral deafness was diagnosed in four Rot-
tweiler siblings (one female and three males) in a litter of ten 
puppies using brainstem auditory evoked response (BAER) 
testing. BAER testing was performed either at 4 (n = 2), 5, or 
19 months of age, and no auditory response was detected in 
any of them. However, owners’ observations suggested that 
the puppies had already been affected by hearing impairment 
at a few weeks of age. No other clinical signs were observed.

We carried out a genome-wide analysis to identify can-
didate loci using three affected and three unaffected dogs. 
Homozygosity mapping resulted in 22 regions of case-spe-
cific, allelically matching runs of homozygosity (Fig. 1 and 
Online Resource 2). The regions spanned a total length of 
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62.3 Mb, the largest being 21.3 Mb on chromosome 1 at 
67,943,666–89,271,008.

Subsequently, we performed whole exome sequencing on 
one affected dog and, later, whole genome sequencing on 
another case. As a result of variant filtering, 32 homozy-
gous SNVs and indels shared by the two affected dogs were 
discovered; of these, six were located in case-specific ROH 
(Table 2, Online Resource 3). Second, 63 SVs and 32 MEIs 
called either homozygous or heterozygous and private to 
the sequenced affected dog were identified, and only one 
MEI resided in case-specific ROH (Table 2, Online Resource 
4–5).

Of the seven case-specific variants that resided in ROH, 
two exonic variants were considered for further analy-
ses. First, a G>C missense variant at chr7:44,806,821 in 

Fig. 1  Results of homozygosity mapping in three affected and three 
unaffected dogs. Case-specific, allelically matching ROH are indi-
cated in blue

Table 2  Case-specific SNVs 
and indels of two affected dogs 
(one WGS and one WES) and 
SVs and MEIs of one affected 
dog (WGS)

The variants were categorized according to NCBI Annotation Release 105
SNV single nucleotide variant, indel small insertion or deletion, SV structural variant, MEI mobile element 
insertion, ROH runs of homozygosity

Variants SNVs and indels (N) SVs (N) MEIs (N)

All In ROH All In ROH All In ROH

Total 32 6 63 0 32 1
Exonic 10 2 5 0 0 0
Intronic 13 3 18 0 6 0
Splicing 0 0 0 0 1 0
UTR 4 1 1 0 0 0
Other 5 0 39 0 25 1

Fig. 2  a Example chromatograms from Sanger sequencing of the 
chr7:44,806,821G>C variant. b Genotypes of four cases and three 
controls at a ROH at chr7:41.0–45.7  Mb. A distinct case-specific 
homozygous haplotype can be observed at 41.2–45.5  Mb. The bot-

tommost case was not included in ROH detection due to a poor call 
rate. c Schematic illustration of the domain structure of LOXHD1 
(J9PAE4)
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lipoxygenase homology domains 1 (LOXHD1), a gene that 
is known to cause hearing loss in humans and mice (Grillet 
et al. 2009), was predicted to result in a glycine-to-alanine 
substitution (Fig. 2). Similarly, a C>T missense variant at 
chr24:25,785,932 in maestro heat like repeat family mem-
ber 8 (MROH8) was predicted to cause a glycine-to-serine 
substitution. We assessed the pathogenicity of these variants 
in silico using two protein prediction tools, PROVEAN and 
PolyPhen-2. First, PROVEAN predicted both the LOXHD1 
and MROH8 substitutions as “deleterious” with a score of 
− 4.517 and − 3.336, respectively. Similarly, PolyPhen-2 
predicted the LOXHD1 variant as “probably damaging” with 
a HumVar score of 0.992 and the MROH8 variant as “pos-
sibly damaging” with a score of 0.550. As MROH8 has been 
associated with red blood cell volume, body mass index, 
telomere length and hippocampal atrophy in humans (Bun-
iello et al. 2019) and its predicted impact was less patho-
genic, making it an unlikely candidate variant, we focused 
on LOXHD1. The chr7:44,806,821G>C variant is predicted 
to cause a glycine-to-alanine substitution p.(G1914A) in the 
fourteenth PLAT domain of the canine LOXHD1 protein 
(Fig. 2c). 

In addition, we assessed the conservation of the G1914 
residue with multiple alignment of 99 Eutherian LOXHD1 
protein orthologs, including the dog (Online Resource 6). In 
these species, the glycine residue and several flanking amino 
acids are fully conserved.

To validate the LOXHD1 variant, we genotyped it in a 
cohort of 585 Rottweilers, including the four affected sib-
lings and 581 unaffected dogs. We observed complete seg-
regation of the variant with hearing loss, as all four affected 
dogs were homozygous for the variant. The unaffected dogs 
were either heterozygous (n = 33) or wild-type (n = 548). 
The six unaffected littermates of the probands were either 
wild-type or heterozygous for the variant. The allele fre-
quency in the population, excluding the affected family, was 
2.6% and carrier frequency 5.3%.

An additional sample of dogs submitted for commer-
cial genetic testing was screened for the LOXHD1 variant 
to explore its distribution across breeds. All 28,116 tested 
dogs representing 374 breeds, breed varieties or designer 
dog mixes were found homozygous for the wild-type allele 
(Online Resource 7). Finally, the variant was also screened 
in a larger study sample of 771,864 dogs submitted to 
genetic testing, including breed detection assessment. A 
variant carrier frequency of 0.08% and allele frequency of 
0.04% were observed in this dataset. Interestingly, six dogs 
were found homozygous for the LOXHD1 variant. We were 
able to contact the owners of 4/6 of the homozygous dogs 
and the owners reported profound hearing loss or deafness 
in all of them. One of the deaf dogs did not show any imme-
diate Rottweiler ancestry, while one was a purebred Rot-
tweiler and two were mixed-breed with Rottweiler ancestry. 

Altogether, of the dogs carrying at least one copy of the 
deafness candidate variant, 63.4% showed evidence of Rott-
weiler ancestry in their immediate three-generation pedigree 
going back to great-grandparents, providing further support 
for a link between this specific breed background and the 
presence of the variant.

According to a study by Riazuddin et al. (2012), heterozy-
gous LOXHD1 variants in humans have been suggested to 
contribute to autosomal dominant late-onset Fuchs endothe-
lial corneal dystrophy (FECD). For this reason, we assessed 
the eye examinations performed as a part of the breeding 
programs and regular health check-ups of the Rottweil-
ers genotyped either homozygous or heterozygous for the 
LOXHD1 variant. Two of the homozygous deaf dogs had 
been eye examined healthy, one at 2 years and the other 
at 8 years old. In addition, eye examination reports were 
available for 22/33 heterozygous dogs, examined between 
1 and 7 years and 4 months old. Three heterozygous dogs 
were diagnosed with different forms of cataract, which is a 
relatively common eye disease in Rottweilers. No signs of 
corneal dystrophy were reported in any of the dogs.

Discussion

We describe here a missense variant in LOXHD1 associated 
with an autosomal recessive congenital nonsyndromic hear-
ing loss in Rottweilers. The variant is rare, yet we confirmed 
it to be fully segregating with the disease in the breed. This 
is the first genetic defect identified for NSHL in dogs.

The dogs with the identified LOXHD1 variant had either 
congenital or early-onset hearing loss. The owners’ reports 
suggest that the puppies had at least some hearing impair-
ment already at a few weeks of age. However, the confirmed 
diagnosis by BAER was acquired later and by that time, the 
hearing loss was total. Therefore, it is likely that the hearing 
impairment was congenital and progressed to deafness in a 
few months, although this remains unconfirmed. The hearing 
loss in Rottweilers can be defined as nonsyndromic as the 
affected dogs showed no other consistent clinical features.

Congenital deafness has been reported in Rottweilers 
previously as sporadic cases (Coppens et al. 2001; Strain 
1996). Histopathological examination of one 4.5-month-
old bilaterally deaf Rottweiler puppy demonstrated severe 
degeneration of hair cells and spiral ganglion while the 
vestibular organ was unaffected (Coppens et al. 2001). 
Strikingly similar changes are seen in the samba mouse 
line generated in an ethylnitrosourea (ENU) mutagenesis 
screen, where a Loxhd1 missense variant leads to hear-
ing loss (Grillet et al. 2009). Stereociliary development 
in samba mice is normal, but hair cell function is altered 
by postnatal day 21 and hair cells eventually undergo 
degeneration followed by possibly secondary loss of spiral 
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ganglion neurons. Based on the similarities of the canine 
and murine models, it is probable that the histopathologi-
cal changes described in the previous Rottweiler cases 
represent the canine LOXHD1 c.1914G>A variant identi-
fied in this study. It can be concluded that LOXHD1 has 
an essential role in maintaining normal cochlear hair cell 
function. Interestingly, murine Loxhd1 is mainly expressed 
in the membrane of mature mechanosensory hair cells in 
the cochlea and high levels in testis, an organ also enriched 
with stereocilia. Its numerous PLAT (polycystin/lipoxyge-
nase/alpha-toxin) domains are likely involved in targeting 
the protein to the plasma membrane (Grillet et al. 2009; 
Bateman and Sandford 1999), but the specific function of 
LOXHD1 in ciliary structures remains unclear.

In humans, several variants in LOXHD1 have been 
reported to lead to autosomal recessive nonsyndromic 
hearing loss (ARNSHL) (DFNB77; OMIM #613079) 
(Bai et al. 2020; Maekawa et al. 2019; Shen et al. 2019; 
Zhang et al. 2019; Mori et al. 2015; Riazuddin et al. 2012; 
Edvardson et al. 2011; Grillet et al. 2009). The severity of 
the patients’ hearing impairment depends on the genetic 
defect and varies from mild to profound and is either 
stable or progressive. Moreover, the age of onset ranges 
from congenital to even adulthood. Interestingly, one of 
the human variants, p.(G1849R), is homologous in posi-
tion with the canine p.(G1914A) substitution. The patient, 
who was compound heterozygous for LOXHD1 with the 
p.(G1849R) and a p.(Y1541*) variant, had been diagnosed 
with severe congenital hearing loss at the age of two years 
(Plevova et al. 2017). The homology of the human and 
canine variant further suggests that substitution of the 
glycine residue interferes with the function of LOXHD1.

In addition to nonsyndromic hearing loss, an enrich-
ment of LOXHD1 variants in patients affected by Fuchs 
endothelial corneal dystrophy (FECD) has been observed 
in one study, suggesting that LOXHD1 could be relevant 
to the FECD pathogenesis (Riazuddin et al. 2012). Con-
versely, other studies have detected no association between 
LOXHD1 variants and FECD in the HL patients and their 
relatives (Bai et al. 2020; Wesdorp et al. 2018). Therefore, 
the link between FECD and LOXHD1 is yet unconfirmed, 
with a need for further evidence. We did not observe signs 
of corneal dystrophy in any of the eye examined dogs 
either homozygous or heterozygous for the LOXHD1 vari-
ant. However, we cannot exclude the possibility of later 
onset clinical signs.

In conclusion, we describe a rare novel missense variant 
in LOXHD1 associated with canine autosomal recessive 
nonsyndromic hearing loss, providing a new animal model 
for human hearing disorders. The variant was observed to 
be specific to the Rottweiler breed. The affected breed will 
benefit from a genetic test to eradicate the hearing impair-
ment from the population.

Supplementary Information The online version contains supplemen-
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