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ABSTRACT
Despite advances in cancer diagnosis and treatment strategies, robust prognostic 

signatures remain elusive in most cancers. Cell proliferation has long been recognized 
as a prognostic marker in cancer, but the generation of comprehensive, publicly 
available datasets allows examination of the links between cell proliferation and cancer 
characteristics such as mutation rate, stage, and patient outcomes. Here we explore 
the role of cell proliferation across 19 cancers (n = 6,581 patients) by using tissue-
based RNA sequencing data from The Cancer Genome Atlas Project and calculating a 
‘proliferative index’ derived from gene expression associated with Proliferating Cell 
Nuclear Antigen (PCNA) levels. This proliferative index is significantly associated with 
patient survival (Cox, p-value < 0.05) in 7 of 19 cancers, which we have defined as 
“proliferation-informative cancers” (PICs). In PICs, the proliferative index is strongly 
correlated with tumor stage and nodal invasion. PICs demonstrate reduced baseline 
expression of proliferation machinery relative to non-PICs. Additionally, we find the 
proliferative index is significantly associated with gross somatic mutation burden 
(Spearman, p = 1.76 x 10−23) as well as with mutations in individual driver genes. 
This analysis provides a comprehensive characterization of tumor proliferation indices 
and their association with disease progression and prognosis in multiple cancer types 
and highlights specific cancers that may be particularly susceptible to improved 
targeting of this classic cancer hallmark.

INTRODUCTION

A fundamental characteristic of cancer cells is their 
ability to maintain the capacity to proliferate, bypassing 
the homeostatic signaling network controlling cell division 
in normal tissue. The capacity to “sustain proliferative 
signaling”, “enable replicative immortality”, and “evade 
growth suppressors” represent three of the original 
six hallmarks of cancer, and histological techniques 
examining the number of mitotic cells present in tumor 
biopsies have been used clinically to assess tumor grade 
for several decades [1, 2]. Although proliferation is a clear 
hallmark of cancer, tumor evolutionary tradeoffs may exist 
in certain tumor types or stages that prioritize resources 

for other processes promoting survival like metastasis 
[3, 4], angiogenesis [5–7], immune system evasion [8, 9], 
drug efflux [10, 11], DNA repair [12, 13], drug resistance 
[14], or reactive oxygen species (ROS) regulation [15]. 
Characterizing these tradeoffs is critical to achieving 
a complete understanding of tumor progression and 
selecting appropriate therapies [16].

Early studies comparing tumor with adjacent normal 
tissue identified expression changes in genes controlling 
cell proliferation as some of the largest and most consistent 
cancer alterations and further associated proliferation 
signatures with poor patient prognosis and advanced tumor 
grade [17–22]. More recently, large-scale sequencing 
efforts have described driver mutations that hijack normal 
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proliferation machinery. For example, approximately 40% 
of melanomas carry activating BRAF mutations which 
modulate proliferation by constitutively activating the 
downstream mitogen activated protein kinase (MAPK) 
pathway [23]. Multiple tumor types also harbor activating 
mutations in phosphoinositide 3-kinase (PI3K) that 
hyperactivate AKT/mTOR signaling and several other 
pathways important for regulating proliferation [24]. 
Accordingly, a majority of cytotoxic chemotherapies 
preferentially target the increased proliferation rate 
of cancer cells by damaging DNA in dividing cells or 
impairing vital replication machinery [25, 26].

Venet et al. derived a general index of proliferation, 
‘metaPCNA’, by identifying the top 1% of genes most 
positively correlated with the proliferation marker PCNA 
(proliferating cell nuclear antigen) across 36 healthy tissue 
types and demonstrated that it significantly outperformed 
a majority of prognostic signatures developed for 
breast cancer (Supplementary Table 1) [27, 28]. Further 
highlighting the importance of proliferation rate, they 
determined that a majority of variation in breast cancer 
transcriptomes is correlated with proliferation and most 
random gene sets are significantly associated with breast 
cancer outcome due to their inherent relationship with 
a broad underlying proliferation signature [27, 28]. 
In our study, we examine the relative importance of 
proliferation to disease progression and patient prognosis 
across cancers using RNA-sequencing (RNA-seq) 
profiles from 19 cancers in 6,581 patients catalogued 
by The Cancer Genome Atlas (TCGA). We contrast 
these with 30 normal tissues from 8,553 patients from 
the Genotype-Tissue Expression (GTEx) Project to 
investigate proliferation indices across tissues types 
and disease stages (Supplementary Tables 2 and 3). We 
also demonstrate a strong relationship between tumor 
proliferation signatures and somatic mutation burden 
and identify genes containing single nucleotide variants 
associated with a proliferative phenotype across cancers. 
Finally, we provide on open-source R package, which 
calculates proliferation index based on gene expression 
and allows comparison of a proliferation-based model to 
models based on user-identified genes.

RESULTS

Proliferation index varies across tissues, cancer 
types, and tumor pathology

We compiled RNA-seq and associated clinical 
annotation data for 6,581 patients across cancers 
originating from 19 tissues. To be included in this study, 
clinical and RNA-seq data for a given cancer must 
have been available for at least 50 patients and at least 
25 patients must have died from the disease to provide 
uncensored survival information. Examination of the 

proliferative index (PI), a measure of cell proliferation, 
within and across tumor types revealed a continuum of 
index values within each cancer and notable differences 
between cancers (Figure 1A). We compared tumor PI to 
previously compiled scores of tumor purity describing 
the proportion of non-cancerous cells within a sample 
across TCGA samples [29] as well as hematoxylin and 
eosin staining provided in clinical files associated with 
each sample. We found weak correlation with each metric 
(Spearman rank coefficient (rho) = 0.096 and −0.074) 
indicating that PI is largely independent of tumor purity 
estimates. An analysis of PI in healthy GTEx tissues 
revealed low PI values in post-mitotic tissues such as 
skeletal muscle and brain tissue and higher values in 
Epstein-Barr virus-transformed lymphocytes or tissues 
with high rates of cell turnover such as esophageal 
mucosa, vaginal epithelium and skin (Supplementary 
Figure 1). For every cancer with adjacent normal 
tissue available from TCGA (n = 12), the PI was higher 
in tumor tissue compared to adjacent normal tissue 
(Wilcoxon, p < 0.05). This was also true when comparing 
tumor tissue collected by TCGA to normal tissue 
collected from the same organs by the GTEx Consortium 
(n = 9), demonstrating tumorigenesis is accompanied by 
a characteristic increase in proliferation-related gene 
expression (Figure 1B). 

The substantial size of the breast cancer cohort 
(n = 1,098) allowed us to investigate additional properties. 
Within breast cancer Prediction Analysis of Microarray 
50 (PAM50) subtypes, PI values were highest among 
aggressive basal-like tumors and lowest among the 
less aggressive luminal A and normal-like subtypes 
(Figure 1C) [30]. Principal component analysis (PCA) 
of all gene expression levels in breast cancer confirmed 
that the first principal component (PC1) stratified 
subtypes (Figure 1D). Interestingly, PC1 was also strongly 
correlated with tumor PI (rho = 0.65) indicating that a large 
proportion of variance in breast cancer gene expression, 
including subtype delineations, is strongly associated with 
proliferation (Figure 1E). Moreover, examining PI across 
all cancers revealed strong correlations with early principal 
components in a majority of cancers, supporting previous 
observations that a large portion of variance across tumor 
transcriptomes is correlated with their proliferation index 
(Figure 1F). However, tumor PI was associated with 
pathologically assessed tumor stage, nodal invasion, and 
metastasis in only a subset of tumors analyzed, suggesting 
the importance of proliferation in tumor progression may 
vary considerably across cancers (Figure 2A–2C). PI values 
are plotted across each pathological grading characteristic 
for clear cell renal carcinoma (KIRC), a representative 
cancer for which PI is significantly associated with 
pathological stage, and stomach adenocarcinoma (STAD), 
a representative cancer for which PI is not associated with 
pathological stage (Figure 2D–2F). 
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Figure 1: (A) Tumor proliferative index distributions across TCGA cancers. (B) Proliferative index values in healthy GTEx samples 
(blue), TCGA tumor-adjacent normal tissue (red) and TCGA tumor tissue (green). (C) Tumor proliferative index values across breast cancer 
PAM50 subtypes. (D) PCA of TCGA breast cancer samples stratifies tumors based on PAM50 subtypes. (E) The first principal component 
of the TCGA breast cancer data set correlates with tumor proliferative index. (F) Heatmap of principal component-tumor proliferation 
index correlations across cancers.
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Cell proliferation is associated with overall 
survival in a subset of cancers

Next we assessed the relationship between tumor 
PI and patient survival. Cox proportional hazards models 
and Kaplan-Meier curve analysis revealed tumor PI was 
significantly associated with survival in a subset of cancers 
similar to those implicated in Figure 2 above (Figure 3A, 
Supplementary Figure 2). Strikingly, we found that cancers 
with the lowest PI had PIs more strongly associated 
with survival than cancers with a higher PI (Figure 3B). 
This may indicate that other tumor characteristics are 
more important to patient survival in cancers with the 
highest PIs. We tested this hypothesis by performing 
Cox proportional hazards regression on all transcripts in 
each cancer. Pathway analysis of transcripts significantly 
associated with survival confirmed an enrichment for 
proliferation-related gene ontology (GO) terms such as 
cell cycle, DNA replication, and cell division in cancers 
whose PI was associated with survival whereas other 
cancers showed a relative paucity of proliferation-related 

enrichment and favored cell metabolism, transport, 
reactive oxygen species response, angiogenesis and 
immune related terms (Supplementary Tables 4 and 5, 
Supplementary Figure 3). 

No transcripts were associated with survival in 
all cancers, however 84 transcripts were associated 
with survival (Cox p-value < 0.05) in at least 9 of 19 
cancers. Pathway analysis on these transcripts revealed 
enrichment for proliferation-related processes including 
mitosis, cell and nuclear division, and spindle formation 
(Supplementary Table 6). We clustered cancers by their 
respective Cox regression p-values for each of these 84 
transcripts and observed two distinct clusters (Figure 3C). 
The first cluster, representing 12/19 cancers, has relatively 
few low p-values, indicating that survival patterns are 
relatively unique to each of these cancer types. The second 
cluster, consisting of the remaining 7 cancers, shows a 
much stronger enrichment for low p-values indicating 
a common, proliferation-related, survival phenotype. 
The second cluster of cancers, (which we refer to as 
proliferation-informative cancers, PICs), is identical to the 

Figure 2: (A–C) Wilcox test negative log p-values of tumor proliferation comparisons between (A) tumor T stages 1 and 4, (B) tumor N 
stages 0 and 1 (nodal invasion), and tumor M stages 0 and 1 (metastasis) (C). (D–F) Distribution of tumor proliferation index across tumor 
T (D), N (E) and M stages for TCGA renal cell carcinoma (KIRC) and stomach adenocarcinoma (STAD).
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subset of cancers for which the tumor PI was significantly 
associated with survival and is not enriched for any 
clinical or demographic parameter. Relaxing the threshold 
for the number of significant cancers required for a 
transcript to be included in the model did not significantly 
alter this clustering pattern (Supplementary Figure 4). 
To ensure this clustering pattern is not driven by general 
tumor or tissue expression patterns and is specific to 
survival associated expression relationships, we clustered 
individual patients based on the expression of the top 
250 most variable transcripts across all cancers and were 
unable to recapitulate the previously observed PIC cluster 
(Supplementary Figure 5).

To further investigate cancer survival patterns, we 
sought to develop a cross-cancer prognostic model using 
the expression level of all genes as potential predictive 
features by selecting an equivalent number of the shortest 
surviving and longest surviving patients from each 
cancer type and randomly partitioning all samples into 
training and testing cohorts for model development and 
evaluation (Figure 4A). A multivariate Cox regression 
model with L1-penalized log partial likelihood (LASSO) 
for feature selection had relatively poor performance 
(receiver operating characteristic area under the curve, 
ROC-AUC = 0.651) when trained on the full set of 

cancers, however when limited to just PICs, performance 
improved significantly (ROC-AUC=0.856, p-value 
= 0.0004, Supplementary Tables 7 and 8). This again 
demonstrates PICs share a common survival signature 
(Figure 4B, Supplementary Table 9). To assess the 
uniqueness of the PICs’ model performance, we randomly 
selected 1000 sets of 7 cancers for model training and 
none demonstrated the performance achieved by the PIC-
only model (Figure 4C). In fact, model performance across 
our permutations was strongly correlated with the number 
of PICs incorporated into each model (Figure 4D). This 
trend was also observed using other predictive modeling 
approaches (Supplementary Figure 6). To assess whether 
our PIC model could perform well as a continuous metric 
of survival outside of our pre-dichotomized cohort, 
we applied it to the full patient cohorts for each PIC. 
In all PICs, model prediction values were successful 
at stratifying patients by prognosis (Supplementary 
Figure 7). To facilitate PI exploration, we have developed 
an R package (available at github https://github.com/
blasseigne/ProliferativeIndex and on CRAN, DOI: 
10.5281/zenodo.400951), ‘ProliferativeIndex’, which 
calculates and analyzes PI across a user’s tumor RNA-
seq dataset and compares the PI’s prognostic performance 
with a user’s survival model.

Figure 3:  (A) Tumor proliferative index Cox regression negative log p-values plotted by cancer with the first seven cancers showing 
significant association with patient outcome. (B) Tumor proliferation index survival associations (Cox regression negative log p-values) 
are anti-correlated with the median tumor proliferation index of each cancer. (C) Heatmap of negative log Cox regression p-values of genes 
significant (p < 0.05, n = 84) in at least 9 of 19 cancers identifies PICs (right).
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Linking proliferation index and drug sensitivity

Many chemotherapies target proliferation-associated 
processes, therefore we hypothesized that sensitivity 
to these drugs may be correlated with PI. We took 
advantage of two public data sets to address this question. 
The Cancer Cell Line Encyclopedia [31] provides gene 
expression and drug sensitivity data for a panel of cancer 
cell lines and the Connectivity Map project [32] provides 
gene expression data following drug treatments in cancer 
cell lines. While there are significant caveats to using this 
data, namely the applicability of a tissue-derived index 
in an in vitro culture environment, an analysis of these 
correlations could provide testable hypotheses about 
drug sensitivity. We calculated correlations between the 

proliferative index and therapeutic response using two 
orthogonal cancer cell line datasets [31, 32] and found that 
irinotecan, topotecan, panobinostat and paclitaxel showed 
a significant correlation between EC50 concentrations and 
PI (Supplementary Figure 8A). Using the connectivity 
map data, we confirmed the expected result that in MCF7, 
a breast cancer cell line, estradiol, a known activator of 
cell proliferation in ER positive breast cancers is ranked 
in the top 20% of drugs investigated that correlate with 
PI [32]. In agreement with our finding that response to 
the HDAC inhibitor paribinostat is correlated with PI, we 
found that treatment with HDAC inhibitors in the CMap 
database (vorinostat and trichostatin A1) rank in the 
bottom 10th percentile of all drugs tested (Supplementary 
Figure 8B–8C) indicating that they reduce growth.

Figure 4: (A) Workflow for cross-cancer survival model generation. (B) ROC curve for multivariate Cox regression with LASSO for 
variable selection on all 19 cancers (blue), PICs only (green) and non-PICs only (orange). (C) Histogram showing the distribution of ROC 
curve AUC values for survival models generated on 100 randomly sampled sets of cancers equivalent in number to the PICs. (D) The ROC 
curve AUC values are directly proportional to the number of PICs included in random sample sets.
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Proliferation and somatic mutation burden

Increased rates of cell division, particularly in cancer 
cells whose repair mechanisms are diminished, might be 
expected to correlate with mutation burden. We assessed 
the relationship between tumor proliferation and somatic 
mutation burden in tumor exomes generated by TCGA and 
previously analyzed by Kandoth et al. [33]. We found a 
strong correlation between tumor PI and the number of 
somatic mutations both across multiple cancers and within 
each cancer (Supplementary Table 10). Notably, total 
mutation burden and PI were most strongly associated in 
breast cancer (rho = 0.45, Figure 5A). Correlations were 
also strong within each breast cancer subtype (rho>0.3) 
except for Her2-enriched tumors (rho<0.025). We next 
examined genes whose single nucleotide variation (SNV) 
burden most strongly associated with proliferation and 
found three well-established cancer driver genes (TP53, 
RB1, and PI3K) consistently implicated across cancers 
(FDR<0.1, Figure 5B and Supplementary Table 11). Apart 
from these top driver genes, mutations associated with 
proliferation are tumor-specific. For example, RELN was 
among the top 5 genes in breast cancer ranked by protein 
altering mutations associated with increased PI values in 
each subtype (Figure 5C). Breast cancer patients within the 
basal-like subtype tended to have shorter survival times if 
their tumors harbored protein altering mutations or were 

low expressers of RELN compared to patients with tumors 
expressing RELN at high levels (p = 0.08, Figure 5D). 

DISCUSSION

We have described an RNA-seq based analysis of 
cell proliferation across 19 cancers in 6,581 patients. We 
show a high degree of variability in the relative expression 
of proliferation-associated genes both within the same 
cancer type and across different cancers. Interestingly, 
cancers with relatively low expression of proliferation-
associated genes tended to be those for which PI was 
strongly associated with pathology-based markers of 
tumor staging and survival. This suggests that some 
cancer types may saturate their capacity for proliferation 
at early stages, so other factors such as invasion, immune 
suppression, and drug transport to are more important 
for patient prognosis. Our data suggest proliferation may 
play a more prominent role in dictating prognosis in 
cancers that avoid maximal rates of cell division during 
early tumorigenesis and possess relatively lower absolute 
levels of proliferation-associated expression. Future 
studies investigating evolutionary histories of tumors 
could investigate this phenomenon in more detail, as 
there may be considerable heterogeneity between cancers 
in the genes important to predicting patient survival and 
these studies could inform the use of targeted therapies 

Figure 5: (A) Tumor proliferative index is correlated with TCGA breast cancer somatic mutation burden. (B) Q-Q plot of p-values derived 
from gene mutation burden-proliferative index associations. (C) TCGA breast tumors containing non-synonymous mutations in RELN have 
higher proliferative index compared to wild-type. (D) Kaplan-Meier survival plot shows reduced expression or protein-altering mutations 
in RELN are markers of poor prognosis in patients with basal breast cancer.
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to cancer-specific pathways most relevant to patient 
outcomes. Using existing data, we demonstrated that PI 
is significantly correlated with the sensitivity to a subset 
of drugs in vitro. Important to consider, however is that 
in making these assessments, we used gene expression 
measurements taken from cell lines, which are cultured 
in dramatically simpler environments and may exhibit 
different  growth patterns than tumor cells. Furthermore, 
cell numbers were primarily obtained by quantifying the 
amount of ATP per well, which could be confounded by 
alterations in cell metabolism. This analysis provides 
new hypotheses about therapeutic efficacy and future 
studies are necessary to confirm the relevance of these 
observations at physiologically constrained in vivo doses. 

Somewhat surprisingly, breast cancer was not one 
of the cancers exhibiting the strongest association between 
patient survival and proliferation index despite several 
previous studies to the contrary [18–20, 27]. Based on these 
studies it seems clear that the proliferation is associated with 
breast cancer prognosis. In our study, the power to make 
prognostic observations in the TCGA breast cancer cohort 
is limited by the fact that the cohort has been followed for a 
relatively short amount time so greater than 90% of the cohort 
was still alive at the time of analysis. Survival times and PI 
are also linked to breast cancer subtype (Supplementary 
Figure 9), thus the subtype representation of a cohort could 
strongly influence the prognostic utility of patient PI. 

Additionally, we demonstrated that survival-
associated gene expression patterns are not common across 
all cancers. However, a subset of cancers (PICs) share an 
overlapping signature enriched for proliferation-associated 
genes. We developed a common prognostic signature that 
contains several genes previously implicated in cancer 
prognosis and that accurately predicts patient survival 
across all seven PICs. For example, CKS2 is a regulatory 
protein that binds the catalytic subunit of cyclin-dependent 
kinases and is essential for kinase function in regulating 
the cell cycle [34, 35]. CRYL1 has been shown to regulate 
G2-M phase transition and expression has been linked to 
patient prognosis [36]. DNA2 is a DNA helicase that plays 
an important role in processing Okazaki fragments during 
DNA replication and DNA2 expression is correlated with 
patient survival [37]. HJURP is a histone chaperone shown 
to play a role in the progression of gliomas and breast 
tumors [38, 39]. SUOX had the largest absolute coefficient 
in our model; however, its role in cancer progression is 
less clear. It is a mitochondrial enzyme that catalyzes the 
conversion of sulfite to sulfate and has been described in 
one study as a prognostic immunohistochemical marker for 
hepatocellular carcinoma [40], yet its functional role and 
importance in cancer remains unclear. Future prognostic 
modeling within PICs or cross-cancer modeling that 
includes PICs should consider the significant role of tumor 
proliferation-associated expression before interpreting 
biological mechanisms for prognosis-associated genes. 
Additionally, newly developed prognostic models in PICs 

should outperform general transcriptome associations with 
survival before mechanistic interpretations are made. 

Proliferating tumors, which must constantly replicate 
their genomes, are prone to increased mutation rates, a 
phenomenon consistent with our finding that tumor PI is 
strongly correlated with somatic mutation burden both 
within and across cancers. This may provide a potential 
mechanism by which increased proliferation rates 
associate with poor outcomes as increasing the mutational 
heterogeneity of a tumor may lead to avenues of escape 
from targeted drug therapies [41]. However, we did not see 
a strong relationship between tumor mutation burden-PI 
correlation strength and PI’s prognostic ability across cancer 
types. In fact, breast cancer, the cancer type with the highest 
mutation burden-PI correlation, was not designated a PIC 
in our study. Further comparisons of gene mutation burden 
with tumor PI revealed three well-known tumor suppressor 
genes (TP53, RB1, and PI3K) to be significantly associated 
with proliferation across multiple cancers, consistent 
with large bodies of previous work. For example, a large 
analysis of TP53 levels in node-negative breast cancer 
revealed decreases in TP53 were strongly associated with a 
concurrent increase in both tumor proliferation and poorer 
patient outcomes [42]. Moreover, an extensive body of 
literature supports the fact that PI3K’s ability to upregulate 
proliferation machinery through downstream activation of 
the AKT/mTOR pathway [24]. Focusing on breast cancer, 
the largest cancer cohort available, we found one relatively 
less investigated gene, RELN, among the top PI associated 
genes. We found that protein-altering mutations in RELN 
are associated with increased tumor PI in each breast 
cancer subtype, and that low levels of RELN expression 
are associated with poor prognosis within the basal 
subtype. Decreased expression and epigenetic silencing 
of RELN has previously been associated with advanced 
stage and poor prognosis in several cancers [43–47]  
and recent work has shown that loss of RAS signaling by 
disrupting interactions with PI3K increases extracellular 
RELN levels, resulting in decreased tumor aggressiveness 
via activation of cell adhesion pathways [48]. Our findings 
indicate there may be intriguing roles for RELN in the 
progression of breast cancer particularly related to tumor 
proliferation; however, future functional investigations are 
necessary to confirm its role.

An important limitation to this study is its reliance 
on a relatively simplistic model for estimated tumor 
proliferation rates – namely the expression of a group of 
genes strongly associated with proliferation across healthy 
tissues. Future work investigating expression patterns 
associated with more precise measurements of tumor 
proliferation is essential to expanding upon this analysis. 
Furthermore, the relationships previously described, 
particularly in regards to identifying PICs, should be 
further investigated in future large-scale, multi-cancer 
expression studies because TCGA is currently the only 
resource of sufficient scale.
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In conclusion, our study provides a comprehensive 
characterization of tumor proliferation rates and their 
association with disease progression and prognosis 
across cancer types and highlights specific cancers that 
may be particularly susceptible to improved targeting of 
proliferation-related gene pathways. We have expanded 
upon previous work developing a generalizable 
proliferation related-classification framework and provided 
a community-available resource to investigate further the 
role of proliferation both within and between cancers. 

MATERIALS AND METHODS

TCGA and GTEx data acquisition

RNA-seq and associated patient clinical data were 
obtained from the TCGA data portal (tcga-data.nci.nih.gov) 
in June 2015. (Supplementary Table 1) Level 3 RNASeqV2 
raw count data was used for downstream analysis. This 
included quantification of > 20,000 transcripts. Relevant 
clinical information for each patient was obtained from 
the associated “clinical_patient” and “clinical_follow_
up” files, with survival time calculated as the maximum 
“days_to_death” or “days_to_last_followup” column value 
from the “clinical_patient” file or any “clinical_follow_
up” file. All staging information was obtained from the 
“pathologic_T”, “pathologic_N”, and “pathologic_M” 
columns in the “clinical_patient” file.  GTEx (gtexportal.
org) V6 RNA-seq data for all available tissues was 
obtained in January 2016 (Supplementary Table 2). This 
data included quantification of > 40,000 transcripts.

All analysis was performed using R [49] (Version 
3.2.1) with RStudio [50] (Version 0.99.891)

Data normalization and PI calculation

The PI was calculated as previously described by 
Venet et al. [27]. Briefly, a sample’s PI was defined as 
the median expression level of the original 131 genes 
found to be most associated with PCNA expression 
across 36 tissue types. For cross-cancer or cross-tissue 
comparisons, raw read counts were normalized to counts-
per-million (CPM) prior to PI calculation. For intra-
cancer analyses, raw counts were variance stabilized 
using the ‘DESeq2’ [51] (Version 1.8.2) package 
function “varianceStabilizingTransformation” prior to PI 
calculation or survival analysis.

PI comparisons and survival association analysis

All cross-sample PI comparisons were conducted 
with two-sided Wilcox tests via the base ‘stats’ [49] 
(version 3.2.1) package wilcox.test function. PI-survival 
associations were determined using ‘survival’ [52, 53] 
(version 2.38-3) and ‘survcomp’ [54, 55] (version 1.18.0) 

packages. Cox regressions were performed with the coxph 
function to regress overall patient survival on PI and Wald 
test p-values were reported. Kaplan-Meier curves were 
generated for tumors in the top and bottom quartiles of 
PI using the survfit function and significant differences 
between survival curves were assessed with the survdiff 
function. Dendrograms of cancer clustering based on 
negative log10 Cox regression p-values were constructed 
with the hclust function using Ward clustering. A heatmap 
of cross-cancer survival associated genes (uncorrected 
p-value < 0.05 for at least 9/19 cancers) was generated on 
negative log10 Cox regression p-values generated for each 
transcript measured in TCGA Level 3 data. Models that 
failed to converge, based on previously established criteria 
employed by the ‘survival’ package (almost always due to 
a maximum likelihood estimate of a coefficient nearing 
infinity) [52], were assigned a p-value of 1. The heatmap 
was generated with the R gplots [56] (version 2.17.0) 
heatmap.2 function using Euclidean distance measurement 
and Ward clustering.

Pathway analysis

Pathway analysis was conducted on the 162 cross-
cancer survival associated genes with uncorrected Cox 
p-values < 0.05 across all PICs using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID, 
v6.7) [57, 58] pathway analysis with default settings. All 
unique gene names available in the TCGA Level 3 count 
data were used as a background for analysis.  Gene ontology 
enrichment analysis of expression-survival associations in 
each cancer was conducted with GOrilla (http://cbl-gorilla.
cs.technion.ac.il) in “single ranked list of genes” mode. 
GO terms were condensed into broader categories for 
visualization with REVIGO (http://revigo.irb.hr) [59]. 

Cross-cancer survival model

Variance stabilized transcript count data was scaled 
within each cancer prior to combining cohorts for all cross-
cancer survival model generation. For each cancer, the 
18 shortest surviving patients who succumbed to disease 
and the 18 longest surviving patients were identified for 
initial analyses. Only 18 patients were selected because 
this represented the top and bottom quartiles of the 
mesothelioma cohort, the smallest cohort included in this 
study. Patients were indexed under an “outcome” variable 
as “1” if they were in the longest surviving cohort and 
“0” if they were in the shortest surviving cohort. We then 
generated two models for predicting patient outcome from 
tumor gene expression using the basic formula: 

Outcome ~ expression

where “Outcome” is the patient prognosis as 
described above and “Expression” represents the scaled 
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expression level of all genes included in the TCGA tier 3 
analysis. The first model trained included all 19 cancers 
and the second included only PIC cancers (KIRC, ACC, 
LGG, KIRP, MESO, PAAD, and LUAD). PICs were 
defined as cancers with Bonferroni-corrected PI Cox 
regression p-value of less than 0.05, which are also the 
cancers who clustered together when considering only the 
cross-cancer significant survival transcripts as described 
above. Prior to model training, the ‘caret’ [60] (version 
6.0–64) createDataPartition function was used to split the 
full cross-cancer and PIC-only data sets into a training 
cohort containing 70% of patients and a testing cohort 
containing 30% of patients, while conserving a roughly 
equivalent number of shortest and longest overall survival 
patients within each partition. Models were trained 
without knowledge of the proliferation index with all 
genes capable of acting as features in the training cohort. 

LASSO

A LASSO regression model was trained on the full 
cross-cancer and PIC and non-PIC only training cohorts 
using the glmnet [61] (version 2.0–2) cv.glmnet function 
with regression family set to “binomial” and nfolds 
set at 5. This generated a binomial regression model, 
which used a lambda penalty optimized using 5-fold 
cross validation within the training cohort. The optimal 
lambda penalty was defined as the smallest model with a 
cross validation mean squared error within one standard 
deviation from the minimum value. 

Ridge

A ridge regression model was also trained with 
the cv.glmnet function with identical parameters as 
the LASSO model described above, except the alpha 
parameter was set to 0.

Random forest

A random forest model was trained on the full cross-
cancer and PIC only cohorts using the randomForest [62] 
(version 4.6–12) package. Models were generated with the 
randomForest function using default settings except mtry 
was limited to 1000.

SVM

A linear support vector machine model was trained 
on the full cross-cancer and PIC only cohorts using the 
e1071 [63] (version 1.6–7) package. The model was trained 
using the svm function with kernel set to “linear” and 
“cross” set to 5. The cost parameter was optimized for each 
cohort by finding the value that minimized the 5-fold cross 
validation squared error within the training cohort after 
trying a series of values ranging from 0.00001 to 10000. 

Model evaluation

Performance was evaluated for each model by test 
set ROC curve AUC generated by predictions made on the 
testing cohort using the predict function and the ROCR 
[64] package (version 1.0–7). 

Permutation

The significance of model performance in the 
PIC only cohort for each machine learning approach 
was assessed by randomly sampling seven cancers, 
dichotomizing the cohorts, training each model in an 
identical manner as described above for the PIC only 
cohort, and comparing ROC AUC curves for each 
resulting random sample. We used the webtool http://
vassarstats.net/roc_comp.html to show a significant 
improvement in AUC for the PICs.

Full cohort performance assessment

The LASSO model derived from the PIC-
only cohort was applied to the full patient cohorts of 
each individual PIC to assess performance in a non-
dichotomized setting. LGG, KIRC, and LUAD had greater 
than 25 uncensored patients remaining after removing 
patients in the training set, so for these cancers the model 
was applied only on patients that were not used to train 
the original model. Because KIRP, PAAD, MESO, and 
ACC had a limited number of remaining patients, the PIC 
LASSO model was applied to the full cohort including 
patients that were used to train the original model. The top 
and bottom quartiles of predicted survival were compared 
using Kaplan-Meier curves as described above.

Drug associations with proliferation index

To correlate sample PI with drug efficacy, 
EC50 values for 24 drugs and normalized microarray 
expression data for 486 cancer cell lines was obtained 
from the Cancer Cell Line Encyclopedia [31]. 
The specific files used for analysis were “CCLE_
NP24.2009_Drug_data_2015.02.24.csv” and “CCLE_
Expression_2012009-29.res” (downloaded in June 2016). 
Proliferation index was calculated in a similar manner 
as described above by taking the median normalized 
expression value for each probe set mapping to a gene 
contained within the proliferation index. To measure 
impact of drug treatment on PI, expression profile 
data of MCF7 cells treated with 1309 drugs and their 
corresponding vehicle controls was obtained from the 
Connectivity Map data set [32]. The “rankMatrix.txt” 
file (downloaded in June 2016) was used for downstream 
analysis. This file consists of a probe set by treatment 
matrix with each probe set given a ranking (from 1 to 
the total number of probes – 22,777) corresponding to 
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the magnitude of differential expression of that probe set 
after treatment with a drug relative to its vehicle control 
with a ranking of 1 assigned to the highest positive 
change in expression and 22,777 assigned to the lowest 
negative change in expression. The relative impact on 
PI of different treatments was compared by calculating a 
median ranking for all probe sets mapping to genes used in 
the calculation of PI for each treatment and subsequently 
ranking drugs according to the percentage of drugs with 
a higher PI ranking. Cumulative distribution functions of 
all PI-probe set rankings for drugs identified by the CCLE 
analysis were compared using a Kolmogorov-Smirnov 
test.

Breast cancer subtyping

Subtype assignments for patients in the BRCA 
cohort were obtained from a previous TCGA analysis 
of breast cancer [65]. The “PAM50 mRNA” column in 
Supplementary Table 1 was used for those patients who 
met our criteria for analysis. Principal component analysis 
was performed using the prcomp function on the BRCA 
cohort on all variance stabilized transcript data. 

SNV-point mutation analysis

Somatic mutations were obtained from Kandoth, 
et al. [33] for 12 TCGA ‘Pan-Cancer’ datasets.  We found 
2,336 patients that overlapped from 9 cancers with the 
TCGA gene expression dataset and obtained somatic 
mutations for those patients from Kandoth, et al.’s 
Supplementary Table 2 where the authors used common, 
stringent filters to ‘ensure high quality mutation calls’ 
across those samples. Correlations between tumor PI and 
somatic mutation burden were calculated by calculating a 
Spearman correlation between the log10 of the sum of all 
mutations identified for each patient  and the patient PI 
both across and within each cancer type. To identify genes 
with mutation status associated with PI, we performed 
Wilcoxon rank tests of PI between tumors containing a 
missense or nonsense mutation and tumors containing 
synonymous or no mutation for each gene with at least 
5 mutations present in each cancer. This analysis was not 
performed on cancers with less than 100 genes meeting 
these criteria (n = 3). To identify significant cross-cancer 
trends, we used Fisher’s combined p-value method on 
each gene mutated at least 5 times in at least 2 cancers. 
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