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optimization method to determine 
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Akira Amano2*, Akinori Noma2 & Takeshi Kimura1

Premature cardiac myocytes derived from human induced pluripotent stem cells (hiPSC‑CMs) show 
heterogeneous action potentials (APs), probably due to different expression patterns of membrane 
ionic currents. We developed a method for determining expression patterns of functional channels 
in terms of whole‑cell ionic conductance (Gx) using individual spontaneous AP configurations. It has 
been suggested that apparently identical AP configurations can be obtained using different sets of 
ionic currents in mathematical models of cardiac membrane excitation. If so, the inverse problem of 
Gx estimation might not be solved. We computationally tested the feasibility of the gradient‑based 
optimization method. For a realistic examination, conventional ’cell‑specific models’ were prepared 
by superimposing the model output of AP on each experimental AP recorded by conventional manual 
adjustment of Gxs of the baseline model. Gxs of 4–6 major ionic currents of the ’cell‑specific models’ 
were randomized within a range of ± 5–15% and used as an initial parameter set for the gradient‑based 
automatic Gxs recovery by decreasing the mean square error (MSE) between the target and model 
output. Plotting all data points of the MSE–Gx relationship during optimization revealed progressive 
convergence of the randomized population of Gxs to the original value of the cell‑specific model with 
decreasing MSE. The absence of any other local minimum in the global search space was confirmed 
by mapping the MSE by randomizing Gxs over a range of 0.1–10 times the control. No additional local 
minimum MSE was obvious in the whole parameter space, in addition to the global minimum of MSE 
at the default model parameter.

Abbreviations
hiPSC-CMs  Human induced pluripotent stem cell-derived cardiomyocytes
hVC model  The human ventricular cell model
AP  Action potential
MDP  The maximum diastolic potential
SDD  Slow diastolic depolarization
Im  Membrane current
Vm  Membrane voltage
orp  Optimization of randomized model parameters
OS  Overshoot potential
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PO method  Parameter optimization method
PS method  Pattern search method
BP  Base point for searching minimum MSE in the Pattern Search
NP  Searching point in reference to BP in the Pattern Search
MSE  Mean square error between two different Vm records
Stp  Step size to move NP
x  Subscript to represent membrane current, such as INa, ICaL, IK1, Iha, IKr, IKur, IKs, and IbNSC

Over the past half-century, the biophysical characteristics of ion-transporting molecules (channels and ion 
exchangers) have been extensively analyzed. Biophysical models of each functional component have largely been 
 detailed1–4 , including human induced pluripotent stem cells (hiPSC-CMs)5–7. In addition, various composite cell 
models, including membrane excitation, cell contraction, and intracellular ionic composition homeostasis, have 
been developed by integrating mathematical models at the molecular level into cardiac cell  models8–11. These 
models have been useful for visualizing individual currents underlying the action potential (AP) configuration 
under various experimental conditions in mature cardiac myocytes. However, the utility of these mathematical 
cell models is limited because of the lack of extensive validation of the model output accuracy. This is a drawback 
of the subjective manual fitting method used in almost all published mathematical cardiac cell models. A new 
challenge of mechanistic models of cardiac membrane excitation might be an examination in a very different 
paradigm to assess if the many, but continuous, variety of cardiac AP configurations, such as those recorded in 
hiPSC-CMs, can be reconstructed by applying the automatic parameter optimization method to the hiPSC-CM 
version of human cardiac cell models. We do not intend to propose a new hiPSC-CM model.

The automatic parameter optimization technique objectively determines parameters in a wide range of bio-
logical models, including cardiac  electrophysiology12–15, systems  pharmacology16–20, and other models. Because of 
this utility, many improvements in information technology have been  realized21,22. However, in electrophysiology, 
different combinations of model parameters may produce very similar  APs13,23–25. The determination of current 
density at high fidelity and accuracy likely requires additional improvements to the optimization method in the 
cardiac cell model because of the complex interactions among ionic currents underlying membrane  excitation23,26.

The final goal of our study is to develop an objective and accurate method for determining the current profile 
(i.e., the expression level of functional ionic currents) underlying individual AP configurations. As a case study, 
we chose a large variety of AP configurations in hiPSC-CMs, which are difficult to classify into the conventional 
nodal, atrial, or ventricular types. The molecular bases of the ion channels expressed in hiPSC-CMs correspond 
to those in adult cardiac myocytes in the GSE154580 Gene Expression Omnibus Accession viewer. Electrophysi-
ological findings suggest that the gating of ionic currents is quite similar to that observed in mature  myocytes27. 
Thus, we modified the ion channel gating kinetics of the human ventricular cell (hVC)  model11 according to the 
prior experimental  measurements27 for a hiPSC-CM type baseline model of the parameter optimization (PO) 
method. For simplicity, we assumed that the opening/closing kinetics of ion channels expressed by the same 
human genome remains the same among hiPSC-CMs. We also assumed that the heterogeneity of the electrical 
activities of hiPSC-CMs might be determined by the variable expression levels of ion channels in the cell mem-
brane. We computationally examined the feasibility of one of the basic gradient-based optimization methods, the 
pattern search (PS)  algorithm21,22,28, in a model of cardiac AP generation. We prepared a given AP configuration 
using each ’cell-specific model’ prepared by the conventional manual fitting of the hVC model to the respective 
experimental recordings. To assess the accuracy of the PS method for parameter optimization, the AP waveform 
generated by the cell-specific model was used as a target of the optimization. The initial set of parameters for the 
optimization was then prepared by uniform randomization centered around the default values of the model. The 
PS algorithm should return the original parameter values by decreasing the mean squared error (MSE) function 
between the modified model output and target AP waveforms. The accuracy of the optimization was determined 
by recovering the original values of each ionic current amplitude as the MSE progressively decreased toward zero.

Materials and Methods
Baseline model of hiPSC‑CM membrane excitation. The baseline model of hiPSC-CMs was essen-
tially the same as the hVC model, which has been  detailed10,11 and which shares many comparable characteristics 
with other published human  models8,9. The hVC model consists of a cell membrane with a number of ionic chan-
nel species and a few ion transporters, the sarcoplasmic reticulum equipped with the  Ca2+ pump (SERCA), and 
the refined  Ca2+ releasing units coupled with the L-type  Ca2+ channels on the cell membrane at the nanoscale 
dyadic  space4,29, contractile fibers, and three cytosolic  Ca2+ diffusion spaces containing several  Ca2+-binding 
proteins (Fig. S1). All model equations and abbreviations are described in the Supplemental Materials.

The source code of the hiPSC-CM model was written in VB.Net and is available from the archive site (https:// 
doi. org/ 10. 1101/ 2022. 05. 16. 492203).

The kinetics of the ionic currents in the baseline model were readjusted according to new experimental 
measurements if available in hiPSC-CMs27 (Fig. S2). In the present study, the net membrane current (Itot_cell) was 
calculated as the sum of nine ion channel currents and two ion transporters (INaK and INCX) (Eq. 1).

The membrane excitation of the model is generated by charging and discharging the membrane capacitance 
(Cm) using the net ionic current (Itot_cell) across the cell membrane (Eq. 1). The driving force for the ionic current 
is given by the potential difference between Vm and the equilibrium potential (Ex) (Eq. 3). The net conduct-
ance of the channel is changed by the dynamic changes in the open probability (pO) of the channel, which is 

(1)Itot_cell = INa + ICaL + Iha + IK1 + IKr + IKs + IKur + IKto + IbNSC + INaK + INCX

https://doi.org/10.1101/2022.05.16.492203
https://doi.org/10.1101/2022.05.16.492203
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mostly Vm-dependent through the Vm-dependent rate constants ( α,β ) of the opening and closing conformational 
changes of the channel (Eq. 4 and 5).

The exchange of three  Na+ / two  K+ by the Na/K pump, and three  Na+ / one  Ca2+ exchange by sodium-calcium 
exchanger (NCX) also generates sizeable fractions of membrane ionic current (INaK, and INCX, respectively). For 
simplicity, we excluded background currents of much smaller amplitude, such as IKACh, IKATP, ILCCa, and ICab, from 
the parameter optimization and adjusted only the non-selective background cation current (IbNSC) of significant 
 amplitude30–32. In the present study, IbNSC is re-defined as a time-independent net current, which remains after 
blocking all time-dependent currents.

Computational parameter optimization. The whole-cell conductance Gx of a given current system (x) 
is modified by multiplying the limiting conductance Gx  (Eq. 3) of the baseline model by a scaling factor sfx 
(Eq. 6) and is used for the parameter optimization.

The MSE function (Eq. 7) was used in the parameter optimization, where Vm,a represents the adaptive Vm 
(the model output) generated by adjusting the sfxs of the baseline model. Target Vm,t represents the AP of the 
intact baseline model.

The MSE was stabilized by obtaining a quasi-stable rhythm of spontaneous APs through continuous numeri-
cal integration of the model. Typically, 30–100 spontaneous cycles were calculated for a new set of sfxs. The MSE 
was calculated within the time window. The width of the time window was adjusted according to the AP phase 
of interest. where N is the number of digitized Vm points with a time interval of 0.1 ms.

In typical parameter optimization, Vm,a is generated by modifying the baseline model for comparison with 
the experimental record (Vm,t = Vm,rec). However, to evaluate the identifiability of the parameter optimization, a 
simple approach was adopted in the present study. We used the manually adjusted ’cell-specific’ model for the 
target (Vm,t), which was nearly identical to Vm,rec. More importantly, the ’cell-specific’ Vm is completely free from 
extra fluctuations (noise), which were observed in almost all AP recordings in hiPSC-CMs. In the optimization 
process, the initial value of each optimization parameter was prepared by randomizing the sfxs of the cell-specific 
model by ± 5–15% at the beginning of each run of PS (Vm,orp) in Eq. 8, and several hundred PS runs were repeated. 
Thus, the error function is

This optimization method was termed the ’orp test’ in the present study.
The advantage of using a manually adjusted cell model for the optimization target is that the accuracy of 

parameter optimization is proved by recovering all sfx = 1 (Eq. 6) independent from the randomized initial param-
eter set. The same approach was used in a previous  study23 to evaluate the accuracy of parameter optimization 
by applying the genetic algorithm to the TNNP model of the human ventricular  cell33.

Optimization using the randomized initial model parameters was repeated for more than 200 runs. Thus, the 
orp test might be classified in a ’multi-run optimization’. The distribution of the sfx data points obtained during 
all test runs was plotted in a single sfx-MSE coordinate to examine the convergence of individual sfxs with the 
progress of the orp test.

Pattern Search method for parameter optimization. For a system showing a relatively simple gradi-
ent of MSE along the parameter axis, gradient-based optimization methods are generally more efficient than 
stochastic methods for this type of objective function. We used the Pattern Search (PS) algorithm, a basic gradi-
ent-based optimization method. The computer program code for the  PS34 is simple (see Supplemental Materials) 
and does not require derivatives of the objective function. We implemented the code in a homemade program 
for data analysis (in VB) to improve the method for better resolution and to save computation time.

The primary PS method uses the base and new  points28. Briefly, sfx is coded with symbols BPx and NPx in 
the computer program, representing a base point (BPx) and a new search point (NPx), respectively. The MSE is 
calculated for each movement of NPx by adding or subtracting a given step size (stp) to the BPx, and the search 
direction is determined by the smaller MSE. Then, the entire mathematical model is numerically integrated 
(Eq. 2–5) using NPx to reconstruct the time course of AP (Vm,a). This adjustment is performed sequentially for 
each of the four to six selected currents in a single optimization cycle. The cycle is repeated until no improvement 

(2)dVm
dt = −

Itot_cell
Cm

= −

∑
Ix

Cm

(3)Ix = Gx · pO · (Vm − Ex)

(4)dpO
dt = α ·

(
1− pO

)
− β · pO

(5)[αβ]T = f (Vm)

(6)Gx = Gx · sfx

(7)MSE =

∑
(Vm,a−Vm,t)

2

N

(8)MSE =

∑
(Vm,orp−Vm,t)
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in the MSE was achieved by a new set of NPxs. The BPx set is then renewed by the new set of NPx for the sub-
sequent series of optimizations. Simultaneously, stp is reduced by a given reduction factor (redFct of 1/4). The 
individual PS run is continued until the new stp became smaller than the critical stp (crtstp), which was set to 
2–10 ×  10–5 in the present study.

Selection of ionic currents for the optimization. When we obtain a new experimental record of AP, 
we do not start the analysis with an automatic optimization of Gx. Rather, we first adjust the baseline model by 
conducting conventional manual fitting. The nine ionic currents in Eq. 1 in the baseline model are adjusted 
incrementally to superimpose the simulated AP on the experimental one. During this step, it is important to 
pay attention to the influence of each sfx adjustment on the simulated AP configuration on the computer display. 
Thereby, one may find several key current components that should be used for the automatic parameter opti-
mization. Usually, currents showing a relatively large magnitude of Gx were selected for automatic optimization 
according to Eq. 1, while those that scarcely modified the simulated AP were left as default values in the baseline 
model.

Principal component analysis of cell‑specific models. When the orp test was performed with p ele-
ments, it was possible to record the final point BP, where the MSE was improved in the p-dimensional space. 
Suppose that we represent the matrix when n data points are acquired as an n × p matrix X. In that case, we obtain 
a vector space based on the unit vector that maximizes the variance (first principal component: PC1) and the 
p-dimensional unit vector orthogonal to it (loadings vector w(k) =

(
w1,w2 · · · ,wp

)
) . It is possible to convert 

each row x(i) of the data matrix X into a vector of principal component scores t(i) . The transformation is defined 
as

To maximize the variance, the first weight vector  w(1) corresponding to the first principal component must 
satisfy:

The kth component can be determined by subtracting the first (k-1)-th principal components from X:

The weight vector is then given as a vector such that the variance of the principal component scores is maxi-
mized for the new data matrix:

Membrane excitation and its cooperativity with intracellular ionic dynamics. When any of the 
Gxs is modified, the intracellular ion concentrations  ([ion]i) change, although the variation is largely compen-
sated for with time in intact cells by modifying the activities of both the three  Na+ / two  K+ pump (NaK) and 
three  Na+ / one  Ca2+ exchange (NCX). In the present study, we imitated the long-term physiological homeostasis 
of  [ion]i by introducing empirical Eq. 13 and 14. These equations induced ’negative feedback’ to the capacity 
(maxINaK and maxINCX) of these ion transporters. Each correcting factor (crfx) was continuously scaled to modify 
the limiting activity of the transporters to maintain the  [Na+]i or the total amount of Ca within the cell  (Catot) 
equal to their pre-set level (stdNai, stdCatot) with an appropriate delay (coefficients 0.3 and 0.008 in Eq. 13 and 14, 
respectively).

For the control of  [Na+]i:

For the control of  Catot:

Catot is given by  [Ca]i included in the cytosolic three Ca-spaces jnc, iz, and blk, and in the sarcoplasmic 
reticulum SRup and SRrl in the free or bound forms, respectively.

where vol is the volume of the cellular Ca compartment (see more details11).

Preparation of dissociated hiPSC‑CMs and recording of spontaneous APs. The 201B7 and 
253G1 hiPSC lines generated from healthy individuals were used in this  study35,36. The differentiation of hiPSCs 

(9)tk(i) = x(i) · w(k)fori = 1, 2, · · · , nk = 1, 2, · · · , p

(10)w(1) = argmax
w

{
w
T
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T
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wTw
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(11)X̂k = X −
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Xw(s)w
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}

(13)
�crfNaK = −(stdNai − Nai)× 0.3, stdNai = 6.1mM,

INaK =
(
crfNaK ·maxINaK

)
· νcycNaK

(14)
�crfNCX = −(stdCatot − Catot)× 0.008, stdCatot = 79amol,

INCX =
(
crfNCX ·maxINCX

)
· (k1 · E1Na · E1NCX − k2 · E2Na · E2NaCa)

(15)
Catot = [Catot ]jnc · voljnc + [Catot ]iz · voliz + [Catot ]blk · volblk+ [Catot ]SRup·volSRup+[Catot ]SRrl ·volSRrl
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into cardiomyocytes was promoted using an embryoid body differentiation  system37. The hiPSCs were incubated 
at 37 °C in 5%  CO2, 5%  O2, and 90%  N2 for the first 12 days to promote differentiation. hiPSCs aggregated to 
form embryoid bodies and were cultured in suspension for 20 days. On day 20 of culture, embryoid bodies were 
treated with collagenase B (Roche, Basel, Switzerland) and trypsin–EDTA (Nacalai Tesque, Kyoto, Japan) and 
dispersed into single cells or small clusters, which were plated onto 0.1% gelatin-coated dishes. hiPSC-CMs were 
maintained in a conditioned medium. The experimental study using hiPSC-CMs was approved by the Kyoto 
University ethics review board (G259) and conformed to the principles of the Declaration of Helsinki.

Electrophysiological recordings of hiPSC‑CM APs. For single-cell patch-clamp recordings, gelatin-
coated glass coverslips were placed into each well of a 6-well plate. Two milliliters of DMEM/F12 containing 
2% fetal bovine serum and 80,000–120,000 CMs were added to each well. Spontaneous APs were recorded from 
beating single CMs using the perforated patch-clamp technique with amphotericin B (Sigma-Aldrich, St. Louis, 
MO, USA) at 36 ± 1 ºC. Data were acquired at 20 kHz using a Multiclamp 700 B amplifier (Molecular Devices, 
Sunnyvale, CA, USA), Digidata 1440 digitizer hardware (Molecular Devices), and pClamp 10.4 software (Molec-
ular Devices). The glass pipettes had a resistance of 3–6 MΩ after being filled with the intracellular solution. The 
external solution used for AP recordings was composed of (in mM): NaCl 150, KCl 5.4,  CaCl2 1.8,  MgCl2-6H2O 
1, glucose 15, HEPES 15, and Na-pyruvate 1. The pH was adjusted to 7.4 by titrating with NaOH. Intracellular 
solution contained (in mM): KCl 150, NaCl 5,  CaCl2 2, EGTA 5, MgATP 5, and HEPES 10 (pH adjusted to 7.2 
with KOH), as well as amphotericin B 300 µg/ml.

Results
Mapping the magnitude of MSE over the nine global parameter space. Parameter identifiabil-
ity is a central issue in the parameter optimization of biological  models14,20. To confirm the identifiability of a 
unique set of sfxs using the parameter optimization method, mapping of the MSE distribution over an enlarged 
parameter space defined by the sfx of the nine ionic currents of the baseline model is required. The randomiza-
tion of sfx ranged from 1/10 to approximately 10 times the default values. The calculation was performed for 
approximately 5,000,000 sets, as shown in Fig. 1; magnitudes of log(MSE) were plotted against each sfx on the 
abscissa.

The data points of MSE at a given sfx include all variable combinations of the other eight sfxs. The algorithm of 
the PS method searches for a parameter set, which gives the minimum MSE at a given stp through the process of 
optimization. Drawing a clear envelope curve by connecting the minimum MSEs at each sfx was difficult because 
of the insufficient number of data points in these graphs (Fig. 1). Nonetheless, an approximate envelope of the 
minimum MSEs may indicate a single global minimum of MSE located at the control sfx equals one, as typically 
exemplified by sfKr- and sfbNSC-MSE relations. On both sides of the minimum, steep slopes of MSE/sfx were evident 
in all graphs. Outside this limited sfx -MSE area, the global envelope showed a gentle and monotonic upward slope 
toward the limit on the right side. No local minimum was observed in all of the sfx -MSE diagrams, except for 
the central sharp depression. Essentially the same finding was obtained in another hiPSC-CM model (Cell 38), 
which showed less negative MDP (see Fig. S4 in Supplemental Materials). It was concluded that the theoretical 
model of cardiac membrane excitation (hVC model) has only a single central sharp depression corresponding 
to the control model parameter.

Necessity for parameter optimization as indicated by hiPSC‑CM APs. Figure  2 illustrates the 
records of spontaneous APs (red traces) obtained from 12 experiments in the maximum diastolic potential 
(MDP) sequence (see Supplemental Materials for details). All experimental records were superimposed with 
simulated AP traces (black traces) obtained using conventional manual fitting. In most cases, an MSE of 1–6 
 mV2 remained (Eq. 7) at the end of the manual fitting. This extra component of MSE might be largely attributed 
to slow fluctuations of Vm of unknown origin in experimental recordings, because the non-specific random 
fluctuations were quite different from the exponential gating kinetics of ion channels calculated in mathematical 
models. This extra noise seriously interfered with the assessment of the accuracy of the parameter optimization 
of Gx in the present study. Thus, APs produced by the manual adjustment (cell-specific model) was used as the 
target AP that was completely free from the extra noise when examining the feasibility of the parameter optimi-
zation algorithm.

Comparison of the AP configurations between these hiPSC-CMs clearly indicated that the classification of 
these APs into atrial, ventricular, and nodal types was impractical, as has been  described7. On the other hand, if 
provided with the individual models fit by objective parameter optimizing tools using the baseline model (black 
trace), the results should be fairly straightforward for estimating the functional expression level of ion chan-
nels and to clarify the role of each current system or the ionic mechanisms in generating the spontaneous AP 
configuration in a quantitative manner. Thus, the objective parameter optimization of the mathematical model 
is a vital requirement in cardiac electrophysiology.

Table 1 lists the AP metrics, including cycle length (CL), peak potential of the plateau (OS), MDP, and AP 
duration measured at -20 mV in addition to the MSE between individual experimental records and the model 
output fitted by manual fitting. CL, MDP, and AP varied markedly among different AP recordings of cells (Fig. 2). 
Cells were arranged according to the MDP sequence.

Feasibility of PS algorithm for parameter optimization of membrane excitation models. Auto-
matic parameter optimization has been applied to the model of cardiac membrane excitation in a limited num-
ber of studies (for reviews,  see23,26,38,39) using various optimization methods, such as genetic algorithms. To the 
best of our knowledge, the principal PS algorithm has not been successfully applied to detailed mathematical 
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models of cardiac membrane excitation composed of both ionic channel and ion transporter models, except for 
one pioneering  study12, which applied a more general gradient-based optimization method to the simple ven-
tricular cell model (Beeler and Reuter [BR] model)40.

Figure 3 shows a typical successful run of the new PS method in hiPSC-CMs. An approximate MDP of 
−85 mV was evident. The PS parameter optimization was started after randomizing the sfxs of the six major cur-
rents (IKr, ICaL, INa, Iha, IK1 and IbNSC,) in the manual fit model within a range of ± 15% around the default values 
(normalized magnitude of 1). Figure 3A 1-3-compare the simulated Vm,orp (black) with the target Vm,t (red) at 
the repeat numbers of N = 1, 50, and 1167, respectively (Eq. 8). The overshoot potential (OS), APD, and CL of 
spontaneous AP were markedly different during the first cycle of AP reconstruction (Fig. 3A-1). These deviations 
were largely decreased during the PS cycle (; Fig. 3A-1; Vm at N = 50) and became invisible in the final result 
(Fig. 3A-3; N = 1167). The final individual current flows of the nine current components (Im) are shown in the 
lower panel of Fig. 3A-3.

The time course of decreasing log(MSE) evoked by the multi-run PS optimization was plotted for each sfx 
every time the set of base points was reset (Fig. 3B-1).Figure 3B-2 shows all of the log(MSE) obtained at every 

Figure 1.  Distribution of MSE calculated between the target and simulated APs modified by randomizing 
the sfx of nine ionic currents in coordinates of MSE-sfx. All MSE data points were plotted on the logarithmic 
ordinate against the linear sfx. A total of 5,141,382 points were calculated in cell model No. 86 over the range of 
1/10 to approximately 10 times the default sfx. Since the configuration of Vm records were largely unrealistic at 
sfx > 3, MSE points were omitted over sfx > 3.0. To demonstrate the sharp decrease in MSE, the data points were 
densely populated near the default sfx.
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adjustment by stepping individual BP points. The movements of all sfxs were synchronized to decrease log(MSE) 
from approximately 2.4–1 during the initial 180 cycles of decreasing log(MSE) . However, the search directions of 
BP were quite variable. It seems that the detailed automatic adjustment of sfxs below log(MSE) < 0 was driven by 
adjusting IKr, ICaL, and IbNSC in this cell. The values of sfKr, sfCaL, and sfNa approached the correct value of 1, whereas 
those for Iha, IK1, and IbNSC deviated from the unit by < 10% of the value. The explanation of the deviation of these 
three sfxs from the unit was examined and is presented in the next section.

Figure 2.  Manual fitting of variable AP configurations in 12 different hiPSC-CMs. Each panel shows the 
experimental record (red) superimposed by the model output (black) of the baseline model adjusted by the 
conventional manual fitting. The experimental cell number is presented at the top of each pair of AP records, 
The extra fluctuations are obvious during the AP plateau in Cells 78, 08, and 01, and during SDD in Cells 15 and 
74. The length of abscissa is markedly different to illustrate the interval between two successive peaks of AP.

Table 1.  AP metrics and MSE calculated after manual fitting of the various AP configurations in 12 different 
hiPSC-CMs shown in Fig. 2.

Cell CL (ms) OS (mV) MDP (ms) APD at − 20 mV (ms) MSE  (mV2)

Cell 78 983.8 29.6 − 87.4 271.7 5.8443

Cell 86 1326.0 29.7 − 85.0 289.2 4.0554

Cell 01 887.4 31.2 − 82.2 435.0 3.9330

Cell 91 1058.0 33.0 − 80.4 308.6 7.2156

Cell 08 551.4 32.0 − 79.5 287.6 1.4043

Cell 11 695.0 25.3 − 77.6 243.5 2.6683

Cell 02 603.9 26.4 − 74.9 173.4 1.0412

Cell 74 622.8 18.5 − 74.8 157.0 2.2589

Cell 10 564.3 23.0 − 73.7 220.9 3.2194

Cell 38 425.4 24.2 − 66.8 123.4 3.6626

Cell 15 239.5 13.8 − 66.1 57.1 2.8607

Cell 12 458.6 19.7 − 61.5 119.0 1.3514
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Successful determination of conductance parameters of membrane excitation models using 
the six‑parameter optimization of randomized model parameters (orp) test. In individual runs, 
the PS optimization was frequently interrupted at intermediate levels during the progress of optimization and 
the probability of reaching log(MSE) , for example, below – 2, rapidly decreased with increasing extent of ran-
domization of the initial set of parameters. Moreover, the complementary relationships between several ionic 
currents in determining dVm/dt might have hampered parameter optimization. These facts indicate the need 
for statistical measures to evaluate the accuracy of the PS method. Figure 4 shows the results of the orp tests, 
in which the optimization shown in Fig. 3 was repeated several hundred times. All results were plotted in a 
common coordinate of log(MSE) and individual sfxs. The population of sfx correctly converged at a single peak 
point very close to 1 with increasing negativity of log(MSE) for sfKr, sfCaL, and sfNa. In contrast, sfha, sfK1, and sfbNSC 
showed obvious variance. Nevertheless, they also showed a clear trend toward convergence to 1 on average. We 
could find clear convergence of less number (4) of sfxs used for PO method in cells, which showed relatively low 
MDPs as shown in the supplemental Materials (Fig. S5).

Table 2 summarizes the mean sfx determined for the top 20 runs of PS parameter optimization in each of 
the 12 cells illustrated in Fig. 2.  [Na+]i and  Catot were well controlled to the reference levels (stdNai, and stdCatot in 
Eq. 16 and 17), with respective values of 6.1 mM and 79 amol, at the end of the parameter optimization to ensure 
constant  [Na+]i and  Catot. The mean final log(MSE) of –2.74 indicates that the MSE was reduced by five orders of 

Figure 3.  Successful optimization in Cell 86. (A-1) Target AP (Vm,t, red) and AP generated by randomized 
initial sfxs (Vm,orp, black). (A-2) Vm,t (red) and Vm,orp (black) generated after 50 cycles of adjusting BP. (A-3) Vm: 
Vm,t (red) and Vm,orp (black) generated by the final sfxs. Im: corresponding time courses of each current for the 
finalized AP shown in (A-3) Vm. (B-1) Changes in sfxs vs. log(MSE) during a successful optimization process 
of PS. (B-2) log(MSE) of all BP points during the search process in PS. The initial values of sfxs are plotted by 
corresponding colors at the top of each sfx-log(MSE) graph.

Figure 4.  Convergence of sfx in the orp test for Cell86. The ordinate is the log(MSE) and the abscissa is the 
normalized amplitude of sfx. x denotes Kr, CaL, Na, ha, K1, and bNSC. Black points were obtained in the 
progress of optimization, and red points are the final points in 829 runs of PS optimization.
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magnitude from the initial level just after randomization by the orp test, as in the successful example shown in 
Fig. 3B. The mean of individual sfxs was very close to 1 with a minimum standard error (SE) of the mean, which 
was < 1% of the mean, even for IK1, IbNSC, and Iha, which showed weak convergence against log(MSE) . These results 
validate the accuracy of the parameter optimization using the multi-run PS method in all 12 cell-specific models, 
which include many varieties of spontaneous AP recorded in hiPSC-CMs.

Complementary relationship among  IK1, Iha, and IbNSC. Figure 5A illustrates the distribution of the 
sfxs amplitude in the top 20 data points. The final sfxs in individual runs were connected with lines for each 
run of PS in Cell 86 (Fig. 2). The SEM values were quite small (< 1%) in sfKr and sfCaL. In contrast, sfha, sfK1, and 
sfbNSC showed larger deviations. This finding is interesting because the former currents are mainly involved in 

Table 2.  Measurements of sfxs (mean + SE, N = 20),  [Na+]i (mM), and  Catot (amol) in the 12 cells. The top 20 
results obtained in the multi-run orp method are analyzed in each cell. Grand average (Ave) and SE are listed 
in the bottom rows.

Cell No log(MSE) sfKr sfK1 sfCaL sfbNSC sfha sfNa sfKur [Na+]i(mM) Catot(amol)

78 − 2.48321 1.00005 1.00157 1.00037 0.99460 1.00060 1.00134 6.10550 78.99979

91 − 2.42008 0.99952 1.00644 1.00063 1.00280 1.00470 1.00068 6.09977 79.00044

86 − 2.80257 1.00166 1.01394 1.00142 1.02670 1.00253 1.00702 6.09466 79.00008

01 − 2.79709 0.99871 1.00157 0.99756 0.99692 1.00054 0.99779 6.08973 78.99984

08 − 3.07432 0.00094 0.99982 1.00088 1.00041 0.99968 0.99985 6.12201 79.00056

11 − 2.67641 1.00186 1.00686 1.00129 0.99768 1.00253 1.01028 6.10385 78.99995

10 − 1.70278 1.00322 1.01081 1.00424 1.00396 0.99883 6.10968 79.00018

02 − 2.35441 1.00161 1.02038 1.00341 0.99815 1.01324 1.00954 6.10184 79.00004

74 − 2.43399 1.00126 1.01838 1.00308 0.99898 1.00004 1.00435 6.10118 79.99979

38 − 3.01883 1.00075 1.00106 1.00061 0.98866 1.00151 6.10530 78.99969

15 − 3.85992 1.00003 0.99894 0.99996 1.00015 0.98653 6.09902 79.00022

12 − 3.33037 0.99978 1.00030 0.99990 0.97587 1.00188 6.10012 79.00007

Ave − 2.74617 0.99992 1.00886 1.00110 1.001723 0.99997 1.001681 0.99664 6.10272 79.08339

SE 0.07065 0.00093 0.010000 0.00164 0.00430 0.00729 0.00544 0.00690 0.00017 0.000345

Figure 5.  Distribution of sfx in the top 20 sets of sfxs obtained from the multi-run orp test in Cell86 in Fig. 2. 
Data points of normalized sfx in each set are depicted in different colors. (A) Plot of the amplitudes of each sfx 
(indicated on the abscissa). (B) Three-dimensional plot of the three parameters of sfha, sfK1, and sfbNSC. (C) A 
different solid angle view of the three-dimensional plot showing a linear correlation; see text for the plot in (D).



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19110  | https://doi.org/10.1038/s41598-022-23398-0

www.nature.com/scientificreports/

determining the AP configuration and the latter group mainly drives the relatively long-lasting slow diastolic 
depolarization (SDD) of approximately 1 s duration.

Thus, we analyzed the distribution of sfha, sfK1, and sfbNSC in the top 20 MSE. Figure 5B,C show the distribution 
of the sfx points in the space of the three sfx dimensions. In Fig. 5B, the 20 data points seemed to be dispersed 
randomly in the parameter space. However, when the space was rotated to a specific angle, a linear distribu-
tion was observed (Fig. 5C), indicating that the points were distributed approximately on a plane surface in the 
three-dimensional space. Using multiple regression analysis, we obtained an equation that fit the 20 data points 
as follows  (R2 = 0.872):

By replotting the data points in the two-dimensional space with the abscissa for the sum of two inward-going 
currents (0.76 sfha + 0.19 sfbNSC) and the ordinate for the outward current 0.62 sfK1, we obtained the regression line 
shown in Fig. 5D. Close correlations among the three sfxs were indicated with a high  R2 of 0.941. This finding 
confirms that the three currents have complementary relationships with each other to provide virtually identical 
configurations of spontaneous AP. In other words, log(MSE) remains nearly constant as long as the composition 
of the currents satisfies the relationship given by Eq. 16.

The complementary relationship was further examined by performing an orp test after fixing one of the 
two factors, sfK1 or (sfha + sfbNSC), as illustrated in Fig. 5B. Figure 6A shows the log(MSE) vs. sfK1 relation when 
(sfha + sfbNSC) was fixed at the values obtained by the orp test. Indeed, the typical convergence of the sfK1 was 
obtained. Alternatively, if the sfK1 was fixed, the convergence was obviously improved for both sfha and sfbNSC 
(Fig. 6B-1,2), but it was less sharp if compared to sfKr, sfCaL and sfNa (not shown, but refer to corresponding results 
in Fig. 4A). This finding was further explained by plotting the relationship between the two inward currents, 
Iha and IbNSC, as illustrated in Fig. 6C. The regression line for the data points was fitted by Eq. 17 with  R2 = 0.86, 
supporting the complemental relationship between the two inward currents, Iha and IbNSC.

The moderately high  R2 indicates that the SDD is determined not only by the major Iha and IbNSC but also 
by other currents, such as IK1, IKr, the delayed component of INa (INaL) and ICaL, which were recorded during the 
SDD as demonstrated in Fig. 3.

Essentially the same results of complementary relationship among sfha, sfbNSC and sfK1 were obtained in Cell 91, 
which also showed the long-lasting SDD with the very negative MDP as in Cell 86, as shown in Fig. 2 and Table 2. 
The regression relation for the data points was fitted by Eqs. (18) and (19) with  R2 = 0.656 and 0.472, respectively.

Principal components in the hiPSC‑CM model. The PS frequently got stuck during the progress of 
parameter optimization and failed to reach the global minimum in the present study (Figs. 4,6). The major cause 
of this interruption may most probably be attributed to the fact that sfxs were used directly as the search vector 
of the PS. In principle, the algorithm of PS parameter optimization gives the best performance when the param-
eters search is conducted in orthogonal dimensions where each dimension does not affect the adjustment of 
other sfx

41. To get deeper insights, we applied the principal component (PC) analysis to the set of 6 sfxs selected in 

(16)0.762 · sfha − 0.619 · sfK1 + 0.191 · sfbNSC = 0.333554

(17)0.9736 · sfbNSC + 0.2281 · sfha = 1.2024

(18)0.572 · sfha − 0.132 · sfK1 + 0.810 · sfbNSC = 1.25891

(19)0.9279 · sfha + 0.3706 · sfbNSC = 1.30025

Figure 6.  The complementary relations among sfK1, sfha and sfbNSC. (A) and (B) results of the multi-run orp test. 
A; the perfect convergence of sfK1 when sfha and sfbNSC were fixed. (B1) improved convergence of sfha and (B2) 
sfbNSC when sfK1 was fixed. In these two orp tests, sfx of other currents showed quite comparable convergence as 
in Fig. 4A. (C) the correlation between sfha and sfbNSC.
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the baseline model. We performed PC analysis on the data points recorded in the vicinity of the minima (using 
the top 20 data).

As illustrated in Fig. 7, each of the 6 PCs was not composed of a single sfx but mostly included multiple sfx 
sub-components. This finding indicates the inter-parameter interactions during the process of parameter opti-
mization. For example, the changes in sfK1 or sfbNSC simultaneously affect PCNo.1, 3, 6 or 1, 2, 3 PCs, respectively. 
Both sfCaL and sfKr affect PCNo.4, 5. It might be concluded that the frequent interruptions of PS parameter opti-
mization are most probably caused by the sporadic appearance of the local minima of MSE through interactions 
among sfxs.

Discussion
New findings in the present study are listed below.

(1) Mapping of the MSE distribution over the enlarged parameter space was conducted by randomizing the 
Gxs of the baseline model. It was confirmed that the baseline model had only a single sharp depression in 
MSE at the default Gxs (Fig. 1).

(2) The preliminary cell-specific models were firstly prepared by the conventional manual tuning of Gxs to 
superimpose the model output on each of the 12 experimental AP recordings (Fig. 2). The parameter search 
space was restricted to a relatively small space to facilitate parameter optimization.

(3) The sfxs of the 4–6 Gx parameters were initially assigned random values from a uniform distribution ranging 
between ± 10% of the default values. The MSE was calculated between the randomized model output and 
the intact model AP as the target of optimization (Fig. 3).

(4) Plotting the parameter sfx in common sfx-MSE coordinates during each run of several hundred runs of 
optimization (Fig. 4), revealed that the sfx distributions of IKr, ICaL, and INa converged sharply to a single 
point with decreasing MSE, which exactly equaled the default values. In contrast, estimates of sfK1, sfha, and 
sfbNSC deviated slightly within a limited range around the default values in cells showing long-lasting SDD 
(Fig. 4).

(5) For statistical evaluation, the mean ± SE of sfx in the top 20 MSE estimates was calculated for individual 
cells (Table 2). The results of the parameter optimization in the 12 cells indicated that the means of sfxs 
were very close to 1.00, with an SE < 0.01 for all Gxs.

(6) A complementary relationship was found between sfK1, sfha, and sfbNSC in determining the gentle slope of 
the long-lasting SDD in two representative cells (Fig. 5). Supporting this view, sfK1 clearly focused on the 
unit provided that sfha and sfbNSC were fixed and vice versa (Fig. 6).

(7) The six search vectors of sfx in the presented model could be replaced by the same number of theoretical 
PCs, and each PC was mostly composed of multiple sfxs (Fig. 7). This finding supports the  view12 that the 
complex interactions among Ixs might interrupt the progress of the parameter optimization when sfxs are 
used as the search vector instead of using theoretical orthogonal ones.

The use of an initial randomized set of parameters was crucial in examining whether an optimization method 
could determine unique estimates independent of the initial set of parameters, as used in the GA-based method 
for determining the Gxs of the mathematical cardiac cell  model23. The aforementioned seven findings confirm 
the feasibility of the PS method. Most likely, the PS method is applicable to variable mathematical models of 
other cell functions.  Reference26 provides a more systematic review of parameter optimization in cardiac model 
development.

It has been suggested that different combinations of parameters generate similar  outputs12,23–25. In the present 
study, this suggestion was explained at least in part by the complementary relationship, for example, between 
IK1, Iha, and IbNSC in determining dVm/dt of SDD, which is a function of the total current (Eq. 2, Figs. 5,6). The 
gradient-based optimization method relies on the precise variation in the time course of dVm/dt induced by 

Figure 7.  PC1 ~ 6 to describe distribution of the 6 sfxs. PC analysis was performed on the data population of 
the top 200 runs of the orp test as in Fig. 4, which showed good optimization results (Cell 86). Each magnitude 
of 6 PCs was normalized to give a unit magnitude. Note each PC is composed of multiple components of ionic 
current, which are indicated in the Index with corresponding colors.
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time-dependent changes in individual sfxs (Eq. 2). Therefore, MSE was calculated over the entire time course of 
spontaneous APs. Notably, we did not use AP metrics, which indirectly reflect the kinetic properties of the indi-
vidual currents. Even with this measure of calculating the MSE, the time-dependent changes in pO (Eq. 3) might 
be relatively small between two major currents, IK1 and Iha, in comparison to IbNSC, which has no Vm-dependent 
gate during the SDD, as shown in the current profile in Fig. 3A-3. We assume that the gradient-based optimiza-
tion method can determine different contributions of individual currents if the optimization is conducted only 
within a selected time window of SDD. If the MSE is calculated over multiple phases of spontaneous AP, the 
influence of a particular phase on the MSE should be diluted. In our preliminary parameter optimization, this 
problem was partly solved using a weighted sum for different phases of the spontaneous AP in summing the MSE.

The small amplitude of a given current might be an additional factor in the weak convergence of sfx observed 
in the diagram of sfx—MSE in the orp test of optimization. If the current amplitude is much smaller than the 
sum of all currents in determining dVm/dt (Eq. 2), the resolution of the PS method would decrease. Sarkar et al.24 
demonstrated that the model output, for example, the AP plateau phase, was almost superimposable when dif-
ferent ratios of GKr and GpK were used to reconstruct the model output (their Fig. 1). The authors reported that 
the AP metrics used for comparisons, such as APD, OS, and APA, were quite similar. However, these results were 
obtained by applying different combinations of sfx to the same Ten Tusscher–Noble–Noble–Panfilov (TNNP) 
 model33. This means that the relative amplitudes of IKr and IpK in the TNNP model were much smaller than those 
of the major ICaL during the AP plateau, even though IKr and IpK have completely different gating kinetics. Thus, 
the results of the parameter optimization should be model-dependent. The same arguments can also be applied 
to the use of the FR guinea pig  model42 in the study by Groenendaal et al.23.

A gradient-based parameter optimization method was applied to the cardiac model of membrane excita-
tion in a  study12 that analyzed the classic BR  model40. The whole-cell current in the BR model is composed of a 
minimum number of ionic currents, background IK1, and three time-dependent currents (INa, Is, and Ix1) which 
were dissected from the voltage clamp experiments by applying the sucrose gap method to the multicellular 
preparation of ventricular tissue. The gating kinetics of the latter three currents were formulated according to 
Hodgkin-Huxley type gating kinetics, which is quite simple compared to the recent detailed description of ionic 
currents. The authors reported that the parameter optimization was difficult if the AP configuration was used 
as the target of the parameter optimization. They used the time course of the whole-cell current as a target for 
parameter optimization. However, the number of parameters was quite large (in their study, 63) and included 
limiting conductances and gating kinetics. The authors suggested that the feasibility of the parameter optimiza-
tion method would be improved with additional experimental data.

In modern mathematical cardiac cell models, most ionic currents are identified by whole-cell voltage clamp 
and single-channel recordings in dissociated single  myocytes43 using the patch-clamp  technique44 and by iden-
tifying the molecular basis of membrane proteins. The molecular basis of the ion channels expressed in the 
hiPSC-CMs from the GSE154580 GEO Accession viewer is mostly identical to those in the adult cardiac myo-
cytes, rather than in the fetal heart. Moreover, gating kinetics have been extensively studied to characterize ionic 
currents within the cell model. In principle, the detailed characterization of individual currents should facilitate 
the identifiability of the model parameter, but should not necessarily interfere with parameter optimization. 
We consider that the manual fitting of the model parameters to the AP recording using a priori knowledge of 
biophysical mechanisms should largely facilitate the subsequent automatic parameter optimization. Also, ionic 
currents left at the default values work as constraints to improve the identifiability of the target parameters.

After validating the automatic parameter optimization method, the final goal of our study was to determine 
the principle of ionic mechanisms that are applicable to the full range of variations in spontaneous AP records 
in both hiPSC-CMs and mature cardiomyocytes. The multi-run PS method was applied to the experimental AP 
recordings using the initial parameter sets obtained by the conventional manual fit. The protocol for measuring 
Gxs was the same as that used in the present study, except for the use of experimental AP recordings instead of the 
output of the ’cell-specific model’. In our preliminary analysis, the magnitude of the individual model parameters 
obtained by manual tuning was corrected by < 15% by objective parameter optimization.

Finally, the ionic mechanisms underlying the SDD of variable time courses will be analyzed in a quantita-
tive manner, for example, by using lead potential  analysis45, which explains changes in Vm in terms of the Gx of 
individual currents. An example of applying the new PO method to the experimental recording of selective IKr-
blockade, yet still preliminary is described in four hiPSC-CMs (see Figs. S6 and S7 in Supplemental Materials).

Limitations
There are several limitations in the present study. In general, the obvious limitations of published mathematical 
models of cardiac membrane excitation are caused by a shortage of functional components inherent in intact 
cells. For example,  [ATP]i that is controlled by energy metabolism is a vital factor in maintaining the physiologi-
cal function of ion channels as well as the active transport of the  Na+/K+  pump46. Moreover, most models do not 
account for modulation of the ion channel activity through phosphorylation of the channel proteins, detailed 
modulation of the channel by  [Ca2+]i, alterations in ion channel activity by  PIP2

47,48, and tension of the cell mem-
brane through changes in cell  volume49–52. The detailed  Ca2+ dynamics of  [Ca2+]i are still not implemented in most 
cardiac cell models. These dynamics include  Ca2+ release from sarcoplasmic reticulum (SR) activated through 
the coupling of a few L-type  Ca2+ channels with a cluster of ryanodine receptors (RyRs) at the dyadic  junction29 
and  Ca2+ diffusion influenced by the  Ca2+-binding  proteins53. To simulate  Ca2+ binding to troponin during 
the development of contraction, a dynamic model of the contracting fibers is  necessary54–57. These limitations 
should be thoroughly considered when investigating pathophysiological phenomena such as arrhythmogenesis. 
The scope of the present study was limited to the AP configurations of hiPSC-CMs, which were assumed to be 
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‘healthy’ with respect to the above concerns. For example,  [ATP]i,  [Na+]i, and  Catot were kept constant, and the 
standard contraction model was implemented, as in the hVC model.

The parameter optimization presented in this study can be achieved in a practical manner by limiting the 
number of unknown parameters. We determined only Gxs based on the assumption that ion channel kinetics are 
preserved, as in hiPSC-CMs and mature myocytes. Usually, four to six ionic currents are selected for optimiza-
tion. The orp method could be performed simultaneously for all nine ionic currents, as described in Eq. (1). 
However, the computation time was radically prolonged and the resolution was not as high as that obtained using 
a modest number of parameters. We consider that the determination of a limited number of Gxs is relevant to 
solving physiological problems in terms of detailed model equations for each current system.

Although INCX and INaK contributed sizeable fractions of the whole-cell outward and inward currents, respec-
tively (Fig. 3A-3), we excluded the scaling factors sfNaK and sfNCX from the parameter optimization for the sake 
of simplicity. Instead, the possible drift of intracellular ion concentrations was fixed during the repetitive adjust-
ment of ionic fluxes by varying sfx, as shown in Table 2. The introduction of the empirical equations (Eq. 13 and 
14) was useful for adjusting  [Na+]i and  Catot (Table 2) so that the time course and magnitude of INCX remained 
almost constant during the parameter optimization. In future studies, when the influences of varying  [Na+]i and/
or  Catot are examined under various experimental conditions, the reference levels of  [Na+]i and/or  Catot (stdNai 
and stdCatot in Eq. 13 and 14) might be replaced by experimental measurements.

For the excitation–contraction coupling and calcium-induced calcium release (CICR) in hiPSC-CMs lacking 
T-tubules, Koivumaki et al.58 developed the novel Paci model of hiPSC-CM with essential features of membrane 
electrophysiology and intracellular CICR with the spontaneous membrane excitation (mouse fetal cell  model58) 
as a platform that can be used to facilitate the translational research from hiPSC-CMs to heart  diseases59. This 
composite model demonstrated spontaneous  Ca2+ release, which occurred several tens of milliseconds before 
the AP, to serve as a trigger. This is different from the almost simultaneous rise in spontaneous AP and the 
accompanying  Ca2+ transient, as demonstrated by Spencer et al.60. These differences might most probably be due 
to the variable degrees of maturation of hiPSC-CMs used in different laboratories.

The issue of coupling CICR with cardiac membrane excitation in the absence of T-tubules has long been 
extensively discussed in sinoatrial (SA) node pacemaker cells. Maltsev and Lakatta proposed cell models in 
which APs were triggered by the gradual increase in  [Ca2+] in the heuristic submembrane space during the 
 Ca2+-transient (the ’Ca-clock’ theory)61,62. Himeno et al. examined this issue using patch-clamp experiments in 
isolated SA node pacemaker  cells63. The authors described that the spontaneous rhythm remained intact when 
SR  Ca2+ dynamics were acutely disrupted by addition of high doses of a  Ca2+-chelating agent to the cytosol. This 
experimental finding could be reconstructed using their SA node cell model, supporting the membrane origin 
of spontaneous AP generation. A more detailed and extensive theoretical study was published by Stern et al.64 
(see also Hinch et al.4). The authors constructed a computational cell model that included the three-dimensional 
diffusion and buffering of  Ca2+ in the cytosol. The  Ca2+-releasing couplon was located at the site of close contact 
of the junctional SR membrane with the cell membrane, where the individual clusters of RyRs of various sizes 
on the SR membrane and a few LCC on the cell membrane are functionally coupled across the nanoscale gap. 
Interestingly, no local  Ca2+ release occurred if the clusters of RyRs were separated by > 1 μm. However, bridging 
large RyR clusters to form an irregular network can lead to the generation of propagating local CICR events and 
partial periodicity, as observed experimentally. Considering all these experimental and theoretical findings, the 
issue of ‘Ca-clock’ is still a matter of debate. Therefore, we consider that including all these details in the hiPSC 
version of the hVC model is clearly beyond the scope of the present study, which aims to develop a PO method 
to determine the parameters of the membrane excitation model in general.

The PO method was not applied to several ionic currents in this study. For example, it was difficult to deter-
mine the kinetics of the T-type  Ca2+ channel (ICaT;  CaV 3.1) and so it was excluded from the present study. The 
very fast opening and inactivation rates that have been previously  described65 suggest a complete inactivation 
of ICaT over the voltage range of SDD, while the sizeable magnitude of the window current that has also been 
 described66 suggests a much larger contribution to SDD. The kinetics of ICaT remain to be clarified through 
experimental examination. The sustained inward current, Ist, has recently been attributed most probably to  CaV 
1.367, which is activated at a more negative potential range than ICaL  (CaV 1.2)68,69. In the present study, IbNSC was 
used to represent the net background conductance. However, several components of background conductance 
have been identified at the molecular level in mature myocytes (for a review of TRPM4,  see70). Experimental 
measurements of the current magnitude of each component are required.

Gábor and Banga indicated that the multi-run method performed well in certain cases, especially when 
high-quality first-order information was used, and the parameter search space was restricted to a relatively small 
 domain16. Another study echoed these  findings19. In the present study, manual fitting of the parameters (Fig. 1) 
was required to utilize the multi-run PS method over the restricted search space. One of the major difficulties in 
the manual fitting of individual Gxs arose during SDD, where IKr, IK1, IbNSC, and Iha, in addition to INaK and INCX, 
constitute the whole-cell current (Fig. 3A-3). However, close inspection of the current components in Fig. 3A-3 
provides hints on how to do with the manual fit. The transient peak of IKr dominates the current profile during 
the final repolarization phase from -20 to -60 mV in all 12 hiPSC-CMs71, since ICaL and IKs rapidly deactivates 
before repolarizing to this voltage range. INaK and INCX are well controlled by the extrinsic regulation in Eqs. (13) 
and (14). Thus, manual fitting of sfKr was first applied to determine sfKr. The MDP more negative than -70 mV 
was adjusted by the sum of time-dependent (IKr + IK1) and time-independent IbNSC. Then, IKr is deactivated when 
depolarization becomes obvious after the MDP, and the depolarization-dependent blocking of IK1 by intracellular 
 substances72 play major roles in promoting the initial linear phase of SDD. Thus, the amplitudes of sfK1 and sfbNSC 
may be approximated during the initial half of the SDD. The latter half of SDD, including the foot of AP (i.e., the 
exponential time course of depolarization toward the rapidly rising phase of AP) was mainly determined by the 
subthreshold Vm-dependent activation of INa (after MDP more negative than -70 mV) and/or ICaL (after MDP less 
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negative than -65 mV). Thus, sfNa and sfCaL were roughly determined by fitting the foot of the AP and the tim-
ing of the rapid rising phase of AP. The plateau time course of AP is determined by sfCaL and the  Ca2+-mediated 
inactivation of ICaL (parameter KL4). Because the kinetics of outward currents IKur, IKto (endo-type), and IKs are 
quite different from those of IKr, the plateau configuration was determined incrementally by adjusting these cur-
rents. We failed to observe phase 1 rapid and transient repolarization in hiPSC-CMs (Fig. 2), which is a typical 
sign of the absence of epicardial-type IKto.

In hiPSC-CMs showing less negative MDP than approximately -65 mV, the contribution of IK1, INa, and Iha 
should be negligibly small because IK1 is nearly completely blocked by intracellular  Mg2+ and polyamines, INa is 
inactivated, and Iha is deactivated during SDD, even if it is expressed.

Nevertheless, parameter optimization might be laborious and time-consuming for those unfamiliar with the 
electrophysiology of cardiac myocytes. This difficulty might be largely eased by accumulating both AP configura-
tions and the underlying current profile obtained in parameter optimization into a database in the future. If this 
database becomes available, computational searches for several candidate APs for the initial parameter set will 
be feasible, which will be used for automatic parameter optimization.

Data availability
The AP records used in Section 4.2, and the source code of the optimization program are available in the Sup-
plemental Material link for the following bioRxiv entry. https:// doi. org/ 10. 1101/ 2022. 05. 16. 492203.
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