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In the treatment of cancer, anti-programmed cell death-1 (PD-1)/programmed cell death-
ligand 1 (PD-L1) immunotherapy has achieved unprecedented clinical success. However,
the significant response to these therapies is limited to a small number of patients. This
study aimed to predict immunotherapy response and prognosis using immunologic gene
sets (IGSs). The enrichment scores of 4,872 IGSs in 348 patients with metastatic urothelial
cancer treated with anti-PD-L1 therapy were computed using gene set variation analysis
(GSVA). An IGS-based classification (IGSC) was constructed using a nonnegative matrix
factorization (NMF) approach. An IGS-based risk prediction model (RPM) was developed
using the least absolute shrinkage and selection operator (LASSO) method. The
IMvigor210 cohort was divided into three distinct subtypes, among which subtype 2 had
the best prognosis and the highest immunotherapy response rate. Subtype 2 also had
significantly higher PD-L1 expression, a higher proportion of the immune-inflamed
phenotype, and a higher tumor mutational burden (TMB). An RPM was constructed
using four gene sets, and it could effectively predict prognosis and immunotherapy
response in patients receiving anti-PD-L1 immunotherapy. Pan-cancer analyses also
demonstrated that the RPM was capable of accurate risk stratification across multiple
cancer types, and RPM score was significantly associated with TMB, microsatellite
instability (MSI), CD8+ T-cell infiltration, and the expression of cytokines interferon-g (IFN-
g), transforming growth factor-b (TGF-b) and tumor necrosis factor-a (TNF-a), which are key
predictors of immunotherapy response. The IGSC strengthens our understanding of the
diverse biological processes in tumor immune microenvironment, and the RPM can be a
promising biomarker for predicting the prognosis and response in cancer immunotherapy.
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INTRODUCTION

Anticancer immunotherapy, mainly immune checkpoint
inhibitors (ICIs), has emerged as a new pillar in cancer
management (1, 2). These treatments work by overcoming
tumor-induced immunosuppression, thereby achieving
immune-mediated tumor clearance (3). Although they are
generally more effective and better tolerated than conventional
and targeted therapies, many patients have innate or acquired
resistance to immunotherapy (4).

The tumor immune microenvironment (TIME) has been
shown to play a critical role in tumor development and
influence clinical outcomes (5). Comprehensive analysis of the
TIME can reveal the mechanisms of immunotherapy response
and resistance, thus providing opportunities to improve survival
outcomes and develop new therapeutic strategies (6). Gene
expression profiling has become a mainstay in the research field
of the TIME (7). However, due to its highly heterogeneous and
dynamic nature, studies regarding the changes in an individual gene
cannot precisely dissect the TIME. Generally, immune cell (IC)
function is affected by a set of correlated genes rather than a single
gene. Therefore, studies of gene sets may provide novel insights into
cancer immunotherapy.

In this study, we assessed the enrichment changes in
immunologic gene sets (IGSs) from the ImmuneSigDB in a
cohort of patients with anti-PD-L1-treated metastatic
urothelial cancer (IMvigor210). The correlation of IGS-based
classification (IGSC) with clinical and immune characteristics
was assessed. Finally, an IGS-based risk prediction model (RPM)
for prognosis and the immunotherapy response was established,
and its prognostic predictive ability was evaluated across
multiple types of cancers.
MATERIALS AND METHODS

Data Acquisition
IMvigor210 is a multicenter, single-arm, phase II trial to assess
the safety and efficacy of atezolizumab (a PD-L1 inhibitor) in
patients with locally advanced and metastatic urothelial
carcinoma (8, 9). After procuring the Creative Commons 3.0
License, we obtained the transcriptome RNA sequencing (RNA-seq)
and detailed clinical annotations from IMvigor210CoreBiologies
(http://research-pub.gene.com/IMvigor210CoreBiologies).
Transcriptome and clinical data of Liu’s cohort were extracted from
the Supplementary File of their articles (10). Clinicopathological
information and microarray expression profiling data of
immunotherapy cohorts (GSE78220 and GSE91061).

Transcriptome RNA-seq and somatic mutation data and
the corresponding clinicopathological information of 5,265
patients with the 12 most common cancers [bladder carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), prostate
Frontiers in Immunology | www.frontiersin.org 2
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thyroid carcinoma
(THCA)] were downloaded from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov). Pan-cancer
microsatellite instability (MSI) scores were obtained from the
article by Bonneville et al. (11).

Immunologic Gene Set and Gene Set
Variation Analysis
ImmuneSigDB is a manually annotated compendium of ∼5,000
gene sets from diverse cell states, experimental manipulations,
and genetic perturbations in immunology (12). IGS of
ImmuneSigDB (c7. ImmuneSigDB. v7.4) was downloaded
from Molecular Signatures Database (MSigDB). The
enrichment score (ES) for each IGS in each sample was
analyzed by GSVA with the “GSVA” package in R. GSVA is a
popular enrichment algorithm, which was extensively utilized in
medical studies (13–17).

Immunologic Gene Set-Based
Classification
According to the ES of IGS, subtypes of IMvigor210 cohort were
identified using nonnegative matrix factorization (NMF) with
“NMF” package in R (18). The optimal number of clusters (K)
was generated using “factoextra” package.

Immune Cell Infiltration Analysis
CIBERSORT (https://cibersortx.stanford.edu/) is a computational
method used to quantify cell fractions from bulk tissue gene
expression profiles (19). We used CIBERSORT to estimate the
proportion of 22 types of ICs in IMvigor210 and pan-
cancer cohorts.

Immunotherapy Response Prediction
Tumor immune dysfunction and exclusion (TIDE) (http://tide.
dfci.harvard.edu/) is a computational framework developed to
evaluate the potential of tumor immune escape from the gene
expression profiles of cancer samples (20). The TIDE score
computed for each tumor sample can serve as a surrogate
biomarker to predict the response to immune checkpoint
blockade for multiple types of cancers.

Statistical Analysis
Statistical analyses were conducted using the R software (version
4.1.0) and the Sangerbox tools (http://www.sangerbox.com/tool).
Continuous variables were presented as standard error of the
mean and were compared using Student’s t-test or Wilcoxon
rank sum test. Categorical data were compared using the chi-
square test. Univariate and multivariate Cox proportional
hazards regression analysis using the “survival” package. A
least absolute shrinkage and selection operator (LASSO)
regression model was performed with “glmnet” and “survival”
packages. Kaplan–Meier survival analysis with log-rank test was
performed with the R package “survminer”. Differential
expression analysis was performed with the “limma” package.
Statistical significance was set at P < 0.05 and shown as *P < 0.05,
**P < 0.01, and ***P < 0.001.
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RESULTS

Construction of an Immunologic Gene
Set-Based Classification
The flowchart of this study is shown in Figure 1. A total of 4,872
IGSs were obtained from ImmuneSigDB. The ESs for the IGSs
from 348 urothelial carcinoma specimens in the IMvigor210
cohort were computed using GSVA based on transcriptome
RNA-seq data. Patients who responded to treatment with a
complete response (CR; N = 25) or partial response (PR; N =
43) were categorized as responders, and patients who displayed
stable (SD; N = 63) or progressive disease (PD; N = 167) were
categorized as non-responders. Differential expression analysis
revealed that ESs of 1,349 gene sets were significantly different
between responders and non-responders (false discovery rate
<0.05); 744 gene sets were upregulated in the responder group,
and 605 gene sets were significantly upregulated in the non-
responder group (Figure 2A). The univariate Cox regression
model showed that 367 gene sets were significantly associated
with prognosis.

Based on the prognostic IGS, the IMvigor210 cohort was
classified into three distinct subtypes according to the optimal
number of subtypes (K) as defined by the “factoextra” package
(Figure 2B), namely, Subtype 1 (N = 105), Subtype 2 (N = 118),
and Subtype 3 (N = 125). The silhouette width value for the
classification was 0.71 (Figure 2C), suggesting a fine match
between a sample and its identified subtype. Kaplan–Meier
survival analysis showed that Subtype 2 had the best prognosis,
Frontiers in Immunology | www.frontiersin.org 3
Subtype 3 had the worst prognosis, and Subtype 1 had an
intermediate prognosis (Figure 2D). Additionally, the response
rate to PD-L1 immunotherapy was significantly higher in
Subtype 2 (40%) than those in Subtypes 3 (12%) and 1 (20%)
(Figure 2E). The above results suggest that IGSC can be effective
for distinguishing patients with different prognoses and can
predict the efficacy of anti-PD-L1 immunotherapy.

Immunologic Gene Set-Based
Classification Subtypes Correlated With
Clinical and Immune Features
As shown in the heatmap in Figure 2F, IGSC was significantly
correlated with PD-L1 expression, Lund classification, and
immune phenotype. Specifically, Subtype 2 had higher PD-L1
expression levels in both ICs and tumor cells (TCs). For ICs, the
proportion of IC2+ in Subtype 2 (54%) was significantly higher
than those in Subtypes 1 (17%) and 3 (29%) (Figure 2G). The
same was also observed for TCs, with a significantly higher
percentage of TC2+ (27%) in Subtype 2 than that in Subtypes 1
(2%) and 3 (13%) (Figure 2H). In addition, we found that about
70% of Subtype 1 was UroA type, and about 60% of Subtype 3
was Inf type; the proportions of GU type (42%) and SCCL type
(42%) in Subtype 2 were significantly higher than those in the
other two subtypes (Figure 2I). Next, we compared the IGSC
subtypes to immune phenotypes and found that Subtype 2 had
the highest proportion of immune-inflamed phenotype (42%)
and the lowest proportion of the immune-desert phenotype
(14%) (Figure 2J). Furthermore, Subtype 2 had higher levels of
FIGURE 1 | Graphic abstract of this study.
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tumor mutational burden (TMB) (Figure 2K) and tumor
neoantigen burden (TNB) (Figure 2L) than Subtypes 1 and 3.
Several prognostic favorable signatures, including CD8+ T
effector, immune checkpoint, antigen processing machinery
(APM), DNA damage repair (DDR), and mismatch repair
(MMR), cell cycle, and DNA replication, were significantly
upregulated in Subtype 2. In contrast, oncogenic signatures
and epithelial–mesenchymal transition (EMT) signaling
pathways, were significantly upregulated in Subtype 3, which
explains why Subtype 3 had the worst prognosis. Subtype 1 was
related to the activation of signaling pathways, such as
Peroxisome Proliferator Activated Receptor Gamma (PPARG),
Frontiers in Immunology | www.frontiersin.org 4
Fibroblast Growth Factor Receptor 3 (FGFR3) related, and
Wingless/Integrated (WNT) target (Figure 2A).

Immunologic Gene Set-Based
Classification Differential Gene Sets
and the Construction of a Risk
Prediction Model
The above results indicated that Subtype 2 had significantly
better prognosis and immunotherapy response than Subtypes 1
and 3. To explore the mechanisms underlying these differences,
we performed a differential analysis of gene sets among the IGSC
subtypes. There were 834 differential gene sets between Subtypes
A B D

E F

G IH J

K L M

C

FIGURE 2 | Construction of an IGS-based classification (IGSC). (A) A volcano plot showed the differentially expressed gene sets between response and non-
response groups in IMvigor210 cohort. (B) IMvigor210 cohort was classified into three subtypes. (C) The silhouette width value for the classification was 0.71,
suggesting a fine match between a sample and its identified subtype. (D) Kaplan–Meier survival analysis showed that Subtype 2 had the best prognosis, Subtype 3
had the worst prognosis, and Subtype 1 had an intermediate prognosis. (E) The response rate to PD-L1 immunotherapy was significantly higher in Subtype 2 than
those in Subtypes 3 and 1. (F) A heatmap showed the correlation between IGSC subtypes and clinical and immune features. (G–J) The proportions of IC levels (IC0,
IC1, and IC2+), TC levels (TC0, TC1, and TC2+), Lund classifications (SCCL, GU, inf, UroA, and UroB), and immune phenotypes (inflamed, excluded, and desert) in
different IGSC subtypes. (K, L) Tumor mutational burden and neoantigen burden in different IGSC subtypes. (M) A Venn plot shows the intersected differential gene
sets between Subtypes 2 and 1 and between Subtypes 2 and 3. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, nonsignificant; IGS, immunologic gene
sets; PD-L1, programmed cell death-ligand 1; IC, immune cells; TC, tumor cells; Inf, infiltrated; SCCL, squamous cell carcinoma-like; UroA, urothelial-like A; UroB,
urothelial-like B.
April 2022 | Volume 13 | Article 858246
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1 and 2 and 880 differential gene sets between Subtypes 3 and 2.
Taking the intersection, we obtained 365 differential gene sets
(Figure 2M). These gene sets were applied to a LASSO regression
analysis, and finally an RPM consisting of four gene sets was
constructed (Figures 3A, B). The four gene sets are hereafter
referred to as Gene Set 1 (GSE3039_NKT_CELL_VS_B2_BCELL_
DN), Gene Set 2 (GSE4748_CYANOBACTERIUM _LPSLIKE_
VS _LPS_AND_CYANOBACTERIUM_ LPSLIKE_STIM_
DC_3H_DN), Gene Set 3 (GSE29614_DAY3_VS_ DAY7_TIV_
FLU_VACCINE _PBMC_DN), and Gene Set 4 (GSE45739
_UNSTIM_VS_ACD3_ACD28_ STIM_NRAS_KO_CD4_
Frontiers in Immunology | www.frontiersin.org 5
TCELL_DN). Genes included in Gene Sets 1–4 were summarized
in Table S1. High expression of Gene Sets 1 and 2 was associated
with worse prognosis, while high expression of Gene Sets 3 and 4
was associated with better survival (Figures S1A–D).

By calculating the sum of the products of the ES and
coefficients for each gene set, we could quantify the prognosis
of each patient. RPM score = (Gene Set 1 × 7.47) + (Gene Set 2 ×
5.73) + (Gene Set 3 × -6.00) + (Gene Set 4 × -6.28). We divided
the IMvigor210 cohort into low-risk (RPM-L, N = 163) and
high-risk (RPM-H, N = 185) groups based on the best cutoff
values calculated using the “Survminer” package in R.
A B
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FIGURE 3 | Construction of an IGS-based risk prediction model (RPM). (A, B) LASSO regression analysis identified four gene sets to construct an RPM.
(C) Kaplan–Meier survival analysis showed that RPM-L had a better prognosis than RPM-H. (D–F) Subgroup analysis based on immune phenotypes revealed the
difference in survival between RPM-H and RPM-L groups in immune-inflamed (D), -excluded (E) and -desert (F) subtypes. (G) The response rate to PD-L1
immunotherapy was significantly higher in the RPM-L than that in the RPM-H. (H) Patients with CR/PR had a lower RPM score than those with SD/PD. (I–K) The
predictive ability of RPM for immunotherapy response was validated in GSE78220, GSE91061, and Liu’s cohort. (L–O) KEGG pathway analysis of the genes in Gene
Sets 1–4. *P < 0.05, ***P < 0.001; ns, nonsignificant; RPM, risk prediction model; LASSO, least absolute shrinkage and selection operator; PD-L1, programmed cell
death-ligand 1; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; KEGG, Kyoto Encyclopedia of Genes and Genomes.
April 2022 | Volume 13 | Article 858246
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Clinicopathological features of the RPM-L and RPM-H groups
in IMvigor210 cohort are summarized in Table S2. Kaplan–
Meier survival analysis showed that the prognosis of the RPM-H
group was significantly worse than that of the RPM-L group
[Figure 3C; P < 0.001, hazard ratio (HR) = 1.69]. We performed
subgroup analysis based on immune phenotypes, and the
IMvigor210 cohort was divided into three subgroups, namely,
immune inflamed (n = 74), immune excluded (n = 134), and
immune desert (n = 76). The RPM-H group showed worse
prognosis compared to the RPM-L group in immune inflamed
(HR = 2.24, p = 0.006; Figure 3D) and immune excluded (HR =
2.21, p < 0.001; Figure 3E) subgroups. Although a similar trend
was also seen in the immune desert subgroup, the difference in
survival did not reach statistical significance (HR = 1.37, p =
0.261; Figure 3F). The proportion of CR/PR in the RPM-L group
(37%) was significantly higher than that in the RPM-H group
(15%) (Figure 3G), and the RPM score in the SD/PD group was
significantly higher than that in the CR/PR group (Figure 3H).
To validate the predictive ability of RPM for immunotherapy
response, we calculated RPM scores in GSE78220 (28 melanoma
patients treated with anti-PD-1 inhibitor), GSE91061 (105
melanoma patients treated with anti-PD-1 inhibitor), and Liu’s
cohort (121 melanoma patients treated with anti-PD-1
inhibitor). We found that non-responders to immunotherapy
had significantly higher RPM than responders in the GSE78220
cohort (P = 0.041; Figure 3I). A minor difference in RPM score
between responder and non-responder can also be seen in
GSE91061 (Figure 3J) and Liu’s cohort (Figure 3K), but the
difference did not reach statistical significance.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses showed that Gene Set 1 was associated with TNF, HIF-1,
IL-17, NF-kappa B, and Toll-like receptor signaling pathways
(Figure 3L); genes in Gene Set 2 were significantly enriched in
TGF-beta and chemokine signaling pathways (Figure 3M).
Gene Set 3 was correlated with cell cycle and the p53
signaling pathway (Figure 3N); and Gene Set 4 was related to
natural killer cells, Th1 and Th2 cells, and antigen processing
and presentation (Figure 3O).

Correlation of Risk Prediction Model With
Clinical Characteristics
Similar to the IGSC, the RPM was significantly correlated with
Lund classification, immune phenotype, and IC level
(Figure 4A) but not with TC level (Figures S1E, F). In the
RPM-L group, more than 40% were GU type, while in the RPM-
H group, only 8% were GU type (Figure 4B), and of the five
types, the GU type had the lowest RPM score (Figure 4C). The
proportion of IC2+ in the RPM-L group was about twice that in
the RPM-H group, while the proportion of IC0 was only half of
that in the RPM-H group (Figure 4D). The RPM score of the
IC2+ was significantly lower than that of the IC0 and IC1
(Figure 4E). The proportion of the immune-desert phenotype
was significantly higher in the RPM-H group (35% vs. 14%;
Figure 4F), while the proportion of the immune-inflamed
phenotype was significantly lower in the RPM-H group (21%
vs. 38%) than that in the RPM-L group. The immune-desert
Frontiers in Immunology | www.frontiersin.org 6
phenotype had the highest RPM score, while the immune-
inflamed phenotype had the lowest RPM score (Figure 4G). In
addition, RPM scores were also significantly negatively
correlated with both TMB and TNB (Figures 4H, I).

Correlations between RPM scores and core signaling
pathways were also analyzed, and RPM-L was significantly
correlated with prognosis-favorable biological pathways,
including CD8+ T effector, immune checkpoint, APM, and
DDR, while RPM-H was associated with prognosis-unfavorable
signatures, such as EMT, WNT, FGFR3, and PPARG (Figure 4A).

Correlation of Risk Prediction Model With
Immune Cell Infiltration and Expression of
Immune Checkpoints
The infiltration of 22 types of ICs in the IMvigor210 cohort was
analyzed using the CIBERSORT package. We found denser
infiltrations of memory B cells, plasma cells, CD8 T cells,
activated memory CD4 T cells, follicular helper T cells, gamma
delta T cells, and M1 macrophages in the RPM-L group. In
contrast, infiltration of resting memory CD4 T cells, monocytes,
M0 macrophages, M2 macrophages, and activated mast cells,
eosinophils, and neutrophils was denser in the RPM-H group
(Figure 4J). Correlation analysis showed that RPM score was
negatively correlated with CD8+ T cells, CD4+ T cells, and B
cells while positively correlated with macrophages, mast cells,
and neutrophils (Figure 4K). In addition, we compared the
expression of immune checkpoint molecules, including CD274,
PDCD1, PDCD1LG2, CTLA4, HAVCR2, LAG3, and TIGIT in
the RPM-L and RPM-H groups. We found that the RPM-L
group had significantly higher expression levels of immune
checkpoint molecules compared to those in the RPM-H
group (Figure 5A).

Correlation of Risk Prediction Model With
Platinum-Based Chemotherapy
Of the 348 patients with metastatic urothelial carcinoma (mUC),
272 received platinum-based chemotherapy. We compared the
administration of platinum with immunotherapy response and
found no significant difference in immunotherapy response in
patients who received platinum-based chemotherapy (21%) vs.
those who did not (29%) (P = 0.22; Figure 5B). Non-responders
to immunotherapy had higher RPM score than responders,
regardless of prior platinum-based chemotherapy. However,
there was no significant difference in RPM score between
patients who received platinum-based chemotherapy and those
who did not (Figure 5C).

Correlation of Risk Prediction Model With
Somatic Mutation in Bladder Carcinoma
We analyzed the simple nucleotide variation data of TCGA-
BLCA dataset to characterize somatic mutations in the RPM-H
and RPM-L groups. We found that the overall mutation rate was
significantly higher in the RPM-L group (97.04% vs. 90.55%).
Compared with the RPM-H group, the mutation rate of the 20
most frequently mutated genes (such as TP53, TTN, ARID1A,
April 2022 | Volume 13 | Article 858246
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PIK3CA, FGFR3, etc.) was higher in the RPM-L group
(Figures 5D, E).

Risk Prediction Model Can Predict
Prognosis Across Pan-Cancer
To further assess the general applicability of the RPM in predicting
prognosis, we validated its prognostic predictive ability for the 12
most common cancers. We found that Gene Sets 1 and 2 had HRs
>1 for most of the 12 tumors, suggesting that they are unfavorable
prognostic indicators. In contrast, Gene Sets 3 and 4 had HRs <1
for most of the 12 tumors, indicating that they are favorable
prognosis factors (Figure 6A). The prognosis of the RPM-H group
was worse than that of the RPM-L group for 9 out of 12 types of
cancers (BLCA, CESE, COAD, ESCA, LUAD, LUSC, READ,
Frontiers in Immunology | www.frontiersin.org 7
STAD, and THCA) (Figures 6B, D–F, H, I, K–M), and this
difference in survival was not significant in BLCA, LIHC and
PRAD (Figures 6C, G, J).

Risk PredictionModel Predicts Immunotherapy
Response Across Pan-Cancer
Based on their expression profiles, a TIDE score was calculated for
5,265 patients in pan-cancer cohorts. The RPM score was positively
correlated with TIDE in 11 out of 12 cancers, except for THCA,
which has a nonsignificant negative correlation (Figures 7A, B),
implying that as the RPM score increased, the greater the likelihood
of immune escape, and the less likely a patient would benefit from
immunotherapy. In addition, RPM scores were negatively associated
with TMB in 12 types of cancers (Figure 7C, Figure S1G).
A

B D E

F G IH

J
K

C

FIGURE 4 | Correlation of the RPM with clinical characteristics and immune cell infiltration. Panel A showed the correlation between IGSC subtypes and clinical and
immune features. (B, D, F) The proportions of Lund classifications, IC levels, and immune phenotypes in different RPM groups. (C, E, G) The RPM scores in different
Lund classifications, IC levels, and immune phenotypes. (H, I) Correlations of RPM scores with TMB and TNB. (J) Immune cell infiltration in RPM-L and RPM-H
groups. (K) Correlation between RPM scores and density of infiltrating immune cell. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, nonsignificant; RPM,
risk prediction model; IGSC, immunologic gene sets-based classification; IC, immune cells; TMB, tumor mutation burden; TNB, tumor neoantigen burden.
April 2022 | Volume 13 | Article 858246
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Moreover, RPM score was negatively correlated with MSI score in
STAD, COAD, CESE, ESCA, and READ (Figure 7D). It is well
known that MSI plays important roles in the carcinogenesis of
gastrointestinal cancers, such as COAD, READ, and STAD. We
found that patients with microsatellite stability (MSS) in COAD,
READ, and STAD had significantly higher RPM scores than those
with MSI-H (Figure 7E).

Correlation analysis of infiltrating ICs and RPM scores
suggested that in most of the 12 tested cancers, RPM scores
were significantly negatively correlated with the infiltration of
T cells (except for resting CD4+ memory T cells and regulatory
T cells) and B cells and were positively correlated with dendritic
cells, macrophages, mast cells, and monocytes (Figure 7F).
Moreover, RPM scores were negatively correlated with IFNG
and immune checkpoint molecules, such as PD-1 (PDCD-1),
PD-L1 (CD274), PD-L2 (PDCD1LG2), and CTLA4. In contrast,
RPM scores were positively correlated with IFNGR1, TGF-b, and
TNF-a families, which play pro-tumor roles in TIME (Figure 7G).
DISCUSSION

In this study, we identified three distinct subtypes and developed
an RPM in the IMvigor210 cohort through a series of
comprehensive analyses of ~5,000 IGSs from ImmuneSigDB.
Previous studies have explored biomarkers for predicting
Frontiers in Immunology | www.frontiersin.org 8
immunotherapy response, including PD-L1 expression (21),
TMB (22), MSI (23), and viral infection (24). In recent years,
much effort has been devoted to developing genomic biomarkers
of prognosis and response for patients receiving immunotherapy
(25, 26). However, most of these studies are based on analyses of
individual genes. In our study, we focused on sets of immunologic
genes rather than individual genes, which will improve our
understanding of the overall function of ICs. Based on
prognostic IGSs, the IMvigor210 cohort was divided into three
distinct subtypes. Notably, Subtype 2 had the best prognosis and
the highest immunotherapy response rate. A previous study
reported that PD-L1 expression on ICs was significantly
associated with immunotherapy response (27). We found that
the proportion of IC2+ was significantly higher in Subtype 2 than
those in Subtypes 1 and 3. According to the antitumor immune
response status, Chen and Mellman (28) proposed that cancers
can be classified into three phenotypes: immune-desert, immune-
excluded, and immune-inflamed types. Of these, the immune-
inflamed type is the most sensitive to immunotherapy. Our study
revealed that Subtype 2 group had the highest proportion of the
inflamed phenotype and the lowest proportion of the desert
phenotype, indicating high sensitivity to ICI therapy. CD8+ T
cells are important in tumor immunity, as they can clear tumors
viamultiple mechanisms (29). Numerous studies have shown that
high infiltration of CD8+ T cells in the TIME is associated with
good prognosis in many malignancies (30, 31). In our study, we
A B

D E

C

FIGURE 5 | Correlation of RPM with immune checkpoints, platinum-based chemotherapy, and somatic mutation. (A) RPM-L group had significantly higher
expression levels of immune checkpoint molecules compared to those in the RPM-H group. (B) Immunotherapy response in patients who received platinum-based
chemotherapy and those who did not. (C) RPM score in CR/PR and SD/PD groups with or without platinum-based chemotherapy. (D, E) Somatic mutation
landscape of the 20 most frequently mutated genes in RPM-L (D) and RPM-H (E) groups in TCGA-BLCA cohort *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001;
NS, nonsignificant. RPM, risk prediction model; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; TCGA, The Cancer
Genome Atlas; BLCA, bladder cancer.
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found that the CD8+ T effector signature was significantly
upregulated in Subtype 2, which explains why Subtype 2 had a
higher response and better prognosis. These results open new
avenues for exploring the immune response and escape
mechanisms of cancer immunotherapy.

There were 834 and 880 differential gene sets between
Subtypes 1 and 2 and between Subtypes 3 and 2, respectively.
Although there are also many differentially expressed IGSs (n =
1,771) between Subtypes 1 and 3, we found that both subtypes
have poor prognosis and poor response to immunotherapy. The
two subtypes did not show significant differences in clinical
features such as immunotherapy response and TNB.
Compared with Subtypes 1 and 3, Subtype 2 has the best
prognosis and the highest immunotherapy response rate. It has
distinct clinical, molecular, and immune correlates from
Subtypes 1 and 3. Therefore, we only compared the
Frontiers in Immunology | www.frontiersin.org 9
differentially expressed IGSs between Subtype 1 and Subtype 2
and between Subtype 3 and Subtype 2 to elucidate the underlying
mechanism by which subtype 2 is superior to Subtypes 1 and 3.

Four gene sets were identified that were used to construct an
IGS-based RPM: Gene Set 1 contains genes that are downregulated
in NKT cells compared to B2 B lymphocytes, Gene Set 2 contains
genes that are downregulated in monocyte-derived dendritic cells,
Gene Set 3 contains genes that are downregulated in a comparison
of peripheral blood mononuclear cells collected from a TIV
influenza vaccinee at day 3 post-vaccination vs. those collected
at day 7 post-vaccination, and Gene Set 4 contains genes that are
downregulated in CD4 T cells with NRAS knockout. These gene
sets provide novel insights into the functional diversity of the
TIME and thus provide potential biomarkers and therapeutic
targets for cancer management. The four-gene set RPM
effectively predicted prognosis and immunotherapy response in
A

B D E

F G IH

J K L M

C

FIGURE 6 | RPM predicts prognosis across multiple cancer types. (A) A forest plot showed the HR of Gene Sets 1–4 and RPM across 12 types of cancers.
(B–M) Kaplan–Meier analysis showed differences in survival between RPM-L and RPM-H across 12 types of cancers; RPM, risk prediction model; HR, hazard ratio.
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patients receiving anti-PD-L1 immunotherapy in the IMvigor210
cohort. Moreover, pan-cancer analyses showed that the RPM was
capable of accurate risk stratification across multiple cancer types,
indicating its broad applicability. Among the 12 most common
cancers, RPM exhibited opposite prognostic outcomes in LIHC
and PRAD compared to the other 10 cancers, and this may be due
to their organ-specific immune environment (32). The difference
in survival between the RPM-H and RPM-L groups for BRCA was
not significant possibly due to its high overall survival and low
mortality rate.

IMvigor210 provides high-quality gene expression data and
complete clinical data (8); it is therefore ideal for construction
and validation of molecular classification and RPM. Additionally,
the predictive ability of RPM was validated in multiple types of
cancers. Our study demonstrated that the RPM scores across 12
typesof cancerswere significantlyassociatedwithTMB,MSI,CD8+
Frontiers in Immunology | www.frontiersin.org 10
T-cell infiltration, immune checkpoint molecules (PD-1/PD-L1,
CTLA4), and cytokine (IFN-g, TGF-b, and TNF-a) expression,
which are key predictors of immunotherapy response. Therefore,
we believe that this RPMhas great potential to predict the response
to immunotherapy in various types of cancers.
CONCLUSION

In summary, we constructed the IGSC that may provide novel
insights into the relationship between immunologic processes
and features of TIME. Moreover, we developed a robust RPM
that can accurately predict the prognosis and response to
immunotherapy in patients with mUC, and its predictive
ability was validated across multiple cancer types. IGSC and
A B

D E
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C

FIGURE 7 | RPM predicts immunotherapy response across multiple cancer types. (A, B) RPM scores were generally positively associated with TIDE scores across
multiple cancer types. (C) RPM scores were generally negatively associated with TMB across multiple cancer types. (D) Correlation between RPM scores and MSI
across multiple cancer types. (E) RPM scores were higher in patients with MSS than in those with MSI-H in COAD, READ, and STAD. (F) Correlation of RPM with
density of infiltrating immune cells across 12 types of cancers. (G) Correlation of RPM with immune checkpoints, IFN-g, TGF-b, and TNF-a families across 12 types
of cancers. ***P < 0.001, ****P < 0.0001; RPM, risk prediction model; TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutation burden; MSI,
microsatellite instability; MSS, microsatellite stability; COAD, colon cancer; READ rectal cancer; STAD, stomach cancer; IFN-g, interferon-g; TGF-b, transforming growth
factor-b; TNF-a, tumor necrosis factor-a.
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RPM can serve as useful tools for developing a novel strategy for
cancer immunotherapy.
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