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Cell death can occur through numerous regulated mechanisms, from apoptosis to necrosis, entosis, and 
others. Each has a distinct mode of regulation and effect on tissue homeostasis. While the elimination of 
individual cells is typically considered the relevant physiologic endpoint of cell death, in some cases the 
remnants left behind by death can also function to support tissue homeostasis. Here we discuss specific 
functions of the end products of cell death, and how “after-death” functions may contribute to the roles of 
programmed cell death in physiology.
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INTRODUCTION

To choose to die instead of live is one of numerous 
cell fate decisions that individual cells make, along with 
entering quiescence or senescence, or undergoing differ-
entiation, that contributes to maintaining proper tissue 
function. Individual cells undergo death and are removed 
from tissues when they are damaged, aged, or infected, 
and their dysfunction presents a threat to the organism. 
Some cells also die as part of a normal cycle of rapid 
cell turnover that supports the function of specific tissues, 
or are removed to eliminate specialized structures during 
development [1,2].

The idea that death is a regulated cell fate originated 
from observations of insect metamorphosis, where de-
velopmental tissue structures undergo hormone-induced 
regression [3]. Tissue regression occurs as a result of the 

programmed death of individual cells, typically through 
a mechanism called apoptosis that is executed by the ac-
tivation of caspase proteases [4]. Cells undergoing apop-
tosis shrink and fragment into pieces, called apoptotic 
bodies, that are cleared by neighboring cells or immune 
cells through phagocytosis [5]. Because apoptotic bodies 
typically remain intact and do not release intracellular 
contents that can be pro-inflammatory, apoptotic death 
generally occurs in an immunologically silent manner, a 
feature that avoids potentially harmful immune responses 
when cells undergo death as part of normal physiology 
[6].

Research over the last two decades has revealed nu-
merous additional regulated mechanisms of cell death [2]. 
Notably, several forms of necrosis can be induced by cell 
damage or infection that differ from apoptosis because 
they involve rapid rupture of the plasma membrane. 
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By releasing pro-inflammatory cytokines and intracel-
lular damage-associated molecular pattern molecules 
(DAMPs†) that signal to activate immune cells, necrotic 
deaths promote immune responses that protect the organ-
ism from infection [7]. Numerous regulated mechanisms 
of necrosis, including necroptosis [8], pyroptosis [9], 
and ferroptosis [10], have been discovered that eliminate 
damaged or infected cells. Whereas apoptosis removes 
cells during development and under normal physiologic 
conditions, necrotic mechanisms are not utilized in nor-
mal tissues, likely due to their potent pro-inflammatory 
activity.

While differences in the crosstalk between apoptosis 
and necrosis and the immune system may underlie, at 
least in part, the different physiologic functions of these 
mechanisms, there are now numerous additional forms 
of cell death, up to at least 12 in total, that have been dis-
covered [2]. That numerous mechanisms have emerged 
to eliminate cells suggests the presence of additional dis-
tinguishing features that may underlie the utilization of 
particular forms of cell death in different contexts. Here 
we consider one particular feature, that the remnants that 
are left behind by death may have specific “after-death” 
functions. We discuss how these may be shared or distinct 
between different mechanisms, and how after-death func-
tions may contribute to the many different roles of cell 
death in physiology.

AFTER-DEATH FUNCTIONS

Nutrient Transfer From Cell Corpses Through 
Engulfment

One after-death function of cell death that may be 
shared among different mechanisms is the transfer of 
nutrients from dead cells to the engulfing cells that in-
gest them (Figure 1) [11]. The phagocytic clearance of 
apoptotic cells, for example, has been shown to lead to 
macrophage utilization of amino acids derived from in-
gested corpses, demonstrating that nutrients recovered 
from engulfed cells can be used to support metabolism 
[12]. The metabolic load from apoptotic cell digestion 
may be significant in some contexts, as individual macro-
phages can contain up to 10 to 20 phagocytosed corpses 
[13]. Similarly, pancreatic cancer cells have been shown 
to utilize amino acids from macropinocytosed necrotic 
cell debris to fuel the accumulation of biomass in support 
of proliferation [14]. In cancers where vascularization 
is often poor and nutrients can be scarce, the scaveng-
ing of extracellular protein through macropinocytosis is 
known to supply amino acids in support of cancer growth 
[11,14-16]. Nutrient transfer from dead cell corpses to 
living cells could also contribute significantly to disease 
progression in this context.

The mobilization of corpse-derived nutrients to other 
cells could similarly influence disease progression during 
stroke or myocardial infarction, conditions that also in-
volve ischemia and the induction of cell death due to a 
loss of nutrients from vasculature [17]. Cardiac myofibro-
blasts are known to phagocytose dead cell corpses after 
myocardial infarction, and their participation in corpse 
clearance is linked to an anti-inflammatory response that 
promotes tissue recovery [18]. Nutrient uptake could con-
ceivably contribute to supporting myofibroblast viability 
and function in tissue repair, although this possibility has 
not been explored. Similarly in the brain, microglia and 
astrocytes engulf dead cells that result from stroke, an ac-
tivity that lasts from days to weeks following injury, and 
nutrient transfer from corpses could contribute to tissue 
recovery that is also known to be promoted by these cell 
types [19].

In some tissues, the ingestion of dead cells could 
support metabolism as part of normal physiology when 
nutrients from vasculature are limited. One example of 
this is in the testes, where Sertoli cells, which function 
as nurse cells to support sperm cell differentiation, are 
localized in seminiferous tubules behind an extracellular 
matrix, and form a blood-testis barrier that limits nutrient 
diffusion. Sertoli cells continuously ingest residual cyto-
plasm from developing spermatids and also phagocytose 
whole apoptotic germ cells, as more than 75 percent of all 
developing sperm undergo cell death [20,21]. Lipids that 
are scavenged from ingested cytoplasm and apoptotic 
cells are proposed to act as a nutrient source, generating 
ATP through β-oxidation in support of the function of 
Sertoli cells that otherwise have limited access to nutri-
ents from blood [22].

In nutrient-replete conditions in well-vascularized 
tissues, macrophages, or other engulfing cells may not 
need to utilize corpse-derived nutrients when they are 
present in excess of cellular demand. In this case, nutri-
ents may instead be exported to the extracellular envi-
ronment. One example of export linked to phagocytosis 
occurs in the eye, where cells of the retinal pigment epi-
thelium engulf the outer segments of photoreceptor cells 
on a daily basis. After lysosomal degradation of ingested 
outer segments, retinoids are recycled and exported back 
to photoreceptors to support their continued function, in 
what is called the visual cycle [23]. It is conceivable that 
when dying cells are ingested in other tissues, nutrient 
export could occur in a similar manner and large amounts 
of metabolites could be recycled back to the microen-
vironment. Macrophages have been shown to export 
cholesterol in response to the phagocytosis of apoptotic 
cells [24], but whether the export of cell corpse-derived 
nutrients from engulfing cells is a general feature of dead 
cell clearance has not been well explored in mammalian 
systems. In ancestral organisms, phagocytosis is used 
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to support tissue metabolism, for example in sponges, 
where specialized phagocytic cells called choanocytes 
digest microorganisms and pass the scavenged nutrients 
to other cells [25]. Future studies may establish whether 
macrophages could function similarly to supply nutrients 
to cells in the microenvironment in mammalian tissues.

Nutrient Transfer Through a Specialized 
Mechanism Entosis

The direct transfer of nutrients from corpses to living 
cells also occurs with a specialized form of cell death 
called entosis, a competitive mechanism where certain 
cells within a population, called “winners,” ingest, kill, 
and degrade neighboring “loser” cells (Figure 1). Los-
er cells are digested within the lysosomes of winners, 
leading to direct nutrient transfer that supports winner 
cell survival and proliferation [12,26,27]. Intriguingly, 
loser cells play an active role, through Rho-GTPase and 
contractile myosin, to control their uptake by invading 
into winners [28-31], suggesting that nutrients are redis-
tributed to winner cells by an altruistic activity of losers 
through this mechanism.

Entosis was recently shown to be induced in cancer 
cell populations by long-term starvation for glucose. In 
this context, high levels of activation of the starvation-in-
duced, energy-sensing kinase AMPK control entosis by 
acting specifically within loser cells [26]. In starved cell 
populations, entosis can therefore mobilize and transfer 
cell-derived nutrients from the most-starved cells, or 

those with the highest levels of activation of AMPK, to 
the least-starved, an activity that was shown to promote 
the survival and outgrowth of cancer cell populations un-
dergoing long-term starvation stress [26].

While entosis is a recently described form of cell 
competition between cancer cells [32], other forms of 
competition between cells in developing tissues may 
instead involve the induction of apoptosis in loser cells, 
followed by either loser cell engulfment by winners [33], 
or extrusion and engulfment by macrophages [34]. Win-
ner cells may still benefit from direct nutrient transfer 
when they engulf apoptotic cells, and are also thought to 
receive additional signals from dying cells in the form of 
mechanical cues or secreted factors that promote com-
pensatory proliferation to maintain tissue homeostasis 
[35,36]. Engulfing macrophages may also accumulate 
large quantities of metabolites derived from the lyso-
somal digestion of extruded loser cells, but the impact 
of nutrient scavenging on macrophage function or tissue 
homeostasis is not known. Finally, other mechanisms of 
live cell engulfment called cannibalism are also known 
to occur in cancer cell populations, where nutrient trans-
fer from ingested neighboring cells or other cells in the 
microenvironment can contribute to supporting the me-
tabolism of particularly aggressive cells within a cancer 
[37,38].

Structural Functions: Cornification
While the transfer of nutrients to engulfing cells 

Figure 1. After-death functions of cell death. Apoptosis and entosis both eliminate cells, and also have an after-
death function to transfer nutrients from dead cells to engulfing cells. For apoptosis, an engulfing macrophage (white) 
is depicted next to an apoptotic cell (gray); for entosis, the engulfing cells are neighboring cells. Cornification does not 
function to eliminate cells, but has a structural function to support tissue formation, as dead cells called corneocytes 
compose the outer layers of skin. Entosis generates a subcellular lobe that may also have a structural after-death 
function, to support gonad development and fertility in C. elegans.
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through corpse digestion is one after-death function of 
cell death, in some circumstances cell corpses may not 
be cleared, but may instead persist and perform specific 
functions for the organism. One clear example of this is 
a mechanism of cell death called cornification that gener-
ates the outer protective layer of skin, the stratum corne-
um, as well as nails and hair in mammals (Figure 1) [39].

Cornification begins when progenitor cells located in 
the basal skin layer, the matrix of hair follicles, or the root 
of nails undergo asymmetric divisions, generating cells 
that detach from the basement membrane and move to-
ward the exterior surface of the organism. Matrix detach-
ment initiates the process of cornification that is induced 
by loss of β1-integrin engagement [40] and activation of 
the TAp63 transcription factor [41], and involves succes-
sive stages of intermediate filament protein expression 
and upregulation of protein crosslinking activity that 
generates keratin bundles. The plasma membrane also 
becomes replaced by a corneocyte lipid envelope (CLE), 
which is supported by an underlying protein-rich corni-
fied envelope composed of proteins such as involucrin 
and loricrin that become crosslinked to lipids in the CLE 
[42].

To make space for an increased number of intermedi-
ate filament protein bundles, all major cellular organelles, 
including the nucleus and mitochondria, endoplasmic 
reticulum, and endosomes, are eventually degraded 
[39]. Nuclei are degraded in part by the DNAse1L2 and 
DNAse2 enzymes that control DNA degradation [43-45], 
and by upregulation of the lysosomal degradative path-
way autophagy that clears nuclear fragments through 
nucleophagy [46]. Autophagy also participates in clear-
ing mitochondria and the endoplasmic reticulum [47,48], 
and contributes to remodeling cytoplasmic protein com-
position [49]. The resulting terminally differentiated 
corneocytes are rendered functionally dead but remain 
connected by desmosomal adhesions that link the keratin 
bundles of adjacent cells to generate structural support 
for skin, hair, and nails. While dead corneocytes in skin 
are eventually shed from the body after the cleavage of 
intercellular junctions [50], hair and nails maintain per-
sistent cell junctions, linking cornified cell corpses into 
architectures that support specialized tissue function.

Structural Functions: Sebocyte Cell Death
Another form of cell death that occurs in skin and 

performs a structural function is a mechanism that con-
trols the death of specialized cells called sebocytes within 
sebaceous glands. These cells undergo death through a 
process of holocrine secretion that involves the degrada-
tion of cellular organelles, generation of lipid droplets, 
and ultimately secretion of lipid-rich sebum from dead 
cells that provides a waterproofing function for skin and 

Figure 2. Lobe formation by entosis. a. The linker 
cell (green) is cleared by entosis in the late L4 stage of 
development and leaves behind a subcellular lobe that is 
deposited in between the developing gonad and cloaca, 
which will form the exit route for sperm. The gonad and 
intestine share this common exit channel in adult worms. 
b. Entotic lobes also detach from cells during entosis 
in culture. Left, top: contractile myosin is known to 
accumulate at the rear cortex, toward the back of invading 
cells, and likely accumulates in detaching lobes as well 
(green, circle). Right, top: entosis is mediated by cell-cell 
junctions that are formed by E- and P-cadherins (red) at the 
engulfment interface between internalizing and host cells. 
The cell adhesions form a ring-like structure, depicted in 
two dimensions by red foci. Contractile myosin (green) is 
predicted to accumulate in the lobe; actin is shown in blue. 
Bottom: E- and P-cadherin junctions (dark red) between 
internalizing and host cells inhibit the accumulation of 
contractile actomyosin, through p120 catenin (purple) – 
dependent recruitment of p190RhoGAP, and suppression 
of Rho-GTPase activity (inhibitory arrows, purple). 
Contractile myosin (green) may be activated in the lobe 
by PDZ-RhoGEF (red) – dependent activation of Rho-
GTPase, which is known to occur at the rear cortex of 
invading cells during entosis.
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cells. Germ cell lobes become engulfed and degraded 
by neighboring endothelial cells through a process that 
is proposed to promote germ cell maturation [63]. Lobes 
have also been shown to form and separate from leuko-
cytes undergoing transendothelial migration in mice, and 
are left behind at blood vessels, where their function is 
unknown but could involve participation in junctional 
resealing of the endothelium [64]. For the linker cell, the 
separating lobe structure can be long-lived, in some cas-
es persisting into adulthood, and then becoming cleared 
during mating [61]. The long-lived nature of the linker 
cell lobe and its localization suggest that it could have a 
specialized function, potentially to regulate the joining of 
the gonad and cloaca, or perhaps to serve as a protective 
barrier to shield the developing germline from the diges-
tive opening and external environment. The formation 
and long-lived nature of the subcellular lobe generated 
by entosis suggests that this process could have been se-
lected to clear the linker cell, in part, due to specialized 
function of this remnant that is left behind by cell death.

CONCLUSIONS AND OUTLOOK

Here we have discussed different ways that cell death 
mechanisms can contribute to physiology through the end 
products that they generate. While numerous mechanisms 
of cell death may lead to the redistribution of nutrients 
between cells, other after-death functions are more spe-
cialized, such as structural functions resulting from corni-
fication in skin. For entosis, this mechanism appears to 
have two different after-death functions, including direct 
nutrient transfer that promotes cell competition, and lobe 
formation that may have a specialized role in supporting 
fertility during C. elegans development (Figure 1).

The discussion of after-death functions raises an 
interesting question: what defines when a cell dies? The 
point of no return for apoptosis was once considered to 
be any of numerous stages of execution, from the release 
of cytochrome c from mitochondria, to the activation of 
caspases, the degradation of DNA, or even the exposure 
of phagocytic eat-me signals and fragmentation of cells 
into apoptotic bodies, all of which have now been shown 
to be stages from which cells can recover, through a pro-
cess called anastasis [65-71]. This leaves the phagocytic 
clearance of dying cells, or their lysosomal digestion, as 
possible points of no return. From studies of entosis, it 
is clear that engulfment can also be a reversible process 
[28], suggesting that it is the lysosomal degradation of 
engulfed cells that is the ultimate, irreversible endpoint.

For cells that are not engulfed, such as corneocytes, 
which ultimately die as a result of the cornification pro-
cess, death could, by analogy, be considered to occur 
when they are sloughed off and removed from the body. 
Yet prior to removal, individual cells lose all organelles, 

hair [51-53]. Nuclear degradation during sebocyte cell 
death is controlled by DNAse2 that is released from de-
grading lysosomes, suggesting that lysosomal damage, 
a known trigger of cell death in other contexts [54], is 
linked to this death mechanism that generates an import-
ant structural component of healthy hair and skin [55]. 
The degradation of DNA during sebocyte cell death also 
contributes purines that are utilized to make uric acid, a 
component of sebum that is proposed to serve a protec-
tive function for skin by acting as an antioxidant [55].

Structural Functions: The Entotic and Linker Cell 
Lobe

A recently discovered function for entosis suggests 
that in addition to promoting competition between cells, 
entosis may also play a structural role to support fertility 
in Caenorhabditis elegans (Figure 1). While most cell 
deaths in C. elegans development occur by apoptosis, one 
particular cell, called the linker cell, dies in a non-apop-
totic manner [56,57]. The linker cell has a unique func-
tion in development, to shape the male gonad by leading 
a collective migration that involves movement toward 
the head, dorsal, and ventral turns, and migration back 
to the tail in the last larval stage. After the completion of 
migration, the linker cell undergoes death and is removed 
in order to facilitate the joining of the gonad to the diges-
tive opening, called the cloaca, through which sperm are 
released from adults during mating. A failure to kill and 
remove the linker cell disrupts gonad-to-cloaca fusion 
and renders adult male worms sterile [56].

While genetic screens identified a pathway involved 
in promoting linker cell death [58-60], the mechanism 
underlying linker cell engulfment had remained elusive 
since the discovery that clearance occurs in a manner 
distinct from phagocytosis [56]. A recent report identified 
entosis as the mechanism that clears the linker cell [61]. 
Both entosis and linker cell clearance were shown to in-
volve the formation of cell adhesions between the ingest-
ed cells and their engulfers, an active role for actin within 
the ingested cells to promote uptake, and both processes 
resulted in the formation and separation of a subcellular 
structure, called a lobe, from the ingested cells (Figures 
1, 2) [61]. The linker cell lobe, which ranged from 2 to 
3 microns in size, was deposited at the site of gonad to 
cloaca fusion, and persisted for long periods of time as 
the linker cell body containing the nucleus was engulfed 
and degraded (Figure 2). The long-term persistence of 
the lobe structure identified in this study [61], although 
differing from another report that suggested the lobe can 
also become engulfed [62], may indicate that this subcel-
lular structure has a specialized function.

Subcellular lobes have been shown to form and de-
tach from other cells, including in C. elegans, where large 
lobes form and separate from migrating primordial germ 
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